organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrazinediium bis­­(6-carb­oxy­pyridazine-3-carboxyl­ate) dihydrate

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: jlec@ichtj.waw.pl

(Received 8 January 2008; accepted 10 January 2008; online 16 January 2008)

The triclinic unit cell of the title compound, N2H62+·2C6H3N2O4·2H2O, contains one doubly protonated hydrazine cation which lies on an inversion centre, two symmetry-related singly deprotonated 6-carboxy­pyridazine-3-carboxyl­ate anions and two symmetry-related solvent water mol­ecules. The anions inter­act via hydrogen bonds to form double ribbons which are bridged by hydrogen bonds donated by hydrazinediium cations and water molecules.

Related literature

For the crystal structures of two polymorphs of the hydrazine adduct of pyrazole-3,5-dicarboxylic acid, see Kumar et al. (2007[Kumar, V. S. S., Premkumar, T., Rath, N. P. & Govindarajan, S. (2007). Indian J. Chem. Sect B, 46, 141-147.]). Singly protonated hydrazine cations and di(aqua-O)bis­(pyridazine-3,6-dicarboxyl­ato-N,O)magnesium(II) anions have also been observed (Gryz et al., 2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 917-922.]). For related literature, see: Starosta & Leciejewicz (2004[Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151-1156.]); Sueur et al. (1987[Sueur, S., Lagrengee, M., Abraham, F. & Brenard, C. (1987). J. Heterocycl. Chem. 24, 1285-1289.]).

[Scheme 1]

Experimental

Crystal data
  • N2H62+·2C6H3N2O4·2H2O

  • Mr = 404.31

  • Triclinic, [P \overline 1]

  • a = 5.1727 (10) Å

  • b = 6.6257 (13) Å

  • c = 12.271 (3) Å

  • α = 102.08 (3)°

  • β = 93.92 (3)°

  • γ = 107.44 (3)°

  • V = 388.47 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 (2) K

  • 0.16 × 0.08 × 0.07 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: none

  • 2512 measured reflections

  • 2279 independent reflections

  • 1431 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 3.72%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.133

  • S = 1.02

  • 2279 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H62⋯N1i 0.81 (3) 2.23 (3) 3.031 (2) 174 (3)
N3—H51⋯O4ii 0.96 (2) 1.85 (2) 2.770 (2) 160 (2)
O6—H61⋯O4ii 0.98 (3) 1.99 (3) 2.9581 (18) 168 (2)
O6—H61⋯N1ii 0.98 (3) 2.45 (2) 3.039 (2) 118.5 (18)
N3—H53⋯N2i 0.91 (2) 1.95 (2) 2.8287 (18) 163 (2)
N3—H53⋯O2i 0.91 (2) 2.50 (2) 3.0627 (19) 120.7 (17)
N3—H52⋯O6iii 1.04 (2) 1.71 (2) 2.7473 (18) 176.6 (19)
O1—H1⋯O3iv 1.03 (4) 1.51 (4) 2.5152 (16) 165 (3)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x-1, y+1, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Version 10.0.7. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound (I) is composed of one doubly-protonated hydrazine cation having its geometrical centre on an inversion centre at 1/2,0,0, two symmetry related singly-deprotonated pyridazine-3,6-dicarboxylate anions and a pair of symmetry related solvent water molecules. Fig.1 shows the asymetric unit with atom labelling scheme. Atoms forming the pyridazine ring are coplanar (r.m.s.0.057 Å). The carboxylate moiety (C7/O1/O2) makes an angle of 3.8 (1) ° with the pyridazine ring, while the (C8/O3/O4) group makes an angle of 1.1 (1) °. Bond lengths and bond angles within the title anion agree well with those reported in the structures of both modifications of the parent acid (Sueur et al., 1987, Starosta & Leciejewicz, 2004). A fairly strong hydrogen bond of 2.515 (2) Å is observed between the protonated O atom of the carboxylic group acting as a donor and the deprotonated carboxylate O atom in the adjacent anion giving rise to polyionic ribbons composed of pairs of anions (Fig. 2). The ribbons are bridged by weaker bonds in which the hydrazine cations and solvation water molecules are the donors and the anions' O atoms and hetero-ring N atoms act as acceptors.

Related literature top

For the crystal structures of two polymorphs of the hydrazine adduct of pyrazole-3,5-dicarboxylic acid, see Kumar et al. (2007). Singly protonated hydrazine cations and di(aqua-O)bis(pyridazine-3,6-dicarboxylato-N,O) magnesium(II) anions have also been observed (Gryz et al., 2004).

For related literature, see: Starosta & Leciejewicz (2004); Sueur et al. (1987).

Experimental top

In the course of experiments aiming to obtain single crystals of a calcium complex with pyridazine-3,6-dicarboxylate ligand, single crystals of either the triclinic modification of the pyridazine-3,6-dicarboxylic acid dihydrate (Starosta & Leciejewicz, 2004) or of the title compound were found in the mass of polycrystalline material. The crystals of the title compound appeared when hydrazine was used to maintain the acidicity of the initial solution.

Refinement top

All H atoms were located in a difference map and refined with isotropic displacement parameters.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atom labelling scheme and 50% probability displacement ellipsoids. The hydrazine cation is symmetry complete (symmetry code: (A) -x + 1, -y + 1, -z + 1).
[Figure 2] Fig. 2. Packing diagram of the structure of (I).
Hydrazinediium bis(6-carboxypyridazine-3-carboxylate) dihydrate top
Crystal data top
N2H62+·2C6H3N2O4·2H2OZ = 1
Mr = 404.31F(000) = 210
Triclinic, P1Dx = 1.728 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1727 (10) ÅCell parameters from 25 reflections
b = 6.6257 (13) Åθ = 6–15°
c = 12.271 (3) ŵ = 0.15 mm1
α = 102.08 (3)°T = 293 K
β = 93.92 (3)°Rectangular plate, colourless
γ = 107.44 (3)°0.16 × 0.08 × 0.07 mm
V = 388.47 (17) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 30.1°, θmin = 1.7°
Graphite monochromatorh = 70
profile data from ω/2θ scansk = 89
2512 measured reflectionsl = 1717
2279 independent reflections3 standard reflections every 200 reflections
1431 reflections with I > 2σ(I) intensity decay: 3.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
N2H62+·2C6H3N2O4·2H2Oγ = 107.44 (3)°
Mr = 404.31V = 388.47 (17) Å3
Triclinic, P1Z = 1
a = 5.1727 (10) ÅMo Kα radiation
b = 6.6257 (13) ŵ = 0.15 mm1
c = 12.271 (3) ÅT = 293 K
α = 102.08 (3)°0.16 × 0.08 × 0.07 mm
β = 93.92 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
Rint = 0.017
2512 measured reflections3 standard reflections every 200 reflections
2279 independent reflections intensity decay: 3.7%
1431 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
2279 reflectionsΔρmin = 0.23 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.0745 (3)1.1260 (2)0.19096 (9)0.0301 (3)
O30.6795 (3)0.37197 (19)0.35261 (9)0.0292 (3)
O40.7130 (3)0.4033 (2)0.17502 (10)0.0319 (3)
O10.0377 (3)1.1253 (2)0.36330 (10)0.0315 (3)
N20.3236 (3)0.8346 (2)0.19854 (10)0.0248 (3)
N10.4514 (3)0.6882 (2)0.19574 (10)0.0261 (3)
C60.4853 (3)0.6120 (2)0.28600 (11)0.0198 (3)
C30.2223 (3)0.9032 (2)0.29085 (11)0.0191 (3)
C70.0773 (3)1.0655 (2)0.27720 (12)0.0212 (3)
C40.2473 (3)0.8274 (2)0.38706 (12)0.0238 (3)
C80.6396 (3)0.4472 (2)0.26852 (12)0.0215 (3)
C50.3863 (4)0.6784 (3)0.38484 (12)0.0250 (3)
O60.1862 (3)0.3212 (2)0.98874 (10)0.0295 (3)
N30.3528 (3)0.9661 (2)0.99354 (11)0.0233 (3)
H50.169 (4)0.871 (3)0.4510 (18)0.031 (5)*
H60.411 (4)0.628 (3)0.4471 (19)0.037 (6)*
H620.268 (6)0.416 (5)1.044 (2)0.059 (8)*
H510.288 (5)0.840 (4)0.9317 (19)0.038 (6)*
H610.223 (5)0.395 (4)0.927 (2)0.045 (6)*
H530.307 (5)0.924 (3)1.0576 (18)0.035 (5)*
H520.288 (5)1.098 (4)0.9885 (18)0.036 (5)*
H10.136 (8)1.234 (6)0.350 (3)0.117 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0426 (8)0.0379 (6)0.0231 (5)0.0268 (6)0.0091 (5)0.0143 (4)
O30.0400 (7)0.0348 (6)0.0259 (5)0.0261 (5)0.0095 (5)0.0130 (4)
O40.0465 (8)0.0369 (6)0.0248 (5)0.0295 (6)0.0119 (5)0.0082 (4)
O10.0459 (8)0.0394 (7)0.0263 (5)0.0315 (6)0.0165 (5)0.0148 (5)
N20.0362 (8)0.0282 (6)0.0197 (5)0.0208 (6)0.0089 (5)0.0098 (5)
N10.0382 (8)0.0294 (7)0.0215 (6)0.0231 (6)0.0105 (5)0.0092 (5)
C60.0237 (7)0.0200 (6)0.0200 (6)0.0123 (5)0.0051 (5)0.0055 (5)
C30.0225 (7)0.0199 (6)0.0184 (6)0.0109 (5)0.0044 (5)0.0056 (5)
C70.0238 (7)0.0222 (7)0.0210 (6)0.0119 (6)0.0037 (5)0.0053 (5)
C40.0339 (8)0.0279 (7)0.0179 (6)0.0194 (6)0.0084 (6)0.0077 (5)
C80.0249 (8)0.0202 (6)0.0231 (6)0.0124 (6)0.0036 (5)0.0058 (5)
C50.0373 (9)0.0284 (7)0.0190 (6)0.0206 (7)0.0081 (6)0.0102 (5)
O60.0375 (7)0.0290 (6)0.0237 (6)0.0128 (5)0.0049 (5)0.0070 (4)
N30.0225 (7)0.0293 (7)0.0220 (6)0.0121 (5)0.0057 (5)0.0084 (5)
Geometric parameters (Å, º) top
O2—C71.2082 (18)C3—C71.5128 (18)
O3—C81.2666 (17)C4—C51.382 (2)
O4—C81.2376 (18)C4—H50.94 (2)
O1—C71.2956 (18)C5—H60.91 (2)
O1—H11.03 (4)O6—H620.81 (3)
N2—N11.3241 (17)O6—H610.98 (3)
N2—C31.3313 (18)N3—N3i1.440 (3)
N1—C61.3317 (17)N3—H510.96 (2)
C6—C51.387 (2)N3—H530.91 (2)
C6—C81.5236 (18)N3—H521.04 (2)
C3—C41.3889 (19)
C7—O1—H1111 (2)C3—C4—H5122.1 (13)
N1—N2—C3120.23 (12)O4—C8—O3127.45 (13)
N2—N1—C6120.34 (12)O4—C8—C6116.92 (12)
N1—C6—C5122.08 (13)O3—C8—C6115.63 (12)
N1—C6—C8113.36 (12)C4—C5—C6117.66 (13)
C5—C6—C8124.56 (12)C4—C5—H6119.8 (14)
N2—C3—C4122.16 (13)C6—C5—H6122.5 (14)
N2—C3—C7112.66 (12)H62—O6—H61103 (2)
C4—C3—C7125.17 (13)N3i—N3—H51106.7 (14)
O2—C7—O1126.02 (13)N3i—N3—H53105.3 (14)
O2—C7—C3119.91 (13)H51—N3—H53108 (2)
O1—C7—C3114.07 (12)N3i—N3—H52109.5 (13)
C5—C4—C3117.50 (13)H51—N3—H52117.5 (18)
C5—C4—H5120.3 (13)H53—N3—H52109.0 (18)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···N1ii0.81 (3)2.23 (3)3.031 (2)174 (3)
N3—H51···O4iii0.96 (2)1.85 (2)2.770 (2)160 (2)
O6—H61···O4iii0.98 (3)1.99 (3)2.9581 (18)168 (2)
O6—H61···N1iii0.98 (3)2.45 (2)3.039 (2)118.5 (18)
N3—H53···N2ii0.91 (2)1.95 (2)2.8287 (18)163 (2)
N3—H53···O2ii0.91 (2)2.50 (2)3.0627 (19)120.7 (17)
N3—H52···O6iv1.04 (2)1.71 (2)2.7473 (18)176.6 (19)
O1—H1···O3v1.03 (4)1.51 (4)2.5152 (16)165 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaN2H62+·2C6H3N2O4·2H2O
Mr404.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.1727 (10), 6.6257 (13), 12.271 (3)
α, β, γ (°)102.08 (3), 93.92 (3), 107.44 (3)
V3)388.47 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.16 × 0.08 × 0.07
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2512, 2279, 1431
Rint0.017
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.133, 1.02
No. of reflections2279
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.23

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···N1i0.81 (3)2.23 (3)3.031 (2)174 (3)
N3—H51···O4ii0.96 (2)1.85 (2)2.770 (2)160 (2)
O6—H61···O4ii0.98 (3)1.99 (3)2.9581 (18)168 (2)
O6—H61···N1ii0.98 (3)2.45 (2)3.039 (2)118.5 (18)
N3—H53···N2i0.91 (2)1.95 (2)2.8287 (18)163 (2)
N3—H53···O2i0.91 (2)2.50 (2)3.0627 (19)120.7 (17)
N3—H52···O6iii1.04 (2)1.71 (2)2.7473 (18)176.6 (19)
O1—H1···O3iv1.03 (4)1.51 (4)2.5152 (16)165 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y+1, z.
 

References

First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 917–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Version 10.0.7. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKumar, V. S. S., Premkumar, T., Rath, N. P. & Govindarajan, S. (2007). Indian J. Chem. Sect B, 46, 141–147.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151–1156.  Web of Science CSD CrossRef CAS Google Scholar
First citationSueur, S., Lagrengee, M., Abraham, F. & Brenard, C. (1987). J. Heterocycl. Chem. 24, 1285–1289.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds