organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Dihydr­­oxy-2′-[(2-hydr­­oxy-1-naphth­yl)methyl­ene­amino]xanthene-9-spiro-1′-isoindolin-3′-one aceto­nitrile solvate

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal College, Anqing 246003, People's Republic of China, and bSchool of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: liugx@live.com

(Received 9 January 2008; accepted 10 January 2008; online 16 January 2008)

The title compound, C31H20N2O5·C2H3N, was synthesized by the reaction of fluorescein hydrazide and excess 2-hydr­oxy-1-naphthaldehyde in acetonitrile. The spirolactam ring is planar and is nearly at right angles to the two benzene rings of the xanthene system. The dihedral angle between the two benzene rings of the xanthene system is 9.92 (4)°. In the crystal structure, the mol­ecules are linked into extended two-dimensional networks by inter­molecular hydrogen bonding. Acetonitrile mol­ecules are located in the voids between the two-dimensional networks.

Related literature

For general background, see: Chen et al., (2006[Chen, X. Q. & Ma, H. M. (2006). Anal. Chim. Acta, 575, 217-222.]). For related literature, see: Wu et al., (2007[Wu, D. Y., Huang, W., Duan, C. Y., Li, Z. & Meng, Q. J. (2007). Inorg. Chem. 46, 1538-1544.]).

[Scheme 1]

Experimental

Crystal data
  • C31H20N2O5·C2H3N

  • Mr = 541.54

  • Monoclinic, P 21 /c

  • a = 18.729 (5) Å

  • b = 15.572 (4) Å

  • c = 9.021 (2) Å

  • β = 98.495 (4)°

  • V = 2601.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.985

  • 12963 measured reflections

  • 4627 independent reflections

  • 3272 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.03

  • 4627 reflections

  • 375 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.83 2.5600 (16) 147
O3—H6⋯N3i 0.82 2.08 2.882 (2) 165
O1—H1⋯O4ii 0.82 1.94 2.7484 (16) 170
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1997[Bruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 2000[Bruker (2000). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Fluorescein dyes have been used extensively for conjugation with biomolecules, owing to their excellent fluorescence properties. A few Fluorescein have also been used as fluorescent chemosensors for metal ions. It was reported that rhodamine B hydrazide could be used as a fluorescent probe for Cu2+(Chen et al., 2006). In addition, Fluorescein-based fluorescent chemosensors have received increasing interest in recent years by virtue of their long-wavelength emission and availability. In our previous research using 2-pyridinecarbaldehyde and rhodamine 6 G hydrazide synthesized probe (Wu et al., 2007). The structures are similar with rhodamine 6 G hydrazone probe and fluorescein hydrazone probe. As an extension of our work on this series of complexes, we herein report the crystal structure of the title comound.

The asymmetric unit contains one organic molecule and one acetonitriler molecule. The benzene ring of phenol deviates only slightly from planarity with a dihedral angle of 9.12 (3)°. The water O atom acts as a hydrogen bond acceptor and donor from the hydroxy group in a neighouring organic molecule, thereby forming extended 2-D networks (Table1, Fig. 2). Acetonitrile molecules are located in the voids between the two-dimensional networks.

Related literature top

For general background, see: Chen et al., (2006). For related literature, see: Wu et al., (2007).

Experimental top

Briefly, to a suspended solution of fluorescein (300 mg, 0.9 mmol) in CH3OH (15 ml), an excess of hydrazine hydrate (1.2 ml, 36 mmol) was added, and the reaction mixture was refluxed for 5 h with stirring. The resulting clear orange solution was evaporated in vacuo to give a brown oil, which was then recrystallized from ethanol–water, affording 1 as a light orange crystal (230 mg, yield 70%). Fluorescein hydrazide (0.46 g, 1 mmol) was dissolved in 20 ml absolute acetonitrile. An excessive 2-hydroxy-1-naphthaldehyde (4 mmol) was added then the mixture was refluxed in an air bath for 6 h. After that, the solution was cooled and allowed to stand at room temperature overnight. The yellow single-crystal which appeared after ten days was growed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 - 0.96 Å and O—H = 0.82 Å), and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C or O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT-Plus (Bruker, 1997); data reduction: SAINT-Plus (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
3,6-Dihydroxy-2'-[(2-hydroxy-1-naphthyl)methyleneamino]xanthene-9-spiro-1'- isoindolin-3'-one acetonitrile solvate top
Crystal data top
C31H20N2O5·C2H3NF(000) = 1128
Mr = 541.54Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4034 reflections
a = 18.729 (5) Åθ = 2.4–27.0°
b = 15.572 (4) ŵ = 0.10 mm1
c = 9.021 (2) ÅT = 293 K
β = 98.495 (4)°Block, yellow
V = 2601.9 (11) Å30.26 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4627 independent reflections
Radiation source: sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2220
Tmin = 0.976, Tmax = 0.985k = 1718
12963 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4627 reflectionsΔρmax = 0.14 e Å3
375 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (7)
Crystal data top
C31H20N2O5·C2H3NV = 2601.9 (11) Å3
Mr = 541.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.729 (5) ŵ = 0.10 mm1
b = 15.572 (4) ÅT = 293 K
c = 9.021 (2) Å0.26 × 0.22 × 0.16 mm
β = 98.495 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4627 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3272 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.985Rint = 0.047
12963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
4627 reflectionsΔρmin = 0.15 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33564 (7)0.42174 (9)0.79315 (17)0.0395 (4)
C20.35217 (9)0.33479 (10)0.7884 (2)0.0545 (4)
H20.32720.30110.71280.065*
C30.40416 (9)0.29689 (10)0.8916 (2)0.0574 (5)
H70.41370.23850.88610.069*
C40.44199 (8)0.34666 (10)1.00373 (18)0.0457 (4)
C50.42780 (8)0.43291 (9)1.01071 (17)0.0425 (4)
H50.45360.46671.08510.051*
C60.37473 (7)0.46933 (9)0.90608 (16)0.0394 (4)
C70.31973 (8)0.59927 (9)0.81305 (17)0.0419 (4)
C80.32082 (8)0.68757 (10)0.82713 (18)0.0480 (4)
H80.34940.71350.90780.058*
C90.27929 (8)0.73684 (10)0.72100 (19)0.0479 (4)
C100.23642 (8)0.69775 (10)0.60184 (19)0.0533 (4)
H100.20830.73080.52970.064*
C110.23580 (8)0.60990 (10)0.59104 (19)0.0504 (4)
H110.20670.58420.51080.060*
C120.27727 (7)0.55775 (9)0.69603 (17)0.0405 (4)
C130.27427 (7)0.46102 (9)0.68603 (16)0.0396 (4)
C140.26945 (8)0.42604 (9)0.52772 (17)0.0437 (4)
C150.31751 (9)0.43535 (11)0.4270 (2)0.0594 (5)
H150.36010.46620.45210.071*
C160.30051 (11)0.39730 (12)0.2870 (2)0.0693 (5)
H160.33180.40390.21690.083*
C170.23812 (11)0.34980 (12)0.2495 (2)0.0635 (5)
H170.22840.32430.15550.076*
C180.19056 (9)0.34007 (10)0.34988 (18)0.0548 (4)
H180.14860.30790.32560.066*
C190.20660 (8)0.37939 (9)0.48858 (17)0.0436 (4)
C200.16357 (8)0.38148 (10)0.61280 (17)0.0448 (4)
C210.13128 (7)0.42358 (9)0.91136 (17)0.0408 (4)
H210.10840.37530.86590.049*
C220.10663 (7)0.46010 (9)1.04201 (16)0.0396 (4)
C230.13326 (8)0.53795 (10)1.10112 (17)0.0462 (4)
C240.10413 (10)0.57803 (12)1.21788 (19)0.0598 (5)
H240.12200.63091.25400.072*
C250.05010 (10)0.54010 (13)1.27822 (19)0.0622 (5)
H250.03080.56791.35440.075*
C260.02242 (8)0.45900 (11)1.22770 (18)0.0518 (4)
C270.03305 (9)0.41847 (14)1.2928 (2)0.0682 (5)
H270.05260.44621.36890.082*
C280.05798 (11)0.34026 (15)1.2463 (2)0.0771 (6)
H280.09450.31431.29000.093*
C290.02859 (9)0.29812 (13)1.1316 (2)0.0708 (5)
H290.04520.24371.10100.085*
C300.02372 (8)0.33577 (11)1.06483 (19)0.0548 (4)
H300.04210.30690.98840.066*
C310.05084 (7)0.41780 (10)1.10902 (17)0.0431 (4)
C320.54315 (12)0.38827 (12)0.6728 (2)0.0826 (6)
H32A0.59300.39550.71410.124*
H32B0.52650.33360.70280.124*
H32C0.51510.43320.70870.124*
C330.53548 (10)0.39211 (12)0.5109 (3)0.0678 (5)
N10.18474 (6)0.45736 (8)0.85739 (13)0.0403 (3)
N20.20397 (6)0.42793 (7)0.72513 (13)0.0404 (3)
N30.52922 (10)0.39621 (12)0.3840 (2)0.0900 (6)
O10.28347 (6)0.82387 (7)0.73845 (14)0.0670 (4)
H10.25420.84700.67430.100*
O20.36425 (6)0.55596 (6)0.92433 (12)0.0537 (3)
O30.49339 (6)0.30663 (7)1.10332 (14)0.0644 (4)
H60.50670.33891.17380.097*
O40.18721 (6)0.58052 (7)1.04607 (13)0.0589 (3)
H40.19920.55330.97590.088*
O50.10443 (6)0.35036 (8)0.61789 (13)0.0678 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (8)0.0383 (9)0.0458 (9)0.0024 (6)0.0074 (7)0.0024 (7)
C20.0552 (10)0.0407 (10)0.0634 (11)0.0034 (8)0.0047 (9)0.0041 (8)
C30.0630 (11)0.0349 (9)0.0695 (12)0.0048 (8)0.0057 (9)0.0008 (8)
C40.0447 (9)0.0421 (9)0.0497 (10)0.0035 (7)0.0053 (8)0.0050 (7)
C50.0452 (9)0.0405 (9)0.0407 (9)0.0021 (7)0.0024 (7)0.0003 (7)
C60.0427 (9)0.0329 (8)0.0436 (9)0.0006 (6)0.0099 (7)0.0016 (7)
C70.0416 (9)0.0408 (9)0.0432 (9)0.0053 (7)0.0059 (7)0.0061 (7)
C80.0501 (9)0.0400 (9)0.0524 (10)0.0037 (7)0.0025 (8)0.0007 (7)
C90.0491 (10)0.0381 (9)0.0575 (11)0.0055 (7)0.0115 (8)0.0073 (8)
C100.0489 (10)0.0502 (11)0.0593 (11)0.0057 (8)0.0032 (9)0.0163 (8)
C110.0435 (9)0.0520 (11)0.0534 (11)0.0026 (7)0.0004 (8)0.0077 (8)
C120.0353 (8)0.0411 (9)0.0459 (9)0.0010 (6)0.0090 (7)0.0047 (7)
C130.0345 (8)0.0429 (9)0.0419 (9)0.0031 (6)0.0077 (7)0.0020 (7)
C140.0431 (9)0.0453 (9)0.0428 (9)0.0058 (7)0.0067 (7)0.0032 (7)
C150.0573 (10)0.0682 (12)0.0561 (12)0.0001 (9)0.0196 (9)0.0022 (9)
C160.0804 (14)0.0795 (14)0.0530 (12)0.0217 (11)0.0267 (11)0.0086 (10)
C170.0785 (13)0.0681 (12)0.0422 (11)0.0274 (10)0.0039 (10)0.0020 (9)
C180.0604 (11)0.0537 (11)0.0466 (10)0.0122 (8)0.0037 (9)0.0050 (8)
C190.0459 (9)0.0440 (9)0.0396 (9)0.0055 (7)0.0020 (7)0.0014 (7)
C200.0419 (9)0.0451 (9)0.0459 (10)0.0040 (7)0.0017 (7)0.0033 (7)
C210.0386 (8)0.0379 (8)0.0457 (9)0.0019 (7)0.0052 (7)0.0007 (7)
C220.0364 (8)0.0437 (9)0.0376 (9)0.0050 (7)0.0018 (7)0.0039 (7)
C230.0454 (9)0.0509 (10)0.0413 (9)0.0020 (7)0.0028 (7)0.0011 (7)
C240.0641 (11)0.0649 (12)0.0489 (11)0.0051 (9)0.0039 (9)0.0121 (9)
C250.0634 (11)0.0820 (14)0.0417 (10)0.0176 (10)0.0092 (9)0.0053 (9)
C260.0462 (9)0.0688 (12)0.0410 (10)0.0137 (8)0.0081 (8)0.0133 (8)
C270.0582 (11)0.0988 (16)0.0508 (11)0.0168 (11)0.0188 (9)0.0190 (11)
C280.0636 (12)0.0927 (17)0.0803 (15)0.0013 (11)0.0278 (11)0.0310 (12)
C290.0632 (12)0.0694 (13)0.0838 (14)0.0063 (10)0.0240 (11)0.0190 (11)
C300.0503 (10)0.0556 (11)0.0611 (11)0.0010 (8)0.0166 (9)0.0118 (9)
C310.0378 (8)0.0511 (10)0.0398 (9)0.0096 (7)0.0040 (7)0.0103 (7)
C320.1057 (17)0.0644 (13)0.0762 (15)0.0114 (11)0.0088 (13)0.0104 (11)
C330.0679 (13)0.0562 (12)0.0775 (16)0.0092 (9)0.0048 (12)0.0128 (11)
N10.0388 (7)0.0432 (7)0.0389 (7)0.0020 (5)0.0059 (6)0.0012 (6)
N20.0366 (7)0.0449 (7)0.0399 (7)0.0070 (5)0.0068 (6)0.0054 (6)
N30.0966 (14)0.0927 (14)0.0773 (13)0.0082 (10)0.0014 (12)0.0090 (11)
O10.0785 (9)0.0400 (7)0.0783 (9)0.0095 (6)0.0022 (7)0.0083 (6)
O20.0680 (7)0.0367 (6)0.0509 (7)0.0085 (5)0.0094 (6)0.0027 (5)
O30.0701 (8)0.0492 (7)0.0668 (8)0.0141 (6)0.0135 (7)0.0053 (6)
O40.0616 (7)0.0571 (7)0.0596 (8)0.0153 (6)0.0145 (6)0.0149 (6)
O50.0510 (7)0.0878 (9)0.0651 (8)0.0290 (6)0.0100 (6)0.0191 (7)
Geometric parameters (Å, º) top
C1—C61.379 (2)C18—H180.9300
C1—C21.391 (2)C19—C201.474 (2)
C1—C131.5168 (19)C20—O51.2161 (17)
C2—C31.377 (2)C20—N21.3769 (18)
C2—H20.9300C21—N11.2885 (17)
C3—C41.383 (2)C21—C221.444 (2)
C3—H70.9300C21—H210.9300
C4—C51.372 (2)C22—C231.387 (2)
C4—O31.3663 (18)C22—C311.441 (2)
C5—C61.3867 (19)C23—O41.3620 (18)
C5—H50.9300C23—C241.402 (2)
C6—O21.3767 (17)C24—C251.353 (2)
C7—C81.381 (2)C24—H240.9300
C7—O21.3821 (17)C25—C261.415 (2)
C7—C121.384 (2)C25—H250.9300
C8—C91.375 (2)C26—C311.418 (2)
C8—H80.9300C26—C271.415 (2)
C9—O11.3652 (18)C27—C281.349 (3)
C9—C101.384 (2)C27—H270.9300
C10—C111.371 (2)C28—C291.404 (3)
C10—H100.9300C28—H280.9300
C11—C121.394 (2)C29—C301.357 (2)
C11—H110.9300C29—H290.9300
C12—C131.510 (2)C30—C311.410 (2)
C13—N21.5036 (17)C30—H300.9300
C13—C141.519 (2)C32—C331.447 (3)
C14—C151.378 (2)C32—H32A0.9600
C14—C191.384 (2)C32—H32B0.9600
C15—C161.389 (3)C32—H32C0.9600
C15—H150.9300C33—N31.135 (2)
C16—C171.382 (3)N1—N21.3747 (16)
C16—H160.9300O1—H10.8200
C17—C181.369 (2)O3—H60.8200
C17—H170.9300O4—H40.8200
C18—C191.385 (2)
C6—C1—C2116.72 (13)C19—C18—H18120.9
C6—C1—C13121.57 (13)C18—C19—C14121.68 (15)
C2—C1—C13121.59 (13)C18—C19—C20128.78 (15)
C3—C2—C1122.31 (15)C14—C19—C20109.53 (13)
C3—C2—H2118.8O5—C20—N2125.88 (14)
C1—C2—H2118.8O5—C20—C19128.55 (14)
C2—C3—C4119.27 (15)N2—C20—C19105.57 (13)
C2—C3—H7120.4N1—C21—C22120.49 (14)
C4—C3—H7120.4N1—C21—H21119.8
C5—C4—O3122.60 (14)C22—C21—H21119.8
C5—C4—C3120.01 (14)C23—C22—C31118.68 (14)
O3—C4—C3117.39 (14)C23—C22—C21121.17 (14)
C4—C5—C6119.55 (14)C31—C22—C21120.08 (14)
C4—C5—H5120.2O4—C23—C22121.95 (14)
C6—C5—H5120.2O4—C23—C24116.69 (15)
O2—C6—C1123.04 (13)C22—C23—C24121.33 (15)
O2—C6—C5114.82 (13)C25—C24—C23120.32 (17)
C1—C6—C5122.14 (14)C25—C24—H24119.8
C8—C7—O2114.83 (13)C23—C24—H24119.8
C8—C7—C12122.28 (14)C24—C25—C26121.34 (16)
O2—C7—C12122.88 (14)C24—C25—H25119.3
C9—C8—C7119.51 (15)C26—C25—H25119.3
C9—C8—H8120.2C31—C26—C27119.49 (17)
C7—C8—H8120.2C31—C26—C25119.12 (15)
O1—C9—C8117.18 (15)C27—C26—C25121.39 (17)
O1—C9—C10122.88 (14)C28—C27—C26120.99 (18)
C8—C9—C10119.93 (15)C28—C27—H27119.5
C11—C10—C9119.46 (15)C26—C27—H27119.5
C11—C10—H10120.3C27—C28—C29119.73 (17)
C9—C10—H10120.3C27—C28—H28120.1
C10—C11—C12122.34 (15)C29—C28—H28120.1
C10—C11—H11118.8C30—C29—C28120.82 (19)
C12—C11—H11118.8C30—C29—H29119.6
C7—C12—C11116.47 (14)C28—C29—H29119.6
C7—C12—C13121.57 (13)C29—C30—C31121.30 (17)
C11—C12—C13121.93 (13)C29—C30—H30119.3
N2—C13—C12110.73 (11)C31—C30—H30119.3
N2—C13—C1108.65 (11)C26—C31—C30117.62 (14)
C12—C13—C1110.26 (12)C26—C31—C22119.09 (15)
N2—C13—C1499.51 (11)C30—C31—C22123.27 (14)
C12—C13—C14114.24 (12)C33—C32—H32A109.5
C1—C13—C14112.87 (12)C33—C32—H32B109.5
C15—C14—C19120.07 (15)H32A—C32—H32B109.5
C15—C14—C13128.93 (14)C33—C32—H32C109.5
C19—C14—C13111.00 (13)H32A—C32—H32C109.5
C14—C15—C16118.06 (17)H32B—C32—H32C109.5
C14—C15—H15121.0N3—C33—C32179.1 (2)
C16—C15—H15121.0C21—N1—N2120.63 (12)
C17—C16—C15121.52 (17)N1—N2—C20128.89 (12)
C17—C16—H16119.2N1—N2—C13116.11 (11)
C15—C16—H16119.2C20—N2—C13114.35 (12)
C18—C17—C16120.44 (17)C9—O1—H1109.5
C18—C17—H17119.8C6—O2—C7118.21 (11)
C16—C17—H17119.8C4—O3—H6109.5
C17—C18—C19118.22 (17)C23—O4—H4109.5
C17—C18—H18120.9
C6—C1—C2—C30.8 (2)C15—C14—C19—C180.9 (2)
C13—C1—C2—C3175.13 (15)C13—C14—C19—C18179.13 (13)
C1—C2—C3—C40.6 (3)C15—C14—C19—C20178.10 (14)
C2—C3—C4—C50.3 (2)C13—C14—C19—C201.88 (17)
C2—C3—C4—O3179.62 (15)C18—C19—C20—O51.5 (3)
O3—C4—C5—C6179.86 (14)C14—C19—C20—O5177.43 (16)
C3—C4—C5—C60.9 (2)C18—C19—C20—N2179.33 (15)
C2—C1—C6—O2179.93 (13)C14—C19—C20—N21.77 (17)
C13—C1—C6—O24.1 (2)N1—C21—C22—C238.3 (2)
C2—C1—C6—C50.3 (2)N1—C21—C22—C31174.81 (12)
C13—C1—C6—C5175.71 (13)C31—C22—C23—O4178.31 (13)
C4—C5—C6—O2179.24 (13)C21—C22—C23—O44.7 (2)
C4—C5—C6—C10.6 (2)C31—C22—C23—C243.8 (2)
O2—C7—C8—C9179.00 (13)C21—C22—C23—C24173.18 (13)
C12—C7—C8—C90.9 (2)O4—C23—C24—C25179.68 (15)
C7—C8—C9—O1178.66 (14)C22—C23—C24—C251.6 (3)
C7—C8—C9—C100.5 (2)C23—C24—C25—C261.1 (3)
O1—C9—C10—C11179.17 (15)C24—C25—C26—C311.5 (2)
C8—C9—C10—C110.1 (2)C24—C25—C26—C27178.67 (16)
C9—C10—C11—C120.3 (2)C31—C26—C27—C281.7 (3)
C8—C7—C12—C110.7 (2)C25—C26—C27—C28178.46 (17)
O2—C7—C12—C11179.20 (13)C26—C27—C28—C290.0 (3)
C8—C7—C12—C13177.30 (14)C27—C28—C29—C301.3 (3)
O2—C7—C12—C132.8 (2)C28—C29—C30—C310.7 (3)
C10—C11—C12—C70.1 (2)C27—C26—C31—C302.2 (2)
C10—C11—C12—C13177.87 (14)C25—C26—C31—C30177.93 (14)
C7—C12—C13—N2106.04 (15)C27—C26—C31—C22179.15 (13)
C11—C12—C13—N271.84 (17)C25—C26—C31—C220.7 (2)
C7—C12—C13—C114.24 (18)C29—C30—C31—C261.1 (2)
C11—C12—C13—C1167.88 (13)C29—C30—C31—C22179.63 (15)
C7—C12—C13—C14142.61 (14)C23—C22—C31—C263.2 (2)
C11—C12—C13—C1439.52 (19)C21—C22—C31—C26173.75 (13)
C6—C1—C13—N2106.63 (15)C23—C22—C31—C30175.28 (14)
C2—C1—C13—N269.15 (17)C21—C22—C31—C307.7 (2)
C6—C1—C13—C1214.90 (18)C22—C21—N1—N2173.76 (12)
C2—C1—C13—C12169.33 (13)C21—N1—N2—C2019.9 (2)
C6—C1—C13—C14144.01 (14)C21—N1—N2—C13169.86 (12)
C2—C1—C13—C1440.22 (19)O5—C20—N2—N17.9 (3)
N2—C13—C14—C15178.80 (15)C19—C20—N2—N1171.36 (13)
C12—C13—C14—C1560.8 (2)O5—C20—N2—C13178.20 (15)
C1—C13—C14—C1566.2 (2)C19—C20—N2—C131.02 (16)
N2—C13—C14—C191.18 (15)C12—C13—N2—N151.04 (16)
C12—C13—C14—C19119.14 (14)C1—C13—N2—N170.20 (15)
C1—C13—C14—C19113.83 (14)C14—C13—N2—N1171.60 (11)
C19—C14—C15—C160.4 (2)C12—C13—N2—C20120.60 (14)
C13—C14—C15—C16179.55 (15)C1—C13—N2—C20118.17 (14)
C14—C15—C16—C171.3 (3)C14—C13—N2—C200.03 (15)
C15—C16—C17—C181.0 (3)C1—C6—O2—C79.1 (2)
C16—C17—C18—C190.3 (2)C5—C6—O2—C7171.10 (12)
C17—C18—C19—C141.3 (2)C8—C7—O2—C6170.15 (13)
C17—C18—C19—C20177.50 (15)C12—C7—O2—C69.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.832.5600 (16)147
O3—H6···N3i0.822.082.882 (2)165
O1—H1···O4ii0.821.942.7484 (16)170
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC31H20N2O5·C2H3N
Mr541.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.729 (5), 15.572 (4), 9.021 (2)
β (°) 98.495 (4)
V3)2601.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.976, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12963, 4627, 3272
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.03
No. of reflections4627
No. of parameters375
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 1997), SAINT-Plus (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.832.5600 (16)146.8
O3—H6···N3i0.822.082.882 (2)165.1
O1—H1···O4ii0.821.942.7484 (16)169.7
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 20775003) and the Natural Science Foundation of the Education Committee of Anhui Province, China (Project No. 2002 K J201).

References

First citationBruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. Q. & Ma, H. M. (2006). Anal. Chim. Acta, 575, 217–222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D. Y., Huang, W., Duan, C. Y., Li, Z. & Meng, Q. J. (2007). Inorg. Chem. 46, 1538–1544.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds