metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2-[(2-oxido­benzyl­­idene)amino­meth­yl]phenolato-κ3O,N,O′}bis­­[(pyridine-κN)zinc(II)]

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: wangql@nankai.edu.cn

(Received 7 January 2008; accepted 10 January 2008; online 16 January 2008)

In the title centrosymmetric zinc(II) complex, [Zn2(C4H13NO2)2(C6H5N)2], each ZnII atom is coordinated by two 2-[(2-oxidobenzyl­idene)amino­meth­yl]phenolate (L) ligands and one pyridine (py) mol­ecule in a distorted trigonal-bipyramidal geometry. Each L ligand behaves as a tridentate ligand and provides a phenolate oxygen bridge which links the two ZnII atoms. The ZnL(py) units are linked by ππ inter­actions between adjacent pyridine mol­ecules, with a centroid–centroid distance of 3.724 Å, resulting in a two-dimensional structure.

Related literature

For the biochemical and catalytic activity of zinc(II) complexes, see: Marco et al. (2004[Marco, V. B. D., Tapparo, A., Dolmella, A. & Bombi, G. G. (2004). Inorg. Chim. Acta, 357, 135-142.]); Kim et al. (2000[Kim, H. S., Kim, J. J. & Lee, B. G. (2000). Angew. Chem. Int. Ed. 39, 4096-4098.]). ZnII ions in phenoxide-bridged dinuclear complexes provide flexible coordination numbers, see: Atakol et al. (1999[Atakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci. 15, 199-200.]); Huang et al. (2006[Huang, W., Zhu, H. B. & Gou, S. H. (2006). Coord. Chem. Rev. 250, 414-423.]). For the preparation of H2L, see: Moustafa (2003[Moustafa, M. E. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 453-468.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C14H13NO2)2(C5H5N)2]

  • Mr = 739.42

  • Monoclinic, P 21 /c

  • a = 10.145 (6) Å

  • b = 13.806 (8) Å

  • c = 12.671 (8) Å

  • β = 102.063 (10)°

  • V = 1735.5 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 1.000 (expected range = 0.584–0.843)

  • 9656 measured reflections

  • 3561 independent reflections

  • 2440 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.00

  • 3561 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

The schiff base ligand, N, N ' -bis-salicylidene-1,3-diaminopropane give a phenoxide-bridged homodinuclear complex with ZnCl2. In the crystal structure, one ZnII center has a distorted square pyramid geometry, the other one has a distorted tetrahedral geometry (Atakol et al., 1999). In the tetra-imine macrocyclic cavity of dinuclear zinc(II) complexes, both of the two ZnII ions take a distorted square pyramid geometry with an apical position occupied by a water molecule (Huang et al., 2006).

The title complex [Zn2(py)2(L)2], (I), is the first dinuclear zinc(II) complex containing 2-hydroxybenzylamine-2'-hydroxybenzylidene(H2L) and pyridine(py). In (I), there are two phenoxide bridges between two ZnII atoms (Fig. 1). As can be seen from Table 1, in this complex the Zn—N(pyridine type) distance (2.129 Å) is similar to the average value of the reported structures, which is 2.132Å (Marco et al., 2004). The Zn—O bond lengths of 2.155(Zn1—O1A), 1.988(Zn1—O2A) and 1.9814 (Zn1—O1)Å in the title complex are comparable to those found in previously reported cadmium and zinc phenoxide complexes (1.864–2.170 Å) (Kim et al., 2000). The bond lengths and angles show that the five coordinations around ZnII atoms are not ideal square pyramid or trigonal bipyramid. The evalution between the two geometrics can be quantified using the τ parameter (Atakol et al., 1999), the τ value is calculated as 0.81, indicating a distorted trigonal bipyramid geometry. The Zn—O—Zn—O ring is planar (360°). Caculation indicates that Zn···Zn distance is 3.3 Å. The packing diagram of complex (I) is shown in Fig.2. The distance between adjacent pyridines is 3.724 Å. The [Zn2(py)2(L)2] units are thus linked by π···π interaction between pyridine molecules, resulting in the formation of a two-dimensional structure.

Related literature top

for the biochemical and catalytic activity of zinc(II) complexes, see: Marco et al. (2004); Kim et al. (2000). ZnII ions in phenoxide-bridged dinuclear complexes provide flexible coordination numbers, see: Atakol et al. (1999); Huang et al. (2006). For the preparation of H2L, see: Moustafa (2003).

Experimental top

The schiff base ligand H2L was prepared by a published procedure (Moustafa, 2003). H2L(0.1135 g, 0.5 mmol) was dissolved in methanol (20 ml). After a hot solution of zinc(II) acetate dihydrate (0.1097 g, 0.5 mmol) in water (10 ml) was added dropwise to the solution with continuous stirring, yellow precipitation came into being. When py (5 ml) was added to the turbid solution, the yellow precipitation was dissolved quickly and completely. After stirring further for 1 h with heating, the resulting solution was cooled and filtered. After about 1 week, single crystals of (I), suitable for X-ray structure determination, were obtained by slow evaporation of the solution at room temperature. Analysis calculated for C38H32N4O4Zn2: C 61.73, N 7.58, H 4.36%. Found: C 62.39, N 7.59, H 4.30%.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis.
Bis{µ-2-[(2-oxidobenzylidene)aminomethyl]phenolato- κ3O,N,O'}bis[(pyridine-κN)zinc(II)] top
Crystal data top
[Zn2(C14H13NO2)2(C5H5N)2]F(000) = 760
Mr = 739.42Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2807 reflections
a = 10.145 (6) Åθ = 2.5–24.3°
b = 13.806 (8) ŵ = 1.43 mm1
c = 12.671 (8) ÅT = 294 K
β = 102.063 (10)°Block, yellow
V = 1735.5 (18) Å30.20 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3561 independent reflections
Radiation source: fine-focus sealed tube2440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.693, Tmax = 1.000k = 1714
9656 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn2(C14H13NO2)2(C5H5N)2]V = 1735.5 (18) Å3
Mr = 739.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.145 (6) ŵ = 1.43 mm1
b = 13.806 (8) ÅT = 294 K
c = 12.671 (8) Å0.20 × 0.18 × 0.12 mm
β = 102.063 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2440 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 1.000Rint = 0.056
9656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
3561 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.60866 (3)1.08479 (2)0.49115 (2)0.03166 (11)
O10.46079 (18)1.05680 (13)0.56701 (14)0.0360 (5)
O20.3413 (2)0.78111 (13)0.45886 (14)0.0444 (5)
N10.4099 (2)0.87742 (16)0.66733 (16)0.0326 (5)
N20.7965 (2)1.02458 (17)0.57069 (17)0.0356 (6)
C10.4150 (3)1.09767 (19)0.6492 (2)0.0330 (6)
C20.3621 (3)1.1911 (2)0.6419 (2)0.0422 (7)
H20.36111.22780.58020.051*
C30.3106 (3)1.2300 (2)0.7263 (3)0.0531 (9)
H30.27401.29200.72010.064*
C40.3136 (3)1.1771 (2)0.8189 (3)0.0550 (9)
H40.27991.20350.87540.066*
C50.3670 (3)1.0849 (2)0.8273 (2)0.0492 (8)
H50.36951.04970.89030.059*
C60.4171 (3)1.0433 (2)0.7438 (2)0.0351 (7)
C70.4791 (3)0.9441 (2)0.7531 (2)0.0429 (7)
H7A0.57320.94940.74890.051*
H7B0.47530.91700.82300.051*
C80.3665 (3)0.7963 (2)0.6971 (2)0.0351 (7)
H80.37920.78590.77100.042*
C90.3000 (3)0.7197 (2)0.6279 (2)0.0340 (6)
C100.2446 (3)0.6435 (2)0.6794 (2)0.0503 (8)
H100.25110.64650.75360.060*
C110.1821 (4)0.5660 (2)0.6240 (3)0.0643 (10)
H110.14600.51700.65970.077*
C120.1733 (4)0.5613 (2)0.5133 (3)0.0640 (10)
H120.13080.50870.47450.077*
C130.2264 (3)0.6333 (2)0.4608 (2)0.0552 (9)
H130.21910.62810.38660.066*
C140.2920 (3)0.7152 (2)0.5145 (2)0.0365 (7)
C150.9071 (3)1.0806 (2)0.5933 (2)0.0446 (7)
H150.89911.14620.57620.054*
C161.0325 (3)1.0443 (3)0.6410 (2)0.0561 (9)
H161.10731.08490.65580.067*
C171.0448 (3)0.9487 (3)0.6659 (3)0.0607 (10)
H171.12870.92290.69700.073*
C180.9335 (3)0.8906 (3)0.6452 (3)0.0603 (9)
H180.94010.82510.66300.072*
C190.8101 (3)0.9309 (2)0.5970 (2)0.0461 (8)
H190.73430.89130.58260.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02991 (19)0.03587 (19)0.03086 (18)0.00479 (15)0.01014 (13)0.00201 (15)
O10.0333 (11)0.0390 (11)0.0407 (11)0.0073 (8)0.0192 (9)0.0102 (9)
O20.0649 (14)0.0390 (12)0.0338 (10)0.0139 (10)0.0206 (10)0.0039 (9)
N10.0330 (13)0.0348 (13)0.0293 (12)0.0030 (10)0.0044 (10)0.0020 (10)
N20.0286 (13)0.0446 (15)0.0342 (13)0.0056 (11)0.0076 (10)0.0026 (11)
C10.0239 (14)0.0372 (16)0.0392 (16)0.0080 (12)0.0096 (12)0.0133 (13)
C20.0455 (19)0.0363 (17)0.0480 (18)0.0079 (14)0.0171 (14)0.0074 (14)
C30.051 (2)0.0375 (18)0.073 (2)0.0010 (15)0.0197 (18)0.0152 (17)
C40.060 (2)0.055 (2)0.059 (2)0.0088 (17)0.0321 (18)0.0267 (18)
C50.056 (2)0.056 (2)0.0395 (17)0.0135 (17)0.0188 (15)0.0146 (16)
C60.0332 (16)0.0377 (16)0.0336 (15)0.0057 (13)0.0050 (12)0.0114 (13)
C70.0418 (18)0.0504 (18)0.0330 (15)0.0001 (14)0.0000 (13)0.0070 (14)
C80.0325 (16)0.0437 (18)0.0291 (14)0.0082 (13)0.0064 (12)0.0048 (13)
C90.0332 (16)0.0392 (16)0.0306 (14)0.0015 (13)0.0086 (12)0.0030 (13)
C100.057 (2)0.056 (2)0.0392 (17)0.0067 (17)0.0138 (15)0.0105 (16)
C110.073 (3)0.060 (2)0.064 (2)0.0266 (19)0.026 (2)0.0044 (19)
C120.079 (3)0.054 (2)0.064 (2)0.0310 (19)0.025 (2)0.0107 (18)
C130.075 (2)0.053 (2)0.0420 (18)0.0196 (18)0.0224 (17)0.0087 (16)
C140.0387 (17)0.0359 (16)0.0376 (16)0.0031 (13)0.0142 (13)0.0022 (13)
C150.0351 (17)0.054 (2)0.0463 (17)0.0098 (15)0.0123 (14)0.0063 (15)
C160.0306 (18)0.086 (3)0.050 (2)0.0117 (17)0.0054 (15)0.008 (2)
C170.0317 (19)0.098 (3)0.051 (2)0.0096 (19)0.0062 (15)0.012 (2)
C180.052 (2)0.067 (2)0.062 (2)0.0123 (18)0.0121 (17)0.0219 (18)
C190.0376 (18)0.053 (2)0.0483 (18)0.0027 (15)0.0095 (14)0.0083 (15)
Geometric parameters (Å, º) top
Zn1—O11.9814 (19)C6—C71.501 (4)
Zn1—O2i1.988 (2)C7—H7A0.9700
Zn1—N1i2.045 (2)C7—H7B0.9700
Zn1—N22.129 (2)C8—C91.448 (4)
Zn1—O1i2.155 (2)C8—H80.9300
O1—C11.349 (3)C9—C101.415 (4)
O1—Zn1i2.155 (2)C9—C141.423 (4)
O2—C141.313 (3)C10—C111.362 (4)
O2—Zn1i1.988 (2)C10—H100.9300
N1—C81.288 (3)C11—C121.389 (4)
N1—C71.484 (3)C11—H110.9300
N1—Zn1i2.045 (2)C12—C131.368 (4)
N2—C191.335 (3)C12—H120.9300
N2—C151.344 (3)C13—C141.413 (4)
C1—C21.394 (4)C13—H130.9300
C1—C61.411 (4)C15—C161.383 (4)
C2—C31.392 (4)C15—H150.9300
C2—H20.9300C16—C171.357 (5)
C3—C41.376 (4)C16—H160.9300
C3—H30.9300C17—C181.366 (5)
C4—C51.379 (4)C17—H170.9300
C4—H40.9300C18—C191.390 (4)
C5—C61.389 (4)C18—H180.9300
C5—H50.9300C19—H190.9300
O1—Zn1—O2i101.29 (8)C6—C7—H7A109.1
O1—Zn1—N1i127.04 (8)N1—C7—H7B109.1
O2i—Zn1—N1i92.31 (8)C6—C7—H7B109.1
O1—Zn1—N2112.80 (9)H7A—C7—H7B107.8
O2i—Zn1—N293.97 (9)N1—C8—C9127.0 (3)
N1i—Zn1—N2117.01 (8)N1—C8—H8116.5
O1—Zn1—O1i76.26 (8)C9—C8—H8116.5
O2i—Zn1—O1i175.72 (8)C10—C9—C14119.2 (3)
N1i—Zn1—O1i86.51 (8)C10—C9—C8116.3 (2)
N2—Zn1—O1i90.23 (8)C14—C9—C8124.4 (2)
C1—O1—Zn1135.25 (16)C11—C10—C9122.3 (3)
C1—O1—Zn1i120.19 (15)C11—C10—H10118.9
Zn1—O1—Zn1i103.74 (8)C9—C10—H10118.9
C14—O2—Zn1i125.11 (17)C10—C11—C12118.8 (3)
C8—N1—C7117.6 (2)C10—C11—H11120.6
C8—N1—Zn1i122.84 (19)C12—C11—H11120.6
C7—N1—Zn1i119.56 (18)C13—C12—C11120.6 (3)
C19—N2—C15117.8 (3)C13—C12—H12119.7
C19—N2—Zn1122.13 (19)C11—C12—H12119.7
C15—N2—Zn1120.0 (2)C12—C13—C14122.7 (3)
O1—C1—C2121.8 (2)C12—C13—H13118.6
O1—C1—C6119.1 (2)C14—C13—H13118.6
C2—C1—C6119.1 (2)O2—C14—C13119.3 (2)
C3—C2—C1120.5 (3)O2—C14—C9124.3 (2)
C3—C2—H2119.8C13—C14—C9116.4 (3)
C1—C2—H2119.8N2—C15—C16122.3 (3)
C4—C3—C2120.4 (3)N2—C15—H15118.8
C4—C3—H3119.8C16—C15—H15118.8
C2—C3—H3119.8C17—C16—C15119.1 (3)
C3—C4—C5119.6 (3)C17—C16—H16120.5
C3—C4—H4120.2C15—C16—H16120.5
C5—C4—H4120.2C16—C17—C18119.6 (3)
C4—C5—C6121.5 (3)C16—C17—H17120.2
C4—C5—H5119.2C18—C17—H17120.2
C6—C5—H5119.2C17—C18—C19118.8 (3)
C5—C6—C1119.0 (3)C17—C18—H18120.6
C5—C6—C7122.1 (3)C19—C18—H18120.6
C1—C6—C7118.9 (2)N2—C19—C18122.3 (3)
N1—C7—C6112.5 (2)N2—C19—H19118.8
N1—C7—H7A109.1C18—C19—H19118.8
O2i—Zn1—O1—C114.5 (3)C2—C1—C6—C7177.7 (2)
N1i—Zn1—O1—C1116.1 (2)C8—N1—C7—C6125.5 (3)
N2—Zn1—O1—C184.8 (3)Zn1i—N1—C7—C656.0 (3)
O1i—Zn1—O1—C1169.1 (3)C5—C6—C7—N1122.3 (3)
O2i—Zn1—O1—Zn1i176.41 (8)C1—C6—C7—N160.5 (3)
N1i—Zn1—O1—Zn1i74.75 (12)C7—N1—C8—C9178.2 (2)
N2—Zn1—O1—Zn1i84.36 (10)Zn1i—N1—C8—C90.3 (4)
O1i—Zn1—O1—Zn1i0.0N1—C8—C9—C10171.4 (3)
O1—Zn1—N2—C1953.3 (2)N1—C8—C9—C1411.1 (4)
O2i—Zn1—N2—C19157.3 (2)C14—C9—C10—C110.8 (5)
N1i—Zn1—N2—C19108.1 (2)C8—C9—C10—C11178.5 (3)
O1i—Zn1—N2—C1921.9 (2)C9—C10—C11—C120.4 (5)
O1—Zn1—N2—C15128.6 (2)C10—C11—C12—C130.0 (6)
O2i—Zn1—N2—C1524.6 (2)C11—C12—C13—C140.1 (6)
N1i—Zn1—N2—C1570.0 (2)Zn1i—O2—C14—C13162.6 (2)
O1i—Zn1—N2—C15156.2 (2)Zn1i—O2—C14—C917.7 (4)
Zn1—O1—C1—C263.6 (4)C12—C13—C14—O2179.6 (3)
Zn1i—O1—C1—C2128.6 (2)C12—C13—C14—C90.2 (5)
Zn1—O1—C1—C6118.3 (2)C10—C9—C14—O2179.1 (3)
Zn1i—O1—C1—C649.4 (3)C8—C9—C14—O21.6 (4)
O1—C1—C2—C3177.4 (3)C10—C9—C14—C130.6 (4)
C6—C1—C2—C30.6 (4)C8—C9—C14—C13178.1 (3)
C1—C2—C3—C41.1 (5)C19—N2—C15—C160.8 (4)
C2—C3—C4—C50.5 (5)Zn1—N2—C15—C16177.4 (2)
C3—C4—C5—C60.6 (5)N2—C15—C16—C170.1 (5)
C4—C5—C6—C11.0 (4)C15—C16—C17—C181.1 (5)
C4—C5—C6—C7178.2 (3)C16—C17—C18—C191.1 (5)
O1—C1—C6—C5178.5 (2)C15—N2—C19—C180.7 (4)
C2—C1—C6—C50.4 (4)Zn1—N2—C19—C18177.5 (2)
O1—C1—C6—C74.2 (4)C17—C18—C19—N20.3 (5)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C14H13NO2)2(C5H5N)2]
Mr739.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.145 (6), 13.806 (8), 12.671 (8)
β (°) 102.063 (10)
V3)1735.5 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.693, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9656, 3561, 2440
Rint0.056
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.00
No. of reflections3561
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008).

 

Footnotes

Permanent address: School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20601014 and 20631030)

References

First citationAtakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci. 15, 199–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W., Zhu, H. B. & Gou, S. H. (2006). Coord. Chem. Rev. 250, 414–423.  Web of Science CrossRef CAS Google Scholar
First citationKim, H. S., Kim, J. J. & Lee, B. G. (2000). Angew. Chem. Int. Ed. 39, 4096–4098.  CrossRef CAS Google Scholar
First citationMarco, V. B. D., Tapparo, A., Dolmella, A. & Bombi, G. G. (2004). Inorg. Chim. Acta, 357, 135–142.  Web of Science CSD CrossRef Google Scholar
First citationMoustafa, M. E. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 453–468.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds