metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{5-chloro-2-[2-(methyl­sulfanyl)phenyl­diazen­yl]phenyl}­platinum(II)

aDepartment of Chemistry, Indian Institute of Technology, New Delhi 110 016, India
*Correspondence e-mail: dkbp@chemistry.iitd.ac.in

(Received 3 January 2008; accepted 9 January 2008; online 16 January 2008)

The title compound, [Pt(C13H10ClN2S)Cl], contains a Pt atom tetra­coordinated by a benzene C, a diazene N, a Cl and an S atom in an approximately square-planar geometry. The mol­ecules dimerize through a nonbonded S⋯S inter­action [S⋯S = 3.523 (18) Å]. There are no hydrogen bonds and the crystal packing is stabilized by four inter­molecular ππ inter­actions; the centroid–centroid distances are 3.804 (3), 3.638 (3), 3.804 (3) and 3.638 (3) Å, and the corresponding perpendicular distances are 3.369, 3.448, 3.406 and 3.466 Å.

Related literature

For related literature, see: Bagchi et al. (2007[Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1704.]); Chattopadhyay et al. (1991[Chattopadhyay, S., Sinha, C., Basu, P. & Chakravorty, A. (1991). Organometallics, 10, 1135-1139.]); Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]); Buraway & Vellins (1954[Buraway, A. & Vellins, C. E. (1954). J. Chem. Soc. pp. 90-95.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C13H10ClN2S)Cl]

  • Mr = 492.28

  • Triclinic, [P \overline 1]

  • a = 7.424 (2) Å

  • b = 8.777 (3) Å

  • c = 11.069 (3) Å

  • α = 105.428 (4)°

  • β = 91.798 (4)°

  • γ = 96.641 (4)°

  • V = 689.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.70 mm−1

  • T = 273 (2) K

  • 0.42 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.035, Tmax = 0.134

  • 6783 measured reflections

  • 2544 independent reflections

  • 2472 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.043

  • S = 1.05

  • 2544 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 1.959 (3)
Pt1—C12 1.986 (3)
Pt1—Cl1 2.2911 (11)
Pt1—S1 2.3529 (10)
N1—Pt1—C12 79.26 (14)
C12—Pt1—Cl1 96.84 (11)
N1—Pt1—S1 86.25 (9)
Cl1—Pt1—S1 97.57 (4)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclometallated compounds have numerous applications (Dupont et al., 2005) in organic synthesis, catalysis and metallomesogen chemistry. Although a number of cycloplatinated complexes have been reported in the literature, report of platinum complexes with sulfur as auxiliary donor and the existence of C–Pt bond are sparse. Herein we report the crystal structure of (I) having such features.

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The platinum atom along with donor set of four atoms lie almost in one plane. Selected bond lengths, bond angles are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The N?N bond length is similar of other cycloplatinated azoarenes (Chattopadhyay et al., 1991).

The metal carbon bond length, 1.986 (3) Å, is slightly lower than the reported values of other ortho-metallated azoarenes (Chattopadhyay et al., 1991). The molecules are found to dimerize through non-bonded S···S interaction; having S···Si [symmetry code: (i) -x, 2 - y, -z] distance of 3.523 (18) Å (Bagchi et al. 2007) (Fig.3).The crystal packing is stabilized by four inter-molecular π-π interactions; the Cg3Cg4ii, Cg3Cg4iii, Cg4Cg3ii, Cg4Cg3iii, [symmetry codes: (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z. Cg3 and Cg4 are the centroids of C1—C6 and C7—C12 rings, respectively] distances are 3.638 (3), 3.804 (3), 3.638 (3) and 3.804 (3) Å, respectively; the corresponding perpendicular distances are 3.448, 3.369, 3.466 and 3.406 Å, respectively (Fig. 4).

Related literature top

For related literature, see: Bagchi et al. (2007); Chattopadhyay et al. (1991); Dupont et al. (2005); Buraway & Vellins (1954).

Experimental top

2-(Methylsulfanyl)diazenyl-4-chlorobenzene was prepared by coupling 2-(methylsulfanyl)aniline with 4-nitroso-chlorobenzene. The ligand thus obtained was reacted with K2PtCl4 following a reported method (Buraway & Vellins, 1954). The product was purified by column chromatographic technique using silica gel column and methanol and dichloromethane (1:9 v/v) mixture as eluent. The solvent was evaporated in vacuum to obtain the pure product (78.3%). Suitable crystals of (I) were grown from a dichloromethane–hexane solution by slow evaporation.

Refinement top

H atoms were included at calculated positions as riding atoms with C—H set to 0.93 Å for (aromatic) and 0.96 Å for (CH3) H atoms, with Uiso(H) = 1.2Ueq(C) [1.5Ueq for methyl group].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular arrangement of (I) in the unitcell.
[Figure 3] Fig. 3. The intermolecular S···S interaction for (I), indicated by dotted line [symmetry code: (i) -x, 2 - y, -z].
[Figure 4] Fig. 4. The intermolecular ππ interactions for (I), indicated by the dotted lines. [Symmetry codes: (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z]. Cg3 and Cg4 are centroids of C1—C6 and C7—C12 rings, respectively.
Chlorido{5-chloro-2-[2-(methylsulfanyl)phenyldiazenyl]phenyl}platinum(II) top
Crystal data top
[Pt(C13H10ClN2S)Cl]Z = 2
Mr = 492.28F(000) = 460.0
Triclinic, P1Dx = 2.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.424 (2) ÅCell parameters from 2472 reflections
b = 8.777 (3) Åθ = 1.0–25.5°
c = 11.069 (3) ŵ = 10.70 mm1
α = 105.428 (4)°T = 273 K
β = 91.798 (4)°Block, pink
γ = 96.641 (4)°0.42 × 0.28 × 0.19 mm
V = 689.1 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2544 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.035, Tmax = 0.134k = 1010
6783 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.4377P]
where P = (Fo2 + 2Fc2)/3
2544 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Pt(C13H10ClN2S)Cl]γ = 96.641 (4)°
Mr = 492.28V = 689.1 (4) Å3
Triclinic, P1Z = 2
a = 7.424 (2) ÅMo Kα radiation
b = 8.777 (3) ŵ = 10.70 mm1
c = 11.069 (3) ÅT = 273 K
α = 105.428 (4)°0.42 × 0.28 × 0.19 mm
β = 91.798 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2544 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2472 reflections with I > 2σ(I)
Tmin = 0.035, Tmax = 0.134Rint = 0.025
6783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.05Δρmax = 0.89 e Å3
2544 reflectionsΔρmin = 0.89 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.3562 (5)0.2238 (4)0.1887 (4)0.0399 (8)
H80.36660.15210.14110.048*
C90.3852 (5)0.1810 (4)0.3149 (4)0.0432 (9)
H90.41440.08020.35420.052*
Pt10.216802 (16)0.685427 (14)0.091569 (11)0.03068 (6)
Cl20.40740 (17)0.23872 (14)0.54110 (10)0.0599 (3)
Cl10.19823 (17)0.81788 (12)0.24323 (10)0.0529 (3)
N10.2327 (4)0.5583 (4)0.0285 (3)0.0311 (6)
N20.2763 (4)0.4162 (3)0.0062 (3)0.0356 (6)
C10.1910 (4)0.6209 (4)0.1559 (3)0.0322 (7)
C70.3111 (4)0.3755 (4)0.1328 (3)0.0329 (7)
C100.3698 (5)0.2924 (4)0.3816 (3)0.0390 (8)
C20.1378 (5)0.7727 (4)0.1893 (3)0.0347 (7)
C110.3267 (5)0.4437 (4)0.3279 (3)0.0370 (8)
H110.31860.51490.37630.044*
C50.1648 (6)0.6038 (5)0.3660 (4)0.0480 (10)
H50.17150.54670.42540.058*
S10.10822 (13)0.87598 (11)0.07262 (8)0.0362 (2)
C120.2953 (5)0.4887 (4)0.2005 (3)0.0326 (7)
C40.1152 (6)0.7564 (6)0.4010 (4)0.0515 (10)
H40.09240.80210.48410.062*
C60.2041 (5)0.5359 (5)0.2441 (4)0.0412 (8)
H60.23890.43420.22130.049*
C30.0998 (5)0.8407 (5)0.3127 (4)0.0454 (9)
H30.06430.94210.33580.054*
C130.2718 (6)1.0531 (5)0.1290 (4)0.0519 (10)
H13A0.23991.11400.20930.078*
H13B0.27141.11640.07040.078*
H13C0.39081.02270.13710.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.041 (2)0.0332 (19)0.048 (2)0.0096 (15)0.0056 (17)0.0131 (17)
C90.043 (2)0.0313 (19)0.052 (2)0.0099 (15)0.0065 (18)0.0042 (17)
Pt10.03822 (9)0.02666 (9)0.02684 (9)0.00541 (6)0.00145 (6)0.00626 (6)
Cl20.0827 (8)0.0549 (6)0.0349 (5)0.0134 (6)0.0109 (5)0.0030 (5)
Cl10.0879 (8)0.0395 (5)0.0383 (5)0.0191 (5)0.0114 (5)0.0174 (4)
N10.0315 (15)0.0336 (16)0.0279 (15)0.0057 (12)0.0014 (12)0.0074 (12)
N20.0366 (15)0.0343 (16)0.0374 (17)0.0074 (12)0.0041 (13)0.0112 (13)
C10.0314 (17)0.0361 (18)0.0274 (17)0.0024 (14)0.0006 (13)0.0069 (14)
C70.0318 (17)0.0315 (18)0.0350 (19)0.0042 (14)0.0018 (14)0.0082 (15)
C100.0388 (19)0.040 (2)0.0324 (19)0.0039 (15)0.0053 (15)0.0006 (16)
C20.0356 (18)0.0370 (19)0.0294 (18)0.0031 (14)0.0004 (14)0.0065 (15)
C110.044 (2)0.0319 (18)0.0340 (19)0.0031 (15)0.0027 (16)0.0081 (15)
C50.052 (2)0.063 (3)0.033 (2)0.006 (2)0.0015 (17)0.0205 (19)
S10.0434 (5)0.0343 (5)0.0302 (5)0.0113 (4)0.0005 (4)0.0054 (4)
C120.0334 (17)0.0279 (17)0.0330 (19)0.0020 (13)0.0012 (14)0.0033 (14)
C40.049 (2)0.073 (3)0.031 (2)0.008 (2)0.0055 (17)0.011 (2)
C60.043 (2)0.046 (2)0.037 (2)0.0049 (16)0.0015 (16)0.0164 (17)
C30.048 (2)0.053 (2)0.034 (2)0.0100 (18)0.0056 (17)0.0071 (18)
C130.070 (3)0.034 (2)0.047 (2)0.0003 (19)0.005 (2)0.0070 (18)
Geometric parameters (Å, º) top
C8—C91.378 (6)C10—C111.382 (5)
C8—C71.394 (5)C2—C31.390 (5)
C8—H80.9300C2—S11.785 (4)
C9—C101.385 (6)C11—C121.395 (5)
C9—H90.9300C11—H110.9300
Pt1—N11.959 (3)C5—C61.378 (6)
Pt1—C121.986 (3)C5—C41.388 (6)
Pt1—Cl12.2911 (11)C5—H50.9300
Pt1—S12.3529 (10)S1—C131.811 (4)
Cl2—C101.742 (4)C4—C31.383 (6)
N1—N21.286 (4)C4—H40.9300
N1—C11.429 (4)C6—H60.9300
N2—C71.391 (5)C3—H30.9300
C1—C61.385 (5)C13—H13A0.9600
C1—C21.391 (5)C13—H13B0.9600
C7—C121.407 (5)C13—H13C0.9600
C9—C8—C7119.5 (4)C10—C11—C12119.4 (3)
C9—C8—H8120.3C10—C11—H11120.3
C7—C8—H8120.3C12—C11—H11120.3
C8—C9—C10118.2 (3)C6—C5—C4120.7 (4)
C8—C9—H9120.9C6—C5—H5119.7
C10—C9—H9120.9C4—C5—H5119.7
N1—Pt1—C1279.26 (14)C2—S1—C13102.24 (19)
N1—Pt1—Cl1175.94 (9)C2—S1—Pt195.61 (12)
C12—Pt1—Cl196.84 (11)C13—S1—Pt1111.80 (16)
N1—Pt1—S186.25 (9)C11—C12—C7117.3 (3)
C12—Pt1—S1165.07 (11)C11—C12—Pt1131.9 (3)
Cl1—Pt1—S197.57 (4)C7—C12—Pt1110.7 (3)
N2—N1—C1118.9 (3)C3—C4—C5120.2 (4)
N2—N1—Pt1120.9 (2)C3—C4—H4119.9
C1—N1—Pt1120.2 (2)C5—C4—H4119.9
N1—N2—C7110.8 (3)C5—C6—C1119.2 (4)
C6—C1—C2120.7 (3)C5—C6—H6120.4
C6—C1—N1121.9 (3)C1—C6—H6120.4
C2—C1—N1117.4 (3)C4—C3—C2119.5 (4)
N2—C7—C8119.2 (3)C4—C3—H3120.2
N2—C7—C12118.3 (3)C2—C3—H3120.2
C8—C7—C12122.4 (3)S1—C13—H13A109.5
C11—C10—C9123.3 (3)S1—C13—H13B109.5
C11—C10—Cl2118.5 (3)H13A—C13—H13B109.5
C9—C10—Cl2118.2 (3)S1—C13—H13C109.5
C3—C2—C1119.7 (3)H13A—C13—H13C109.5
C3—C2—S1120.1 (3)H13B—C13—H13C109.5
C1—C2—S1120.1 (3)
C7—C8—C9—C100.6 (6)C1—C2—S1—Pt16.0 (3)
C12—Pt1—N1—N21.8 (3)N1—Pt1—S1—C24.51 (14)
S1—Pt1—N1—N2174.6 (3)C12—Pt1—S1—C218.4 (4)
C12—Pt1—N1—C1179.9 (3)Cl1—Pt1—S1—C2176.89 (12)
S1—Pt1—N1—C13.7 (2)N1—Pt1—S1—C13110.10 (18)
C1—N1—N2—C7179.6 (3)C12—Pt1—S1—C13124.0 (4)
Pt1—N1—N2—C71.4 (4)Cl1—Pt1—S1—C1371.30 (16)
N2—N1—C1—C63.0 (5)C10—C11—C12—C70.5 (5)
Pt1—N1—C1—C6178.7 (3)C10—C11—C12—Pt1175.7 (3)
N2—N1—C1—C2177.6 (3)N2—C7—C12—C11178.5 (3)
Pt1—N1—C1—C20.6 (4)C8—C7—C12—C110.1 (5)
N1—N2—C7—C8178.4 (3)N2—C7—C12—Pt11.6 (4)
N1—N2—C7—C120.2 (4)C8—C7—C12—Pt1177.0 (3)
C9—C8—C7—N2178.0 (3)N1—Pt1—C12—C11178.0 (4)
C9—C8—C7—C120.6 (5)Cl1—Pt1—C12—C110.8 (3)
C8—C9—C10—C110.0 (6)S1—Pt1—C12—C11163.9 (2)
C8—C9—C10—Cl2179.7 (3)N1—Pt1—C12—C71.7 (2)
C6—C1—C2—C30.9 (5)Cl1—Pt1—C12—C7177.2 (2)
N1—C1—C2—C3178.5 (3)S1—Pt1—C12—C712.4 (6)
C6—C1—C2—S1176.2 (3)C6—C5—C4—C31.8 (6)
N1—C1—C2—S14.4 (4)C4—C5—C6—C11.0 (6)
C9—C10—C11—C120.5 (6)C2—C1—C6—C50.4 (5)
Cl2—C10—C11—C12179.7 (3)N1—C1—C6—C5179.0 (3)
C3—C2—S1—C1363.1 (4)C5—C4—C3—C21.3 (6)
C1—C2—S1—C13119.8 (3)C1—C2—C3—C40.1 (6)
C3—C2—S1—Pt1176.9 (3)S1—C2—C3—C4177.0 (3)

Experimental details

Crystal data
Chemical formula[Pt(C13H10ClN2S)Cl]
Mr492.28
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.424 (2), 8.777 (3), 11.069 (3)
α, β, γ (°)105.428 (4), 91.798 (4), 96.641 (4)
V3)689.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)10.70
Crystal size (mm)0.42 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.035, 0.134
No. of measured, independent and
observed [I > 2σ(I)] reflections
6783, 2544, 2472
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.05
No. of reflections2544
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.89

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pt1—N11.959 (3)Pt1—Cl12.2911 (11)
Pt1—C121.986 (3)Pt1—S12.3529 (10)
N1—Pt1—C1279.26 (14)N1—Pt1—S186.25 (9)
C12—Pt1—Cl196.84 (11)Cl1—Pt1—S197.57 (4)
 

Acknowledgements

We thank the Department of Science and Technology, India (project No. SR/S1/IC-04/2007), for funding and CSIR for a fellowship to VB. The single-crystal X-ray diffractometer facility provided by IITD is gratefully acknowledged.

References

First citationBagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuraway, A. & Vellins, C. E. (1954). J. Chem. Soc. pp. 90–95.  Google Scholar
First citationChattopadhyay, S., Sinha, C., Basu, P. & Chakravorty, A. (1991). Organometallics, 10, 1135–1139.  CSD CrossRef CAS Web of Science Google Scholar
First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds