organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o494-o495

N-(1-Acetyl-r-7,c-9-di­phenyl-4,8-di­thia-1,2-di­aza­spiro­[5.4]dec-2-en-3-yl)acet­amide

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 16 December 2007; accepted 10 January 2008; online 23 January 2008)

In the title compound, C22H23N3O2S2, the five-membered ring is planar and the C5S ring adopts a chair conformation. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions, generating a chain and a centrosymmetric dimer, respectively.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Isaac et al. (2003[Isaac, M., Slassi, M., Xin, T., Arora, J., O'Brien, A., Edwards, L., MacLean, N., Wilson, J., Demschyshyn, L., Labrie, P., Naismith, A., Maddaford, S. P., Papac, D., Harrison, S., Wang, H., Draper, S. & Tehim, A. (2003). Bioorg. Med. Chem. Lett. 13, 4409-4413.]); Pan et al. (2003[Pan, K., Scott, M. K., Lee, D. H. S., Fitzpatric, L. J., Crooke, J. J., Rivero, R. A., Rosenthal, D. I., Vaidya, A. H., Zhao, B. & Reiz, A. B. (2003). Bioorg. Med. Chem. 11, 185-192.]); Jung et al. (2004[Jung, K. Y., Kim, S. K., Gao, Z. G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y. C. (2004). Bioorg. Med. Chem. 12, 613-623.]); Foroumadi et al. (2002[Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). II Farmaco, 57, 765-769.]); Jalilian et al. (2002[Jalilian, A. R., Sattari, S., Bineshmarvasti, M., Daneshtalab, M. & Shafiee, A. (2002). II Farmaco, 58, 63-68.]); Leung-Toung et al. (2003[Leung-Toung, R., Odzinska, J., Li, W., Lowrie, J., Kukreja, R., Desilets, D., Karimian, K. & Tam, T. F. (2003). Bioorg. Med. Chem. 11, 5529-5537.]); Schmidt et al. (1970[Schmidt, P., Eichenberger, K. & Schwiezer, E. (1970). Chem. Abstr. 72, 318377u.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Singh et al. (2003[Singh, U., Raju, B., Lam, S., Zhou, J., Gadwood, R. C., Ford, C. W., Zurenko, G. E., Schaadt, R. D., Morin, S. E., Adams, W. J., Friis, J. M., Courtney, M., Palandra, J., Hackbarth, C. J., Lopez, S. et al. (2003). Bioorg. Med. Chem. Lett. 13, 4209-4212.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23N3O2S2

  • Mr = 425.55

  • Monoclinic, P 21 /n

  • a = 12.3310 (7) Å

  • b = 16.0218 (9) Å

  • c = 12.3852 (7) Å

  • β = 116.714 (1)°

  • V = 2185.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.25 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 24434 measured reflections

  • 5139 independent reflections

  • 4587 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 0.97

  • 5139 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.94 2.786 (2) 166
C5—H5⋯O2ii 0.98 2.49 3.446 (2) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Tetrahydrothiopyrans play major roles in the field of medicinal chemistry (Isaac et al., 2003). 1,3,4-Thiadiazoline nucleus, a biologically active heterocyclic ring, is also associated with a wide range of pharmacological activities (Pan et al., 2003; Jung et al., 2004; Foroumadi et al., 2002; Jalilian et al., 2002; Leung-Toung et al., 2003). An essential component of the search for new leads in a drug-design programme is the synthesis of molecules, which is novel and resembles known biologically active molecules by virtue of the presence of certain pharmocophoric groups. Certain small heterocyclic molecules act as highly functionalized scaffolds and are pharmacophores of a number of biologically active and medicinally useful molecules. As the title compound (I) is of much biological importance, we have undertaken the crystal structure determination by X-ray diffraction.

The bond lengths and bond angles in (I) are comparable with those in the literature (Allen et al., 1987). The sum of the bond angles around N1 atom [360.0 (3)°] indicates the sp2 hybridization. The torsion angles C19—C18—N1—N2 [-0.1 (2)°) and C19—C18—N1—C3 [-179.3 (1)°] indicate that atoms C18 and C19 lie in the plane of the five membered ring (N1/N2/C20/S2/C3). Also the torsion angles C22—C21—N3—C20 [-177.3 (2)°], O2—C21—N3—C20 [2.4 (3)°], C21—N3—C20—S2 [2.3 (2)°] and C21—N3—C20—N2 [-178.1 (2)°] indicate that the substituted moiety at C20 lie in the plane of the ring to which it is attached. The dihedral angle between the two phenyl rings in the structure is about 77.6 (1)° which clearly indicates that the two phenyl rings are nearly perpendicular to each other.

The six membered ring C1—C5/S1 adopts chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.117 (1) Å, q3 = 0.651 (1) Å; QT = 0.661 (1)Å and θ = 10.2 (1)°.

The crystal packing is stabilized N—H···O and C—H···O intermolecular interaction generating a chain of C(7) and a centrosymmetric dimer of R22(18) ring, respectively.

Related literature top

For related literature, see: Allen et al. (1987); Isaac et al. (2003); Pan et al. (2003); Jung et al. (2004); Foroumadi et al. (2002); Jalilian et al. (2002); Leung-Toung et al. (2003), Schmidt et al. (1970); Cremer & Pople (1975); Nardelli (1983); Singh et al. (2003).

Experimental top

2,6-Diphenyltetrahydrothiopyran-4-one thiosemicarbazone (0.025 mol) was treated with freshly distilled acetic anhydride and the mixture was refluxed for 8 h on a water bath (363–373 K). The removal of solvent from the cooled reaction mixture in vaccuo afforded 4-acetyl-2-acetylamino-5-spiro-((r)-2,(c)6-diphenyltetrahydrothiopyran-4-yl)- 4,5-dihydro-[1,3,4]thiadiazole which was purified in neutral alumina column using n-hexane-ethyl acetate (4:1) as eluent. The pure compound was recrystallized from ethanol [m.p.: 399 K].

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.86 Å, Uiso = 1.2Ueq (N) for the NH group.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, showing N—H···O and C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been omitted.
N-(1-Acetyl-r-7,c-9-diphenyl-4,8-dithia-1,2-diazaspiro[5.4]dec-2-en-3- yl)acetamide top
Crystal data top
C22H23N3O2S2F(000) = 896
Mr = 425.55Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2504 reflections
a = 12.3310 (7) Åθ = 1.9–28.0°
b = 16.0218 (9) ŵ = 0.27 mm1
c = 12.3852 (7) ÅT = 293 K
β = 116.714 (1)°Block, colourless
V = 2185.7 (2) Å30.25 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 1515
24434 measured reflectionsk = 2121
5139 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.4937P]
where P = (Fo2 + 2Fc2)/3
5139 reflections(Δ/σ)max = 0.031
264 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H23N3O2S2V = 2185.7 (2) Å3
Mr = 425.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3310 (7) ŵ = 0.27 mm1
b = 16.0218 (9) ÅT = 293 K
c = 12.3852 (7) Å0.25 × 0.24 × 0.22 mm
β = 116.714 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4587 reflections with I > 2σ(I)
24434 measured reflectionsRint = 0.020
5139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.97Δρmax = 0.31 e Å3
5139 reflectionsΔρmin = 0.17 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81098 (11)0.05407 (8)0.11215 (12)0.0408 (3)
H10.83860.01880.18440.049*
C20.91557 (11)0.11046 (8)0.12512 (12)0.0409 (3)
H2A0.88720.14900.05750.049*
H2B0.97940.07660.12210.049*
C30.96801 (10)0.16028 (8)0.24349 (11)0.0377 (3)
C40.87477 (11)0.21761 (8)0.25620 (12)0.0405 (3)
H4A0.91350.24560.33380.049*
H4B0.84990.26010.19380.049*
C50.76159 (11)0.17236 (8)0.24675 (12)0.0403 (3)
H50.78630.13150.31240.048*
C60.67241 (12)0.23270 (8)0.25743 (12)0.0418 (3)
C70.64638 (16)0.22878 (12)0.35475 (15)0.0586 (4)
H70.68340.18860.41430.070*
C80.5648 (2)0.28496 (14)0.36371 (19)0.0752 (5)
H80.54710.28180.42910.090*
C90.51035 (17)0.34484 (12)0.2773 (2)0.0690 (5)
H90.45710.38270.28500.083*
C100.53404 (16)0.34912 (11)0.17975 (19)0.0632 (4)
H100.49630.38930.12030.076*
C110.61498 (15)0.29289 (10)0.17013 (16)0.0538 (4)
H110.63090.29580.10360.065*
C120.76348 (11)0.00201 (8)0.00198 (13)0.0448 (3)
C130.68438 (16)0.06649 (11)0.00790 (18)0.0625 (4)
H130.66160.07490.05340.075*
C140.63888 (17)0.11863 (11)0.1084 (2)0.0719 (5)
H140.58630.16170.11350.086*
C150.67076 (16)0.10715 (11)0.19984 (19)0.0681 (5)
H150.63920.14160.26750.082*
C160.74988 (18)0.04419 (12)0.19032 (18)0.0693 (5)
H160.77280.03640.25160.083*
C170.79604 (16)0.00785 (10)0.09063 (15)0.0578 (4)
H170.84980.05010.08570.069*
C181.07172 (12)0.27042 (8)0.17789 (12)0.0411 (3)
C191.18800 (14)0.31368 (11)0.20301 (17)0.0606 (4)
H19A1.23960.27640.18650.091*
H19B1.22790.33030.28630.091*
H19C1.17110.36210.15240.091*
C201.17574 (11)0.13205 (8)0.41606 (11)0.0382 (3)
C211.28104 (14)0.04085 (11)0.58940 (16)0.0602 (4)
C221.40213 (17)0.02732 (16)0.6959 (2)0.0910 (8)
H22A1.39100.00010.75930.137*
H22B1.44120.08020.72440.137*
H22C1.45170.00700.67230.137*
N11.07548 (9)0.21007 (7)0.25605 (9)0.0385 (2)
N21.18656 (9)0.19210 (7)0.35415 (10)0.0391 (2)
N31.27755 (10)0.10526 (8)0.51668 (10)0.0459 (3)
H31.34430.13160.53480.055*
S10.68373 (3)0.11763 (2)0.10259 (3)0.04552 (11)
S21.03376 (3)0.08660 (2)0.37248 (3)0.04760 (12)
O10.97614 (9)0.28782 (7)0.08854 (9)0.0496 (2)
O21.19260 (12)0.00139 (10)0.56887 (15)0.0911 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (6)0.0393 (6)0.0463 (6)0.0006 (5)0.0128 (5)0.0023 (5)
C20.0295 (6)0.0440 (7)0.0462 (7)0.0014 (5)0.0144 (5)0.0066 (5)
C30.0275 (5)0.0391 (6)0.0415 (6)0.0027 (4)0.0111 (5)0.0001 (5)
C40.0334 (6)0.0417 (6)0.0454 (6)0.0017 (5)0.0169 (5)0.0033 (5)
C50.0356 (6)0.0420 (6)0.0441 (6)0.0007 (5)0.0187 (5)0.0010 (5)
C60.0362 (6)0.0436 (6)0.0495 (7)0.0049 (5)0.0228 (5)0.0037 (5)
C70.0614 (9)0.0688 (10)0.0551 (8)0.0016 (8)0.0347 (8)0.0018 (7)
C80.0779 (12)0.0931 (14)0.0782 (12)0.0035 (11)0.0560 (11)0.0175 (11)
C90.0560 (9)0.0644 (10)0.1010 (14)0.0014 (8)0.0481 (10)0.0211 (10)
C100.0539 (9)0.0514 (9)0.0889 (12)0.0088 (7)0.0362 (9)0.0020 (8)
C110.0528 (8)0.0531 (8)0.0657 (9)0.0082 (6)0.0358 (7)0.0066 (7)
C120.0320 (6)0.0397 (6)0.0537 (7)0.0014 (5)0.0113 (5)0.0061 (5)
C130.0533 (9)0.0579 (9)0.0740 (10)0.0153 (7)0.0267 (8)0.0141 (8)
C140.0498 (9)0.0556 (10)0.0958 (14)0.0159 (7)0.0200 (9)0.0223 (9)
C150.0498 (9)0.0622 (10)0.0776 (11)0.0029 (7)0.0156 (8)0.0305 (9)
C160.0708 (11)0.0702 (11)0.0666 (10)0.0030 (9)0.0305 (9)0.0223 (9)
C170.0576 (9)0.0522 (8)0.0635 (9)0.0072 (7)0.0272 (8)0.0143 (7)
C180.0370 (6)0.0392 (6)0.0463 (6)0.0018 (5)0.0180 (5)0.0003 (5)
C190.0461 (8)0.0560 (9)0.0721 (10)0.0088 (7)0.0198 (7)0.0140 (7)
C200.0289 (5)0.0389 (6)0.0415 (6)0.0018 (4)0.0111 (5)0.0034 (5)
C210.0413 (7)0.0576 (9)0.0678 (10)0.0010 (6)0.0121 (7)0.0199 (7)
C220.0484 (9)0.1010 (16)0.0918 (14)0.0008 (10)0.0032 (9)0.0505 (13)
N10.0269 (5)0.0415 (5)0.0417 (5)0.0022 (4)0.0107 (4)0.0011 (4)
N20.0278 (5)0.0422 (5)0.0402 (5)0.0023 (4)0.0089 (4)0.0015 (4)
N30.0308 (5)0.0494 (6)0.0463 (6)0.0035 (4)0.0073 (4)0.0060 (5)
S10.02991 (17)0.0501 (2)0.0527 (2)0.00154 (12)0.01512 (14)0.00724 (14)
S20.03201 (17)0.0476 (2)0.0523 (2)0.00652 (12)0.00926 (14)0.00873 (14)
O10.0386 (5)0.0543 (6)0.0509 (5)0.0070 (4)0.0156 (4)0.0104 (4)
O20.0511 (7)0.0829 (9)0.1081 (11)0.0123 (6)0.0081 (7)0.0488 (8)
Geometric parameters (Å, º) top
C1—C121.5145 (18)C12—C131.388 (2)
C1—C21.5228 (17)C13—C141.391 (3)
C1—S11.8292 (13)C13—H130.9300
C1—H10.9800C14—C151.368 (3)
C2—C31.5337 (17)C14—H140.9300
C2—H2A0.9700C15—C161.371 (3)
C2—H2B0.9700C15—H150.9300
C3—N11.4937 (15)C16—C171.383 (2)
C3—C41.5341 (17)C16—H160.9300
C3—S21.8543 (13)C17—H170.9300
C4—C51.5297 (17)C18—O11.2324 (16)
C4—H4A0.9700C18—N11.3541 (17)
C4—H4B0.9700C18—C191.4941 (19)
C5—C61.5140 (18)C19—H19A0.9600
C5—S11.8268 (13)C19—H19B0.9600
C5—H50.9800C19—H19C0.9600
C6—C111.383 (2)C20—N21.2742 (17)
C6—C71.3811 (19)C20—N31.3808 (16)
C7—C81.391 (3)C20—S21.7427 (12)
C7—H70.9300C21—O21.209 (2)
C8—C91.368 (3)C21—N31.3577 (19)
C8—H80.9300C21—C221.499 (2)
C9—C101.366 (3)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.389 (2)C22—H22C0.9600
C10—H100.9300N1—N21.3924 (14)
C11—H110.9300N3—H30.8600
C12—C171.384 (2)
C12—C1—C2114.40 (11)C17—C12—C13117.78 (14)
C12—C1—S1107.39 (8)C17—C12—C1122.70 (12)
C2—C1—S1109.74 (9)C13—C12—C1119.52 (14)
C12—C1—H1108.4C12—C13—C14120.71 (17)
C2—C1—H1108.4C12—C13—H13119.6
S1—C1—H1108.4C14—C13—H13119.6
C1—C2—C3112.51 (11)C15—C14—C13120.66 (16)
C1—C2—H2A109.1C15—C14—H14119.7
C3—C2—H2A109.1C13—C14—H14119.7
C1—C2—H2B109.1C14—C15—C16119.07 (16)
C3—C2—H2B109.1C14—C15—H15120.5
H2A—C2—H2B107.8C16—C15—H15120.5
N1—C3—C4109.89 (10)C15—C16—C17120.78 (18)
N1—C3—C2110.53 (10)C15—C16—H16119.6
C4—C3—C2113.35 (10)C17—C16—H16119.6
N1—C3—S2103.09 (8)C16—C17—C12120.99 (16)
C4—C3—S2110.51 (9)C16—C17—H17119.5
C2—C3—S2108.99 (9)C12—C17—H17119.5
C5—C4—C3114.11 (10)O1—C18—N1121.01 (12)
C5—C4—H4A108.7O1—C18—C19121.52 (13)
C3—C4—H4A108.7N1—C18—C19117.46 (12)
C5—C4—H4B108.7C18—C19—H19A109.5
C3—C4—H4B108.7C18—C19—H19B109.5
H4A—C4—H4B107.6H19A—C19—H19B109.5
C6—C5—C4111.36 (11)C18—C19—H19C109.5
C6—C5—S1107.98 (9)H19A—C19—H19C109.5
C4—C5—S1111.28 (9)H19B—C19—H19C109.5
C6—C5—H5108.7N2—C20—N3118.63 (11)
C4—C5—H5108.7N2—C20—S2119.44 (9)
S1—C5—H5108.7N3—C20—S2121.93 (10)
C11—C6—C7118.41 (14)O2—C21—N3121.95 (14)
C11—C6—C5120.91 (12)O2—C21—C22123.48 (16)
C7—C6—C5120.67 (13)N3—C21—C22114.57 (14)
C6—C7—C8120.03 (17)C21—C22—H22A109.5
C6—C7—H7120.0C21—C22—H22B109.5
C8—C7—H7120.0H22A—C22—H22B109.5
C9—C8—C7120.65 (16)C21—C22—H22C109.5
C9—C8—H8119.7H22A—C22—H22C109.5
C7—C8—H8119.7H22B—C22—H22C109.5
C8—C9—C10120.14 (16)C18—N1—N2118.39 (10)
C8—C9—H9119.9C18—N1—C3124.27 (10)
C10—C9—H9119.9N2—N1—C3117.33 (10)
C9—C10—C11119.39 (17)C20—N2—N1110.68 (10)
C9—C10—H10120.3C21—N3—C20125.43 (12)
C11—C10—H10120.3C21—N3—H3117.3
C6—C11—C10121.36 (15)C20—N3—H3117.3
C6—C11—H11119.3C5—S1—C198.36 (6)
C10—C11—H11119.3C20—S2—C389.43 (6)
C12—C1—C2—C3174.88 (10)C15—C16—C17—C120.2 (3)
S1—C1—C2—C364.36 (12)C13—C12—C17—C160.9 (2)
C1—C2—C3—N1176.11 (10)C1—C12—C17—C16179.42 (15)
C1—C2—C3—C460.01 (14)O1—C18—N1—N2178.81 (12)
C1—C2—C3—S263.50 (12)C19—C18—N1—N20.07 (18)
N1—C3—C4—C5179.06 (10)O1—C18—N1—C30.5 (2)
C2—C3—C4—C556.72 (14)C19—C18—N1—C3179.34 (13)
S2—C3—C4—C565.95 (12)C4—C3—N1—C1864.69 (15)
C3—C4—C5—C6178.82 (11)C2—C3—N1—C1861.15 (15)
C3—C4—C5—S158.29 (13)S2—C3—N1—C18177.50 (10)
C4—C5—C6—C1165.69 (17)C4—C3—N1—N2116.04 (12)
S1—C5—C6—C1156.76 (15)C2—C3—N1—N2118.12 (11)
C4—C5—C6—C7114.40 (15)S2—C3—N1—N21.78 (12)
S1—C5—C6—C7123.16 (13)N3—C20—N2—N1179.47 (11)
C11—C6—C7—C80.5 (2)S2—C20—N2—N10.92 (15)
C5—C6—C7—C8179.61 (16)C18—N1—N2—C20177.50 (11)
C6—C7—C8—C90.5 (3)C3—N1—N2—C201.82 (15)
C7—C8—C9—C101.2 (3)O2—C21—N3—C202.4 (3)
C8—C9—C10—C110.8 (3)C22—C21—N3—C20177.33 (18)
C7—C6—C11—C100.8 (2)N2—C20—N3—C21178.11 (15)
C5—C6—C11—C10179.28 (14)S2—C20—N3—C212.3 (2)
C9—C10—C11—C60.2 (3)C6—C5—S1—C1178.14 (9)
C2—C1—C12—C1711.55 (19)C4—C5—S1—C155.64 (10)
S1—C1—C12—C17110.50 (14)C12—C1—S1—C5176.47 (9)
C2—C1—C12—C13168.17 (13)C2—C1—S1—C558.62 (10)
S1—C1—C12—C1369.78 (15)N2—C20—S2—C30.11 (11)
C17—C12—C13—C140.6 (2)N3—C20—S2—C3179.49 (11)
C1—C12—C13—C14179.65 (15)N1—C3—S2—C200.98 (8)
C12—C13—C14—C150.3 (3)C4—C3—S2—C20116.40 (9)
C13—C14—C15—C161.0 (3)C2—C3—S2—C20118.42 (9)
C14—C15—C16—C170.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.942.786 (2)166
C5—H5···O2ii0.982.493.446 (2)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H23N3O2S2
Mr425.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.3310 (7), 16.0218 (9), 12.3852 (7)
β (°) 116.714 (1)
V3)2185.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24434, 5139, 4587
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 0.97
No. of reflections5139
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.942.786 (2)165.9
C5—H5···O2ii0.982.493.446 (2)163.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+1.
 

Acknowledgements

DG thanks CSIR, India, for the award of a Senior Research Fellowship. DV thanks DST, India, for a major research project, and acknowledges the Department of Science and Technology (DST-FIST) and the University Grants Commission (UGC), Government of India, for the provision of research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationForoumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). II Farmaco, 57, 765–769.  Web of Science CrossRef CAS Google Scholar
First citationIsaac, M., Slassi, M., Xin, T., Arora, J., O'Brien, A., Edwards, L., MacLean, N., Wilson, J., Demschyshyn, L., Labrie, P., Naismith, A., Maddaford, S. P., Papac, D., Harrison, S., Wang, H., Draper, S. & Tehim, A. (2003). Bioorg. Med. Chem. Lett. 13, 4409–4413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJalilian, A. R., Sattari, S., Bineshmarvasti, M., Daneshtalab, M. & Shafiee, A. (2002). II Farmaco, 58, 63–68.  CrossRef Google Scholar
First citationJung, K. Y., Kim, S. K., Gao, Z. G., Gross, A. S., Melman, N., Jacobson, K. A. & Kim, Y. C. (2004). Bioorg. Med. Chem. 12, 613–623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeung-Toung, R., Odzinska, J., Li, W., Lowrie, J., Kukreja, R., Desilets, D., Karimian, K. & Tam, T. F. (2003). Bioorg. Med. Chem. 11, 5529–5537.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPan, K., Scott, M. K., Lee, D. H. S., Fitzpatric, L. J., Crooke, J. J., Rivero, R. A., Rosenthal, D. I., Vaidya, A. H., Zhao, B. & Reiz, A. B. (2003). Bioorg. Med. Chem. 11, 185–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, P., Eichenberger, K. & Schwiezer, E. (1970). Chem. Abstr. 72, 318377u.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U., Raju, B., Lam, S., Zhou, J., Gadwood, R. C., Ford, C. W., Zurenko, G. E., Schaadt, R. D., Morin, S. E., Adams, W. J., Friis, J. M., Courtney, M., Palandra, J., Hackbarth, C. J., Lopez, S. et al. (2003). Bioorg. Med. Chem. Lett. 13, 4209–4212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o494-o495
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds