organic compounds
Dimethyl [1-(1-allyl-5-iodo-1H-indol-3-yl)-3-hydroxypropyl]phosphonate
aKey Laboratory of Pesticides and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: dingyu508@gmail.com
In the title compound, C16H21INO4P, the molecular structure is stabilized by a weak intramolecular C—H⋯O hydrogen-bond interaction. The crystal packing is stabilized by strong intermolecular O—H ⋯ O hydogen-bonding interactions to form a zigzag packing arrangement.
Related literature
For et al. (2007); Yang, et al. (2007); Ibrahem et al. (2007). For related structures, see: Sonar et al. (2006); Chen et al. (2007); Butcher et al. (2007). For related literature, see: Allen et al. (1989); Horiguchi & Kandatsu (1959).
of phosphorus compounds, see: CarloneExperimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068171/at2520sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068171/at2520Isup2.hkl
The MacMillan's imidazolidinone catalysts (Fig 3) (0.02 mmol) and TFA (0.02 mmol) were stirred in 1 ml dichloromethane for 5 min at 195 K, then (E)-dialkyl 3-oxoprop-1-enylphosphonate 2 (0.1 mmol) was added and stirred for 15 min. And then 1-allyl-5-iodo-1H-indole 1 (0.11 mmol) was added. After the mixture was stirred for 48 h, the solvent (dichloromethane) was removed under reduced pressure at room temperature, and then the residue was added to a stirring solution of sodium borohydride (18.6 mg, 0.5 mmol, 5 equiv) in methanol (3.0 ml). After 15 min, the reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2. The combined organic layer was washed with saturated solutions of NaHCO3 and NaCl and then dried over with Na2SO4. The combined organic layer was concentrated in vacuo and the product was purified by flash λ = 254 nm, 5% i-PrOH / hexanes, flow rate = 1.0 ml/min). 1H NMR (400 MHz, CDCl3) δ 2.10–2.18 (m, 1H), 2.28–2.35 (m, 1H), 2.59 (br, 1H), 3.49 (d, J = 10.8 Hz, 3H), 3.73 (d, J = 10.8 Hz, 3H), 3.50–3.75 (m, 3H), 4.67 (d, J = 5.2 Hz, 2H), 5.00 (d, J = 16.8 Hz, 1H), 5.19 (d, J = 10.4 Hz, 1H), 5.90–6.02 (m, 1H), 7.05–7.47 (m, 3H), 7.98 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 29.9, 31.3, 33.3, 48.9, 52.67, 52.75, 53.4, 53.5, 59.7, 59.8, 83.0, 107.9, 111.8, 117.5, 127.9, 128.5, 129.5, 130.2, 132.8, 135.2.; MS (EI) m/z 449 (M+), 450 (M++1), 451 (M++2). Elemental Analysis calculated for C16H21INO4P: C 42.78, H 4.71, N 3.12%. Found: C 42.58, H 4.94, N 3.99%. [α]23D = -22.62 (C=2.35, CHCl3) (after recrystallization). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a CHCl3 solution.
on silica gel (ethyl acetate, Rf = 0.4), (14.3 mg, 48% yield). Compound 5 m: yellow solid; tr (minor) = 53.8 min, tr (major) = 59.5 min (Chiralcel AD—H,All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H(methyl) = 0.96 Å, C—H(methylene) = 0.97 Å, C—H(methine) = 0.98 Å, C—H(aromatic) = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic,Cmethylene,Cmethineylene).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).C16H21INO4P | F(000) = 896 |
Mr = 449.21 | Dx = 1.646 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5073 reflections |
a = 7.9983 (4) Å | θ = 2.2–25.6° |
b = 10.1295 (6) Å | µ = 1.87 mm−1 |
c = 22.3722 (12) Å | T = 294 K |
V = 1812.57 (17) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 3564 independent reflections |
Radiation source: fine-focus sealed tube | 3314 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
phi and ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −7→9 |
Tmin = 0.706, Tmax = 0.835 | k = −11→12 |
10836 measured reflections | l = −27→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.6855P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3564 reflections | Δρmax = 0.69 e Å−3 |
211 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1503 Freidel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (1) |
C16H21INO4P | V = 1812.57 (17) Å3 |
Mr = 449.21 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.9983 (4) Å | µ = 1.87 mm−1 |
b = 10.1295 (6) Å | T = 294 K |
c = 22.3722 (12) Å | 0.20 × 0.10 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 3564 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3314 reflections with I > 2σ(I) |
Tmin = 0.706, Tmax = 0.835 | Rint = 0.051 |
10836 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 0.69 e Å−3 |
S = 1.04 | Δρmin = −0.30 e Å−3 |
3564 reflections | Absolute structure: Flack (1983), 1503 Freidel pairs |
211 parameters | Absolute structure parameter: 0.00 (1) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | −0.17244 (5) | −0.23507 (4) | 1.053601 (16) | 0.06002 (15) | |
C1 | −0.1488 (6) | 0.1982 (4) | 0.96323 (18) | 0.0340 (9) | |
C2 | −0.2151 (6) | 0.1860 (5) | 1.0201 (2) | 0.0408 (11) | |
H2 | −0.2575 | 0.2587 | 1.0404 | 0.049* | |
C3 | −0.2158 (7) | 0.0611 (6) | 1.0455 (2) | 0.0460 (12) | |
H3 | −0.2580 | 0.0495 | 1.0838 | 0.055* | |
C4 | −0.1542 (7) | −0.0467 (5) | 1.0142 (2) | 0.0414 (11) | |
C5 | −0.0842 (6) | −0.0348 (5) | 0.95801 (19) | 0.0364 (10) | |
H5 | −0.0414 | −0.1081 | 0.9382 | 0.044* | |
C6 | −0.0794 (5) | 0.0896 (4) | 0.93175 (17) | 0.0299 (9) | |
C7 | −0.0233 (5) | 0.1394 (4) | 0.87529 (18) | 0.0303 (9) | |
C8 | −0.0615 (5) | 0.2707 (5) | 0.87450 (19) | 0.0365 (10) | |
H8 | −0.0395 | 0.3272 | 0.8427 | 0.044* | |
C9 | −0.1972 (10) | 0.4394 (5) | 0.9422 (2) | 0.0627 (17) | |
H9A | −0.2818 | 0.4309 | 0.9731 | 0.075* | |
H9B | −0.1050 | 0.4893 | 0.9591 | 0.075* | |
C10 | −0.2659 (14) | 0.5131 (9) | 0.8942 (4) | 0.105 (3) | |
H10 | −0.3574 | 0.4747 | 0.8753 | 0.126* | |
C11 | −0.2201 (13) | 0.6240 (7) | 0.8734 (3) | 0.089 (3) | |
H11A | −0.1294 | 0.6679 | 0.8902 | 0.107* | |
H11B | −0.2772 | 0.6613 | 0.8414 | 0.107* | |
C12 | 0.0602 (6) | 0.0611 (5) | 0.82594 (19) | 0.0324 (9) | |
H12 | 0.0481 | −0.0329 | 0.8355 | 0.039* | |
C13 | −0.0169 (6) | 0.0843 (5) | 0.76336 (19) | 0.0414 (11) | |
H13A | −0.0210 | 0.1785 | 0.7555 | 0.050* | |
H13B | 0.0547 | 0.0443 | 0.7334 | 0.050* | |
C14 | −0.1891 (8) | 0.0284 (6) | 0.7576 (2) | 0.0541 (14) | |
H14A | −0.2652 | 0.0777 | 0.7829 | 0.065* | |
H14B | −0.2268 | 0.0374 | 0.7166 | 0.065* | |
C15 | 0.5194 (7) | 0.0595 (7) | 0.9005 (3) | 0.0577 (15) | |
H15A | 0.5880 | 0.0042 | 0.8757 | 0.087* | |
H15B | 0.5363 | 0.0367 | 0.9417 | 0.087* | |
H15C | 0.5494 | 0.1503 | 0.8943 | 0.087* | |
C16 | 0.3565 (9) | −0.1289 (6) | 0.7724 (3) | 0.0686 (18) | |
H16A | 0.4059 | −0.1626 | 0.8084 | 0.103* | |
H16B | 0.4166 | −0.1620 | 0.7384 | 0.103* | |
H16C | 0.2419 | −0.1566 | 0.7701 | 0.103* | |
N1 | −0.1369 (5) | 0.3078 (4) | 0.92702 (16) | 0.0379 (9) | |
O1 | −0.1922 (9) | −0.1050 (5) | 0.7740 (3) | 0.112 (2) | |
H1 | −0.2269 | −0.1492 | 0.7459 | 0.168* | |
O2 | 0.3445 (4) | 0.0404 (3) | 0.88494 (12) | 0.0386 (7) | |
O3 | 0.3641 (4) | 0.0129 (4) | 0.77276 (15) | 0.0494 (9) | |
O4 | 0.3217 (5) | 0.2376 (3) | 0.81376 (16) | 0.0521 (8) | |
P1 | 0.28050 (14) | 0.09837 (13) | 0.82350 (5) | 0.0338 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0725 (3) | 0.0485 (2) | 0.0591 (2) | −0.00777 (18) | 0.00460 (18) | 0.01635 (16) |
C1 | 0.032 (2) | 0.034 (2) | 0.036 (2) | 0.0011 (18) | −0.0051 (17) | −0.0074 (16) |
C2 | 0.037 (2) | 0.050 (3) | 0.036 (2) | 0.006 (2) | 0.0039 (19) | −0.006 (2) |
C3 | 0.047 (3) | 0.058 (3) | 0.032 (2) | 0.000 (2) | 0.008 (2) | 0.001 (2) |
C4 | 0.041 (3) | 0.045 (3) | 0.038 (2) | −0.003 (2) | −0.003 (2) | 0.0070 (19) |
C5 | 0.032 (2) | 0.037 (2) | 0.040 (3) | −0.0025 (19) | 0.0006 (19) | −0.0012 (19) |
C6 | 0.024 (2) | 0.038 (2) | 0.028 (2) | 0.0039 (18) | −0.0029 (16) | −0.0024 (17) |
C7 | 0.023 (2) | 0.038 (2) | 0.030 (2) | 0.0002 (18) | −0.0002 (16) | −0.0048 (17) |
C8 | 0.037 (2) | 0.038 (2) | 0.035 (2) | −0.003 (2) | 0.0003 (18) | −0.0033 (19) |
C9 | 0.104 (5) | 0.039 (3) | 0.045 (3) | 0.022 (3) | 0.005 (4) | −0.002 (2) |
C10 | 0.141 (8) | 0.083 (6) | 0.090 (6) | 0.057 (6) | 0.025 (5) | 0.008 (5) |
C11 | 0.157 (8) | 0.053 (4) | 0.058 (4) | 0.043 (5) | 0.035 (4) | 0.010 (3) |
C12 | 0.034 (2) | 0.032 (2) | 0.031 (2) | 0.0014 (19) | 0.0026 (18) | −0.0003 (18) |
C13 | 0.042 (3) | 0.054 (3) | 0.028 (2) | 0.002 (2) | −0.0016 (19) | −0.007 (2) |
C14 | 0.056 (3) | 0.051 (3) | 0.055 (3) | 0.000 (3) | −0.026 (3) | −0.006 (2) |
C15 | 0.038 (3) | 0.080 (4) | 0.056 (3) | −0.006 (3) | −0.013 (2) | 0.014 (3) |
C16 | 0.060 (4) | 0.062 (4) | 0.083 (4) | 0.011 (3) | 0.004 (3) | −0.029 (3) |
N1 | 0.042 (2) | 0.035 (2) | 0.0367 (19) | 0.0083 (17) | 0.0030 (16) | −0.0041 (15) |
O1 | 0.153 (6) | 0.054 (3) | 0.129 (5) | −0.034 (4) | −0.088 (4) | 0.005 (3) |
O2 | 0.0300 (16) | 0.0523 (19) | 0.0334 (15) | −0.0042 (16) | −0.0025 (14) | 0.0044 (13) |
O3 | 0.035 (2) | 0.071 (3) | 0.0416 (18) | 0.0069 (17) | 0.0066 (15) | −0.0039 (17) |
O4 | 0.0469 (19) | 0.047 (2) | 0.062 (2) | −0.007 (2) | −0.0022 (16) | 0.0139 (16) |
P1 | 0.0292 (6) | 0.0419 (7) | 0.0304 (5) | 0.0007 (5) | 0.0017 (4) | 0.0023 (5) |
I1—C4 | 2.107 (5) | C11—H11B | 0.9300 |
C1—N1 | 1.378 (6) | C12—C13 | 1.548 (6) |
C1—C2 | 1.383 (6) | C12—P1 | 1.803 (4) |
C1—C6 | 1.419 (6) | C12—H12 | 0.9800 |
C2—C3 | 1.387 (7) | C13—C14 | 1.495 (8) |
C2—H2 | 0.9300 | C13—H13A | 0.9700 |
C3—C4 | 1.387 (7) | C13—H13B | 0.9700 |
C3—H3 | 0.9300 | C14—O1 | 1.400 (7) |
C4—C5 | 1.382 (6) | C14—H14A | 0.9700 |
C5—C6 | 1.391 (7) | C14—H14B | 0.9700 |
C5—H5 | 0.9300 | C15—O2 | 1.455 (6) |
C6—C7 | 1.432 (6) | C15—H15A | 0.9600 |
C7—C8 | 1.365 (7) | C15—H15B | 0.9600 |
C7—C12 | 1.514 (6) | C15—H15C | 0.9600 |
C8—N1 | 1.374 (5) | C16—O3 | 1.438 (7) |
C8—H8 | 0.9300 | C16—H16A | 0.9600 |
C9—C10 | 1.419 (10) | C16—H16B | 0.9600 |
C9—N1 | 1.458 (6) | C16—H16C | 0.9600 |
C9—H9A | 0.9700 | O1—H1 | 0.8200 |
C9—H9B | 0.9700 | O2—P1 | 1.580 (3) |
C10—C11 | 1.270 (12) | O3—P1 | 1.576 (4) |
C10—H10 | 0.9300 | O4—P1 | 1.464 (4) |
C11—H11A | 0.9300 | ||
N1—C1—C2 | 129.7 (4) | C7—C12—H12 | 107.8 |
N1—C1—C6 | 107.8 (4) | C13—C12—H12 | 107.8 |
C2—C1—C6 | 122.5 (4) | P1—C12—H12 | 107.8 |
C1—C2—C3 | 117.3 (4) | C14—C13—C12 | 112.8 (4) |
C1—C2—H2 | 121.3 | C14—C13—H13A | 109.0 |
C3—C2—H2 | 121.3 | C12—C13—H13A | 109.0 |
C4—C3—C2 | 120.7 (4) | C14—C13—H13B | 109.0 |
C4—C3—H3 | 119.7 | C12—C13—H13B | 109.0 |
C2—C3—H3 | 119.7 | H13A—C13—H13B | 107.8 |
C5—C4—C3 | 122.2 (4) | O1—C14—C13 | 111.1 (5) |
C5—C4—I1 | 119.2 (4) | O1—C14—H14A | 109.4 |
C3—C4—I1 | 118.5 (3) | C13—C14—H14A | 109.4 |
C4—C5—C6 | 118.4 (4) | O1—C14—H14B | 109.4 |
C4—C5—H5 | 120.8 | C13—C14—H14B | 109.4 |
C6—C5—H5 | 120.8 | H14A—C14—H14B | 108.0 |
C5—C6—C1 | 118.8 (4) | O2—C15—H15A | 109.5 |
C5—C6—C7 | 134.4 (4) | O2—C15—H15B | 109.5 |
C1—C6—C7 | 106.7 (4) | H15A—C15—H15B | 109.5 |
C8—C7—C6 | 106.5 (4) | O2—C15—H15C | 109.5 |
C8—C7—C12 | 126.8 (4) | H15A—C15—H15C | 109.5 |
C6—C7—C12 | 126.7 (4) | H15B—C15—H15C | 109.5 |
C7—C8—N1 | 110.8 (4) | O3—C16—H16A | 109.5 |
C7—C8—H8 | 124.6 | O3—C16—H16B | 109.5 |
N1—C8—H8 | 124.6 | H16A—C16—H16B | 109.5 |
C10—C9—N1 | 115.6 (5) | O3—C16—H16C | 109.5 |
C10—C9—H9A | 108.4 | H16A—C16—H16C | 109.5 |
N1—C9—H9A | 108.4 | H16B—C16—H16C | 109.5 |
C10—C9—H9B | 108.4 | C8—N1—C1 | 108.2 (4) |
N1—C9—H9B | 108.4 | C8—N1—C9 | 126.6 (4) |
H9A—C9—H9B | 107.4 | C1—N1—C9 | 125.2 (4) |
C11—C10—C9 | 129.1 (11) | C14—O1—H1 | 109.5 |
C11—C10—H10 | 115.5 | C15—O2—P1 | 118.1 (3) |
C9—C10—H10 | 115.5 | C16—O3—P1 | 122.4 (4) |
C10—C11—H11A | 120.0 | O4—P1—O3 | 109.0 (2) |
C10—C11—H11B | 120.0 | O4—P1—O2 | 114.5 (2) |
H11A—C11—H11B | 120.0 | O3—P1—O2 | 106.55 (19) |
C7—C12—C13 | 113.8 (4) | O4—P1—C12 | 115.2 (2) |
C7—C12—P1 | 110.1 (3) | O3—P1—C12 | 108.7 (2) |
C13—C12—P1 | 109.3 (3) | O2—P1—C12 | 102.26 (19) |
N1—C1—C2—C3 | 177.8 (5) | C7—C12—C13—C14 | −69.1 (6) |
C6—C1—C2—C3 | −1.6 (7) | P1—C12—C13—C14 | 167.4 (4) |
C1—C2—C3—C4 | −0.9 (7) | C12—C13—C14—O1 | −53.2 (7) |
C2—C3—C4—C5 | 2.5 (8) | C7—C8—N1—C1 | −0.1 (5) |
C2—C3—C4—I1 | −176.4 (4) | C7—C8—N1—C9 | −179.2 (5) |
C3—C4—C5—C6 | −1.5 (7) | C2—C1—N1—C8 | −179.9 (5) |
I1—C4—C5—C6 | 177.4 (3) | C6—C1—N1—C8 | −0.5 (5) |
C4—C5—C6—C1 | −1.0 (6) | C2—C1—N1—C9 | −0.8 (8) |
C4—C5—C6—C7 | −177.9 (5) | C6—C1—N1—C9 | 178.7 (5) |
N1—C1—C6—C5 | −176.9 (4) | C10—C9—N1—C8 | 35.3 (10) |
C2—C1—C6—C5 | 2.6 (6) | C10—C9—N1—C1 | −143.6 (7) |
N1—C1—C6—C7 | 0.8 (5) | C16—O3—P1—O4 | 175.5 (4) |
C2—C1—C6—C7 | −179.7 (4) | C16—O3—P1—O2 | 51.4 (5) |
C5—C6—C7—C8 | 176.3 (5) | C16—O3—P1—C12 | −58.1 (5) |
C1—C6—C7—C8 | −0.8 (5) | C15—O2—P1—O4 | −51.1 (5) |
C5—C6—C7—C12 | −3.0 (8) | C15—O2—P1—O3 | 69.5 (4) |
C1—C6—C7—C12 | 179.9 (4) | C15—O2—P1—C12 | −176.4 (4) |
C6—C7—C8—N1 | 0.6 (5) | C7—C12—P1—O4 | −58.6 (4) |
C12—C7—C8—N1 | 179.9 (4) | C13—C12—P1—O4 | 67.1 (4) |
N1—C9—C10—C11 | −120.5 (9) | C7—C12—P1—O3 | 178.7 (3) |
C8—C7—C12—C13 | −47.8 (6) | C13—C12—P1—O3 | −55.6 (4) |
C6—C7—C12—C13 | 131.4 (5) | C7—C12—P1—O2 | 66.3 (3) |
C8—C7—C12—P1 | 75.3 (5) | C13—C12—P1—O2 | −168.0 (3) |
C6—C7—C12—P1 | −105.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1 | 0.98 | 2.47 | 2.873 (7) | 104 |
O1—H1···O4i | 0.82 | 1.92 | 2.733 (6) | 174 |
Symmetry code: (i) −x, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C16H21INO4P |
Mr | 449.21 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 294 |
a, b, c (Å) | 7.9983 (4), 10.1295 (6), 22.3722 (12) |
V (Å3) | 1812.57 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.87 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.706, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10836, 3564, 3314 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.102, 1.04 |
No. of reflections | 3564 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.30 |
Absolute structure | Flack (1983), 1503 Freidel pairs |
Absolute structure parameter | 0.00 (1) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1 | 0.98 | 2.47 | 2.873 (7) | 104.0 |
O1—H1···O4i | 0.82 | 1.92 | 2.733 (6) | 174.1 |
Symmetry code: (i) −x, y−1/2, −z+3/2. |
Acknowledgements
The authors acknowledge financial support from the Natural Science Foundation of Hubei Province of China (No. 2006ABA175) and the Natural Science Foundation of Central China Normal University, and are indebted to Dr Guangmin Yao of Shijiazhuang Pharmaceutical Group, Zhongqi (sjz) Pharmaceutical Technology Co. Ltd, and Professor Wenjing Xiao and Dr Xianggao Meng of Central China Normal University, for their advice and support.
References
Allen, M. C., Fuhrer, W. & Tuck, B. (1989). J. Med. Chem. 32, 1652–1661. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2007). Acta Cryst. E63, o3505. Web of Science CSD CrossRef IUCr Journals Google Scholar
Carlone, A., Bartoli, G. & Bosco, M. (2007). Angew. Chem. Int. Ed. 46, 4504–4506. Web of Science CrossRef CAS Google Scholar
Chen, A., Zou, J.-W. & Zhao, W.-N. (2007). Acta Cryst. E63, o3229. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Horiguchi, M. & Kandatsu, M. (1959). Nature (London), 184, 901. CrossRef PubMed Web of Science Google Scholar
Ibrahem, I., Rios, R. & Vesely, J. (2007). Angew. Chem. Int. Ed. 46, 4507–4510. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonar, V. N., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o3328–o3330. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, H., Hong, Y.-T. & Kim, S. (2007). Org. Lett. 9, 2281–2284. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphorus has been recognized as an essential structural constituent of many biomolecules and a crucial element in many biological transformations (Horiguchi & Kandatsu,1959; Allen et al. 1989). With the advances in the development of chiral catalysts, asymmetric synthesis of some phosphorus compounds has been well documented in literatures (Carlone et al., 2007; Yang, et al., 2007; Ibrahem et al., 2007). As part of our ongoing project on enantioselective organocatalysis, a series of α-indolyl phosphonates have been highly enantioselectively synthesized via Friedel-Crafts alkylation of substituted indoles with (E)-dialkyl 3-oxoprop-1-enylphosphonate using MacMillan's imidazolidinone catalysts. The title compound (I) was synthesized and its crystal structure is presented here.
As seen in Fig. 1, the pyrrole plane (C1/C6—C8/N1) and the phenyl ring (C1—C6) are coplanar with each other with a dihedral angle between their mean planes of 2.2 (24)° in the molecule of the title compound (I), and the molecular structure is stablized by a week C12—H12 ··· O1 intramolecular hydrogen bonding interaction (Table 1).
The crystal packing (Fig. 2) is stabilized by strong intermolecular O—H ··· O hydogen bonds interaction (Table 1) to form a zigzag packing arrangement. Dipole–dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.