organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(Tri­fluoro­meth­yl)phen­yl]-5,6,7,8-tetra­hydro­cinnolin-3(2H)-one

aState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: wanggengmin@tju.edu.cn, nk_yanghz@126.com

(Received 24 December 2007; accepted 10 January 2008; online 18 January 2008)

The title compound, C15H13F3N2O, contains one benzene ring, one cyclo­hexane ring and a pyridazine ring. The dihedral angle formed by the pyridazine ring with the benzene ring is 61.5 (2)°. The crystal structure is stabilized by two inter­molecular hydrogen bonds (N—H⋯O and C—H⋯F). The cyclohexane ring adopts a screw-boat conformation. The CF3 group is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Heinisch & Kopelent (1992[Heinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141-183.]); Kolar & Tisler (1999[Kolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167-241.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13F3N2O

  • Mr = 294.27

  • Monoclinic, C 2/c

  • a = 8.929 (3) Å

  • b = 11.443 (4) Å

  • c = 27.448 (8) Å

  • β = 94.232 (6)°

  • V = 2796.6 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 7053 measured reflections

  • 2485 independent reflections

  • 1098 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.211

  • S = 1.02

  • 2485 reflections

  • 223 parameters

  • 85 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (4) 1.88 (4) 2.783 (5) 178 (5)
C12—H12⋯F3′ii 0.93 2.51 3.362 152
Symmetry codes: (i) -x+2, -y, -z; (ii) [{5 \over 2} - x, {1 \over 2} + y, {1 \over 2} - z].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.618) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.618) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many pyridazine derivatives have been found to exhibit biological activities such as insecticidal, fungicidal, herbicidal, plant-growth regulatory activity, etc. (Heinisch & Kopelent, 1992). For example, pyridate, credazine and maleic hydrazide (Kolar & Tisler, 1999) have been commercialized as herbicides. In order to discover new biologically active pyridazine compounds, the title compound, (I), was synthesized and its structure is reported here.

In the molecule of (I) (Fig. 1), the central pyridazine ring (C1—C8/N1/N2) is approximately coplanar with the cyclohexane ring (C1—C6) [dihedral angle = 4.36 (29)°] and the largest deviation from the mean plane is 0.306 (6) Å for atom C4. The dihedral angle formed by the heterocycle and the benzene ring (C9—C14) is 61.50 (18)°. The molecule is further stabilized by intermolecular N—H···O and C—H···F hydrogen bonds(Table 1). Glide-related molecules are linked via C—H···F hydrogen-bonded chains along the c axis. Part of the chain structure is shown in Fig. 2.

Related literature top

For related literature, see: Heinisch & Kopelent (1992); Kolar & Tisler (1999).

Experimental top

4-(3-(Trifluoromethyl)phenyl)-4,4a,5,6,7,8-hexahydrocinnolin-3(2H)-one (1.5 mmol), and 0.5 g anhydrous copper(II) chloride were mixed in acetonitrile (40 ml), refluxed for 2 h. Water (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfateThe solvent was then evaporated in vacuo. The residue was purified via column chromatography. single crystals of (I) suitable for X-ray analysis were grown from ethyl acetate and petroleum ether at room temperature.

Refinement top

The trifluoromethyl group shows positional disorder. At the final stage of the refinement, the occupancy factors of two possible sites, C15/F1/F2/F3 and C15/F1'/F2'/F3', were fixed at 0.429 and 0.571 respectively. All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 A° and N—H = 0.91 (4) A°, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with 30% probability ellipsoid.
[Figure 2] Fig. 2. Intermolecular hydrogen-bonding interactions (dashed lines) in the structure of (I). H atoms not involved in hydrogen bonding have been omitted.
4-[3-(Trifluoromethyl)phenyl]-5,6,7,8-tetrahydrocinnolin-3(2H)-one top
Crystal data top
C15H13F3N2OF(000) = 1216
Mr = 294.27Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1012 reflections
a = 8.929 (3) Åθ = 2.9–20.2°
b = 11.443 (4) ŵ = 0.12 mm1
c = 27.448 (8) ÅT = 294 K
β = 94.232 (6)°Prism, colourless
V = 2796.6 (15) Å30.22 × 0.20 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2485 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.975, Tmax = 0.982k = 138
7053 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.0738P)2 + 4.8514P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2485 reflectionsΔρmax = 0.32 e Å3
223 parametersΔρmin = 0.27 e Å3
85 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (8)
Crystal data top
C15H13F3N2OV = 2796.6 (15) Å3
Mr = 294.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 8.929 (3) ŵ = 0.12 mm1
b = 11.443 (4) ÅT = 294 K
c = 27.448 (8) Å0.22 × 0.20 × 0.16 mm
β = 94.232 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1098 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.061
7053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06885 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
2485 reflectionsΔρmin = 0.27 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F11.1701 (18)0.1095 (16)0.2649 (5)0.144 (5)0.429 (9)
F21.3627 (15)0.1988 (12)0.2422 (6)0.167 (5)0.429 (9)
F31.274 (2)0.0347 (12)0.2066 (5)0.139 (5)0.429 (9)
F1'1.2515 (15)0.1731 (11)0.2699 (3)0.152 (4)0.571 (9)
F2'1.3577 (10)0.0982 (12)0.2113 (4)0.130 (4)0.571 (9)
F3'1.1498 (13)0.0330 (10)0.2327 (5)0.170 (4)0.571 (9)
O11.0587 (4)0.0810 (3)0.05160 (12)0.0661 (10)
N10.6764 (5)0.0930 (3)0.00974 (15)0.0601 (11)
N20.8244 (5)0.0709 (4)0.01511 (15)0.0579 (11)
C10.6214 (5)0.1615 (4)0.04183 (19)0.0547 (13)
C20.4543 (5)0.1771 (5)0.0370 (2)0.0755 (16)
H2A0.42360.19600.00330.091*
H2B0.40740.10350.04460.091*
C30.3977 (7)0.2691 (7)0.0689 (3)0.120 (3)
H3A0.40010.34310.05180.144*
H3B0.29350.25220.07390.144*
C40.4780 (7)0.2826 (7)0.1160 (3)0.103 (2)
H4A0.45990.21410.13560.124*
H4B0.43730.34960.13220.124*
C50.6424 (6)0.2986 (5)0.11490 (19)0.0708 (16)
H5A0.68910.28720.14760.085*
H5B0.66220.37840.10530.085*
C60.7142 (5)0.2159 (4)0.08030 (17)0.0533 (13)
C70.8642 (5)0.1920 (4)0.08449 (15)0.0480 (12)
C80.9248 (6)0.1122 (4)0.05062 (16)0.0497 (12)
C90.9705 (5)0.2428 (4)0.12244 (17)0.0539 (13)
C100.9951 (6)0.3607 (5)0.1261 (2)0.0813 (18)
H100.94500.41070.10360.098*
C111.0930 (7)0.4069 (6)0.1624 (3)0.111 (3)
H111.10750.48720.16470.133*
C121.1682 (7)0.3337 (8)0.1950 (3)0.110 (3)
H121.23390.36430.21960.133*
C131.1474 (6)0.2162 (7)0.1915 (2)0.083 (2)
C141.0497 (5)0.1703 (5)0.15529 (17)0.0650 (15)
H141.03690.08980.15300.078*
C151.2323 (9)0.1368 (8)0.2247 (2)0.114 (3)
H20.862 (5)0.023 (4)0.0072 (14)0.081 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.165 (9)0.167 (9)0.102 (7)0.031 (7)0.032 (7)0.026 (7)
F20.139 (8)0.198 (9)0.157 (8)0.018 (7)0.044 (7)0.025 (7)
F30.150 (9)0.146 (8)0.118 (7)0.075 (7)0.004 (7)0.012 (6)
F1'0.179 (8)0.207 (8)0.064 (4)0.003 (7)0.021 (5)0.006 (5)
F2'0.102 (5)0.166 (8)0.123 (6)0.071 (5)0.011 (5)0.020 (6)
F3'0.158 (7)0.185 (7)0.157 (7)0.032 (6)0.052 (6)0.061 (6)
O10.057 (2)0.068 (2)0.071 (2)0.0144 (17)0.0021 (17)0.0177 (19)
N10.059 (3)0.052 (3)0.068 (3)0.002 (2)0.004 (2)0.001 (2)
N20.058 (3)0.053 (3)0.061 (3)0.007 (2)0.005 (2)0.010 (2)
C10.053 (3)0.045 (3)0.065 (3)0.000 (2)0.004 (3)0.004 (3)
C20.054 (3)0.071 (4)0.099 (4)0.002 (3)0.004 (3)0.003 (4)
C30.059 (4)0.150 (7)0.147 (7)0.020 (4)0.005 (4)0.044 (6)
C40.068 (4)0.135 (6)0.109 (5)0.009 (4)0.021 (4)0.014 (5)
C50.065 (3)0.078 (4)0.070 (3)0.018 (3)0.002 (3)0.009 (3)
C60.059 (3)0.046 (3)0.055 (3)0.006 (2)0.004 (2)0.007 (2)
C70.056 (3)0.041 (3)0.047 (3)0.006 (2)0.001 (2)0.002 (2)
C80.055 (3)0.042 (3)0.051 (3)0.005 (2)0.000 (3)0.002 (2)
C90.056 (3)0.056 (3)0.049 (3)0.013 (2)0.000 (2)0.009 (3)
C100.076 (4)0.062 (4)0.102 (5)0.008 (3)0.020 (3)0.019 (3)
C110.091 (5)0.085 (5)0.152 (7)0.013 (4)0.026 (5)0.055 (5)
C120.074 (4)0.150 (7)0.104 (5)0.032 (5)0.020 (4)0.063 (6)
C130.064 (4)0.131 (6)0.051 (3)0.039 (4)0.009 (3)0.017 (4)
C140.069 (3)0.076 (4)0.049 (3)0.021 (3)0.002 (3)0.002 (3)
C150.102 (6)0.155 (7)0.080 (5)0.016 (5)0.025 (4)0.003 (5)
Geometric parameters (Å, º) top
F1—C151.310 (9)C4—H4A0.9700
F2—C151.416 (9)C4—H4B0.9700
F3—C151.333 (9)C5—C61.516 (7)
F1'—C151.308 (8)C5—H5A0.9700
F2'—C151.282 (8)C5—H5B0.9700
F3'—C151.423 (9)C6—C71.363 (6)
O1—C81.246 (5)C7—C81.437 (6)
N1—C11.302 (6)C7—C91.476 (6)
N1—N21.343 (5)C9—C101.370 (7)
N2—C81.360 (6)C9—C141.381 (6)
N2—H20.91 (4)C10—C111.382 (8)
C1—C61.435 (6)C10—H100.9300
C1—C21.499 (6)C11—C121.364 (9)
C2—C31.481 (8)C11—H110.9300
C2—H2A0.9700C12—C131.360 (9)
C2—H2B0.9700C12—H120.9300
C3—C41.441 (8)C13—C141.377 (7)
C3—H3A0.9700C13—C151.459 (9)
C3—H3B0.9700C14—H140.9300
C4—C51.482 (7)
C1—N1—N2117.2 (4)C10—C9—C14118.2 (5)
N1—N2—C8127.2 (4)C10—C9—C7122.0 (5)
N1—N2—H2117 (3)C14—C9—C7119.7 (5)
C8—N2—H2116 (3)C9—C10—C11121.2 (6)
N1—C1—C6122.2 (4)C9—C10—H10119.4
N1—C1—C2115.8 (5)C11—C10—H10119.4
C6—C1—C2122.0 (5)C12—C11—C10119.5 (7)
C3—C2—C1114.4 (5)C12—C11—H11120.2
C3—C2—H2A108.7C10—C11—H11120.2
C1—C2—H2A108.7C13—C12—C11120.2 (6)
C3—C2—H2B108.7C13—C12—H12119.9
C1—C2—H2B108.7C11—C12—H12119.9
H2A—C2—H2B107.6C12—C13—C14120.2 (6)
C4—C3—C2115.9 (6)C12—C13—C15120.6 (7)
C4—C3—H3A108.3C14—C13—C15119.1 (7)
C2—C3—H3A108.3C13—C14—C9120.6 (6)
C4—C3—H3B108.3C13—C14—H14119.7
C2—C3—H3B108.3C9—C14—H14119.7
H3A—C3—H3B107.4F2'—C15—F1'109.0 (9)
C3—C4—C5115.0 (6)F2'—C15—F1126.4 (9)
C3—C4—H4A108.5F1'—C15—F146.3 (8)
C5—C4—H4A108.5F2'—C15—F347.0 (8)
C3—C4—H4B108.5F1'—C15—F3127.7 (10)
C5—C4—H4B108.5F1—C15—F3104.7 (12)
H4A—C4—H4B107.5F2'—C15—F263.7 (8)
C4—C5—C6113.7 (5)F1'—C15—F258.2 (8)
C4—C5—H5A108.8F1—C15—F2102.9 (11)
C6—C5—H5A108.8F3—C15—F2108.7 (12)
C4—C5—H5B108.8F2'—C15—F3'103.3 (10)
C6—C5—H5B108.8F1'—C15—F3'98.7 (10)
H5A—C5—H5B107.7F1—C15—F3'54.2 (8)
C7—C6—C1119.0 (4)F3—C15—F3'59.2 (9)
C7—C6—C5122.0 (4)F2—C15—F3'142.0 (8)
C1—C6—C5118.9 (4)F2'—C15—C13117.3 (7)
C6—C7—C8119.2 (4)F1'—C15—C13114.9 (8)
C6—C7—C9123.9 (4)F1—C15—C13116.2 (9)
C8—C7—C9116.9 (4)F3—C15—C13117.3 (8)
O1—C8—N2119.7 (4)F2—C15—C13106.0 (8)
O1—C8—C7125.1 (4)F3'—C15—C13111.4 (7)
N2—C8—C7115.2 (4)
C1—N1—N2—C80.0 (7)C8—C7—C9—C10119.0 (5)
N2—N1—C1—C62.7 (6)C6—C7—C9—C14119.2 (5)
N2—N1—C1—C2175.5 (4)C8—C7—C9—C1460.3 (6)
N1—C1—C2—C3170.9 (5)C14—C9—C10—C111.9 (9)
C6—C1—C2—C310.9 (8)C7—C9—C10—C11178.7 (5)
C1—C2—C3—C434.6 (9)C9—C10—C11—C120.9 (10)
C2—C3—C4—C552.9 (10)C10—C11—C12—C130.3 (11)
C3—C4—C5—C644.3 (8)C11—C12—C13—C140.4 (10)
N1—C1—C6—C72.3 (7)C11—C12—C13—C15177.2 (7)
C2—C1—C6—C7175.7 (4)C12—C13—C14—C90.6 (8)
N1—C1—C6—C5177.4 (4)C15—C13—C14—C9178.3 (5)
C2—C1—C6—C54.5 (7)C10—C9—C14—C131.8 (8)
C4—C5—C6—C7159.9 (5)C7—C9—C14—C13178.9 (5)
C4—C5—C6—C120.4 (7)C12—C13—C15—F2'90.7 (11)
C1—C6—C7—C80.6 (6)C14—C13—C15—F2'86.9 (12)
C5—C6—C7—C8179.6 (4)C12—C13—C15—F1'39.4 (13)
C1—C6—C7—C9179.9 (4)C14—C13—C15—F1'142.9 (10)
C5—C6—C7—C90.2 (7)C12—C13—C15—F191.1 (14)
N1—N2—C8—O1177.9 (4)C14—C13—C15—F191.3 (14)
N1—N2—C8—C72.7 (7)C12—C13—C15—F3144.0 (13)
C6—C7—C8—O1177.8 (4)C14—C13—C15—F333.7 (15)
C9—C7—C8—O11.7 (7)C12—C13—C15—F222.5 (12)
C6—C7—C8—N22.9 (6)C14—C13—C15—F2155.2 (10)
C9—C7—C8—N2177.6 (4)C12—C13—C15—F3'150.6 (10)
C6—C7—C9—C1061.5 (7)C14—C13—C15—F3'31.8 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (4)1.88 (4)2.783 (5)178 (5)
C12—H12···F3ii0.932.513.362152
Symmetry codes: (i) x+2, y, z; (ii) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13F3N2O
Mr294.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)8.929 (3), 11.443 (4), 27.448 (8)
β (°) 94.232 (6)
V3)2796.6 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7053, 2485, 1098
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.212, 1.02
No. of reflections2485
No. of parameters223
No. of restraints85
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (4)1.88 (4)2.783 (5)178 (5)
C12—H12···F3'ii0.932.513.362152
Symmetry codes: (i) x+2, y, z; (ii) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Key Project for Basic Research (grant No. 20772067).

References

First citationBruker (1999). SMART (Version 5.618) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHeinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141–183.  CrossRef PubMed CAS Google Scholar
First citationKolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167–241.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds