organic compounds
2,6-Di-tert-butyl-4-(morpholinomethyl)phenol monohydrate
aChemistry and Biology College, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com
In the title compound, C19H31NO2·H2O, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl group is sterically hindered by the adjacent tert-butyl groups. The is stabilized by a number of O—H⋯O, O—H⋯N and C—H⋯O hydrogen-bonding interactions, involving both the organic and the solvent molecules.
Related literature
For related literature, see: Shu et al. (2005); Zeng & Chen (2006); Zeng et al. (2006); Yamazaki & Seguchi (1997); Steiner (1996); Rieker (1968).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068754/bg2147sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068754/bg2147Isup2.hkl
The 2,6-di-tert-butyl-4-(butylamino)methylphenol was prepared by the indirect reductive amination of 3,5-di-tert-butyl-4-hydroxybenzaldehyde with butlyamine and sodium borhydride, and then separated by silica gel flash
in 61.5% yield. 2,6-Di-tert-butyl-4-(butylamino)methylphenol (2.91 g, 0.01 mol) and morpholine (1.3 g, 0.015 mol) was dissolved in THF (30 ml) and heated to reflux for 6 h. Then the THF and the extra morpholine was evaporated under reduced pressure.The residue was washed with methanol(10 ml) and the title product (2.89 g) was obtained in 89.5% yield. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and THF.All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2(aromatic) or 1.5(methyl)Ueq(C). H atoms attached to O were located in difference Fourier maps and included in the subsequent
using restraints (O—H= 0.85 (3) Å) with Uiso(H) = 1.5Ueq(O).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).C19H31NO2·H2O | F(000) = 712 |
Mr = 323.46 | Dx = 1.097 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2606 reflections |
a = 10.1461 (14) Å | θ = 2.2–24.6° |
b = 9.7118 (12) Å | µ = 0.07 mm−1 |
c = 19.966 (2) Å | T = 294 K |
β = 95.166 (8)° | Block, colourless |
V = 1959.4 (4) Å3 | 0.32 × 0.30 × 0.26 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3412 independent reflections |
Radiation source: fine-focus sealed tube | 2098 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→12 |
Tmin = 0.97, Tmax = 0.98 | k = −11→11 |
9174 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2168P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3412 reflections | Δρmax = 0.21 e Å−3 |
224 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.059 (5) |
C19H31NO2·H2O | V = 1959.4 (4) Å3 |
Mr = 323.46 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1461 (14) Å | µ = 0.07 mm−1 |
b = 9.7118 (12) Å | T = 294 K |
c = 19.966 (2) Å | 0.32 × 0.30 × 0.26 mm |
β = 95.166 (8)° |
Bruker SMART CCD area-detector diffractometer | 3412 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2098 reflections with I > 2σ(I) |
Tmin = 0.97, Tmax = 0.98 | Rint = 0.044 |
9174 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.151 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.21 e Å−3 |
3412 reflections | Δρmin = −0.22 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67458 (16) | 0.44480 (17) | 0.64823 (7) | 0.0583 (5) | |
H1 | 0.591 (3) | 0.445 (3) | 0.6451 (13) | 0.087* | |
O2 | 0.77839 (18) | 0.91614 (16) | 0.27118 (7) | 0.0722 (5) | |
N1 | 0.83158 (15) | 0.70489 (15) | 0.36930 (8) | 0.0416 (4) | |
C1 | 0.85010 (18) | 0.5892 (2) | 0.48162 (10) | 0.0439 (5) | |
C2 | 0.78398 (19) | 0.4645 (2) | 0.47924 (9) | 0.0434 (5) | |
H2 | 0.7801 | 0.4139 | 0.4396 | 0.052* | |
C3 | 0.72305 (17) | 0.41118 (19) | 0.53319 (9) | 0.0387 (5) | |
C4 | 0.72865 (18) | 0.4931 (2) | 0.59152 (9) | 0.0404 (5) | |
C5 | 0.79608 (19) | 0.6196 (2) | 0.59699 (9) | 0.0423 (5) | |
C6 | 0.85611 (19) | 0.6634 (2) | 0.54058 (10) | 0.0470 (5) | |
H6 | 0.9022 | 0.7464 | 0.5429 | 0.056* | |
C7 | 0.8063 (2) | 0.7062 (2) | 0.66190 (11) | 0.0547 (6) | |
C8 | 0.6688 (3) | 0.7499 (3) | 0.67925 (14) | 0.0918 (10) | |
H8A | 0.6181 | 0.6697 | 0.6883 | 0.138* | |
H8B | 0.6249 | 0.7994 | 0.6420 | 0.138* | |
H8C | 0.6770 | 0.8081 | 0.7183 | 0.138* | |
C9 | 0.8780 (3) | 0.6257 (3) | 0.72030 (11) | 0.0782 (8) | |
H9A | 0.8814 | 0.6803 | 0.7605 | 0.117* | |
H9B | 0.9664 | 0.6047 | 0.7100 | 0.117* | |
H9C | 0.8311 | 0.5417 | 0.7270 | 0.117* | |
C10 | 0.8867 (3) | 0.8386 (3) | 0.65505 (14) | 0.0845 (9) | |
H10A | 0.8905 | 0.8893 | 0.6964 | 0.127* | |
H10B | 0.8452 | 0.8939 | 0.6193 | 0.127* | |
H10C | 0.9749 | 0.8153 | 0.6451 | 0.127* | |
C11 | 0.6553 (2) | 0.2692 (2) | 0.52747 (10) | 0.0473 (5) | |
C12 | 0.5064 (2) | 0.2830 (3) | 0.52936 (14) | 0.0780 (8) | |
H12A | 0.4723 | 0.3461 | 0.4950 | 0.117* | |
H12B | 0.4874 | 0.3171 | 0.5726 | 0.117* | |
H12C | 0.4655 | 0.1946 | 0.5216 | 0.117* | |
C13 | 0.7121 (3) | 0.1735 (3) | 0.58367 (15) | 0.0959 (10) | |
H13A | 0.6686 | 0.0858 | 0.5794 | 0.144* | |
H13B | 0.6983 | 0.2132 | 0.6265 | 0.144* | |
H13C | 0.8053 | 0.1614 | 0.5804 | 0.144* | |
C14 | 0.6772 (3) | 0.1980 (3) | 0.46143 (15) | 0.0934 (10) | |
H14A | 0.7703 | 0.1846 | 0.4586 | 0.140* | |
H14B | 0.6419 | 0.2542 | 0.4245 | 0.140* | |
H14C | 0.6333 | 0.1104 | 0.4595 | 0.140* | |
C15 | 0.9192 (2) | 0.6354 (2) | 0.42175 (10) | 0.0561 (6) | |
H15A | 0.9903 | 0.6978 | 0.4371 | 0.067* | |
H15B | 0.9587 | 0.5558 | 0.4021 | 0.067* | |
C16 | 0.8039 (2) | 0.8458 (2) | 0.38799 (10) | 0.0503 (5) | |
H16A | 0.8864 | 0.8958 | 0.3967 | 0.060* | |
H16B | 0.7591 | 0.8459 | 0.4289 | 0.060* | |
C17 | 0.7184 (3) | 0.9162 (2) | 0.33275 (11) | 0.0682 (7) | |
H17A | 0.6336 | 0.8696 | 0.3264 | 0.082* | |
H17B | 0.7025 | 1.0105 | 0.3459 | 0.082* | |
C18 | 0.8050 (3) | 0.7790 (2) | 0.25213 (11) | 0.0656 (7) | |
H18A | 0.8471 | 0.7798 | 0.2104 | 0.079* | |
H18B | 0.7224 | 0.7288 | 0.2444 | 0.079* | |
C19 | 0.8934 (2) | 0.7072 (2) | 0.30551 (10) | 0.0558 (6) | |
H19A | 0.9098 | 0.6136 | 0.2914 | 0.067* | |
H19B | 0.9778 | 0.7547 | 0.3118 | 0.067* | |
O3 | 0.41145 (17) | 0.4475 (2) | 0.66808 (10) | 0.0767 (6) | |
H3A | 0.346 (3) | 0.403 (3) | 0.6527 (16) | 0.115* | |
H3B | 0.399 (3) | 0.471 (3) | 0.7087 (16) | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0548 (9) | 0.0818 (11) | 0.0398 (8) | −0.0044 (8) | 0.0121 (7) | 0.0068 (7) |
O2 | 0.1162 (14) | 0.0551 (10) | 0.0476 (10) | 0.0132 (9) | 0.0196 (9) | 0.0160 (8) |
N1 | 0.0445 (9) | 0.0453 (10) | 0.0363 (9) | 0.0052 (7) | 0.0108 (7) | 0.0080 (7) |
C1 | 0.0354 (11) | 0.0524 (12) | 0.0441 (12) | 0.0105 (9) | 0.0040 (9) | 0.0157 (10) |
C2 | 0.0432 (11) | 0.0515 (12) | 0.0356 (11) | 0.0133 (9) | 0.0045 (9) | 0.0030 (9) |
C3 | 0.0363 (10) | 0.0429 (11) | 0.0370 (11) | 0.0086 (8) | 0.0040 (8) | 0.0052 (9) |
C4 | 0.0377 (10) | 0.0491 (12) | 0.0347 (11) | 0.0070 (9) | 0.0054 (8) | 0.0077 (9) |
C5 | 0.0406 (11) | 0.0436 (11) | 0.0420 (11) | 0.0091 (9) | −0.0003 (9) | 0.0033 (9) |
C6 | 0.0422 (12) | 0.0452 (12) | 0.0522 (13) | 0.0024 (9) | −0.0030 (9) | 0.0102 (10) |
C7 | 0.0603 (14) | 0.0503 (13) | 0.0521 (13) | 0.0063 (10) | −0.0022 (11) | −0.0082 (10) |
C8 | 0.083 (2) | 0.092 (2) | 0.102 (2) | 0.0162 (16) | 0.0144 (17) | −0.0440 (18) |
C9 | 0.102 (2) | 0.0789 (18) | 0.0495 (14) | 0.0049 (15) | −0.0180 (14) | −0.0085 (13) |
C10 | 0.103 (2) | 0.0620 (16) | 0.0854 (19) | −0.0092 (15) | −0.0098 (16) | −0.0134 (14) |
C11 | 0.0504 (13) | 0.0439 (12) | 0.0481 (12) | 0.0047 (9) | 0.0067 (10) | −0.0006 (9) |
C12 | 0.0541 (15) | 0.0781 (17) | 0.102 (2) | −0.0066 (13) | 0.0081 (14) | −0.0257 (15) |
C13 | 0.109 (2) | 0.0592 (16) | 0.113 (2) | −0.0132 (15) | −0.0220 (19) | 0.0291 (16) |
C14 | 0.118 (3) | 0.0663 (17) | 0.103 (2) | −0.0170 (16) | 0.0472 (19) | −0.0360 (16) |
C15 | 0.0447 (12) | 0.0689 (15) | 0.0561 (13) | 0.0127 (10) | 0.0117 (10) | 0.0226 (11) |
C16 | 0.0641 (14) | 0.0479 (12) | 0.0399 (11) | 0.0012 (10) | 0.0097 (10) | −0.0008 (10) |
C17 | 0.097 (2) | 0.0583 (14) | 0.0510 (14) | 0.0245 (13) | 0.0166 (13) | 0.0106 (11) |
C18 | 0.0961 (18) | 0.0651 (16) | 0.0373 (12) | 0.0021 (13) | 0.0152 (12) | 0.0048 (11) |
C19 | 0.0669 (15) | 0.0560 (13) | 0.0477 (13) | 0.0063 (11) | 0.0230 (11) | 0.0037 (10) |
O3 | 0.0590 (11) | 0.1028 (15) | 0.0710 (12) | −0.0152 (9) | 0.0209 (9) | −0.0255 (10) |
O1—C4 | 1.384 (2) | C10—H10B | 0.9600 |
O1—H1 | 0.85 (3) | C10—H10C | 0.9600 |
O2—C18 | 1.418 (3) | C11—C12 | 1.520 (3) |
O2—C17 | 1.420 (3) | C11—C14 | 1.523 (3) |
N1—C16 | 1.452 (2) | C11—C13 | 1.529 (3) |
N1—C19 | 1.470 (2) | C12—H12A | 0.9600 |
N1—C15 | 1.475 (2) | C12—H12B | 0.9600 |
C1—C6 | 1.377 (3) | C12—H12C | 0.9600 |
C1—C2 | 1.383 (3) | C13—H13A | 0.9600 |
C1—C15 | 1.508 (3) | C13—H13B | 0.9600 |
C2—C3 | 1.389 (3) | C13—H13C | 0.9600 |
C2—H2 | 0.9300 | C14—H14A | 0.9600 |
C3—C4 | 1.407 (3) | C14—H14B | 0.9600 |
C3—C11 | 1.540 (3) | C14—H14C | 0.9600 |
C4—C5 | 1.406 (3) | C15—H15A | 0.9700 |
C5—C6 | 1.394 (3) | C15—H15B | 0.9700 |
C5—C7 | 1.541 (3) | C16—C17 | 1.505 (3) |
C6—H6 | 0.9300 | C16—H16A | 0.9700 |
C7—C8 | 1.527 (3) | C16—H16B | 0.9700 |
C7—C9 | 1.532 (3) | C17—H17A | 0.9700 |
C7—C10 | 1.535 (3) | C17—H17B | 0.9700 |
C8—H8A | 0.9600 | C18—C19 | 1.501 (3) |
C8—H8B | 0.9600 | C18—H18A | 0.9700 |
C8—H8C | 0.9600 | C18—H18B | 0.9700 |
C9—H9A | 0.9600 | C19—H19A | 0.9700 |
C9—H9B | 0.9600 | C19—H19B | 0.9700 |
C9—H9C | 0.9600 | O3—H3A | 0.83 (3) |
C10—H10A | 0.9600 | O3—H3B | 0.86 (3) |
C4—O1—H1 | 114.2 (18) | C14—C11—C3 | 111.80 (18) |
C18—O2—C17 | 109.84 (16) | C13—C11—C3 | 110.69 (17) |
C16—N1—C19 | 108.42 (15) | C11—C12—H12A | 109.5 |
C16—N1—C15 | 111.52 (16) | C11—C12—H12B | 109.5 |
C19—N1—C15 | 110.19 (15) | H12A—C12—H12B | 109.5 |
C6—C1—C2 | 118.17 (18) | C11—C12—H12C | 109.5 |
C6—C1—C15 | 122.24 (19) | H12A—C12—H12C | 109.5 |
C2—C1—C15 | 119.50 (19) | H12B—C12—H12C | 109.5 |
C1—C2—C3 | 123.23 (18) | C11—C13—H13A | 109.5 |
C1—C2—H2 | 118.4 | C11—C13—H13B | 109.5 |
C3—C2—H2 | 118.4 | H13A—C13—H13B | 109.5 |
C2—C3—C4 | 116.30 (18) | C11—C13—H13C | 109.5 |
C2—C3—C11 | 120.20 (17) | H13A—C13—H13C | 109.5 |
C4—C3—C11 | 123.50 (17) | H13B—C13—H13C | 109.5 |
O1—C4—C5 | 117.30 (17) | C11—C14—H14A | 109.5 |
O1—C4—C3 | 119.73 (17) | C11—C14—H14B | 109.5 |
C5—C4—C3 | 122.79 (17) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 116.67 (18) | C11—C14—H14C | 109.5 |
C6—C5—C7 | 120.78 (18) | H14A—C14—H14C | 109.5 |
C4—C5—C7 | 122.54 (18) | H14B—C14—H14C | 109.5 |
C1—C6—C5 | 122.79 (19) | N1—C15—C1 | 113.94 (16) |
C1—C6—H6 | 118.6 | N1—C15—H15A | 108.8 |
C5—C6—H6 | 118.6 | C1—C15—H15A | 108.8 |
C8—C7—C9 | 110.5 (2) | N1—C15—H15B | 108.8 |
C8—C7—C10 | 106.9 (2) | C1—C15—H15B | 108.8 |
C9—C7—C10 | 106.0 (2) | H15A—C15—H15B | 107.7 |
C8—C7—C5 | 110.41 (18) | N1—C16—C17 | 110.61 (17) |
C9—C7—C5 | 110.66 (17) | N1—C16—H16A | 109.5 |
C10—C7—C5 | 112.2 (2) | C17—C16—H16A | 109.5 |
C7—C8—H8A | 109.5 | N1—C16—H16B | 109.5 |
C7—C8—H8B | 109.5 | C17—C16—H16B | 109.5 |
H8A—C8—H8B | 109.5 | H16A—C16—H16B | 108.1 |
C7—C8—H8C | 109.5 | O2—C17—C16 | 111.77 (19) |
H8A—C8—H8C | 109.5 | O2—C17—H17A | 109.3 |
H8B—C8—H8C | 109.5 | C16—C17—H17A | 109.3 |
C7—C9—H9A | 109.5 | O2—C17—H17B | 109.3 |
C7—C9—H9B | 109.5 | C16—C17—H17B | 109.3 |
H9A—C9—H9B | 109.5 | H17A—C17—H17B | 107.9 |
C7—C9—H9C | 109.5 | O2—C18—C19 | 111.22 (19) |
H9A—C9—H9C | 109.5 | O2—C18—H18A | 109.4 |
H9B—C9—H9C | 109.5 | C19—C18—H18A | 109.4 |
C7—C10—H10A | 109.5 | O2—C18—H18B | 109.4 |
C7—C10—H10B | 109.5 | C19—C18—H18B | 109.4 |
H10A—C10—H10B | 109.5 | H18A—C18—H18B | 108.0 |
C7—C10—H10C | 109.5 | N1—C19—C18 | 110.34 (18) |
H10A—C10—H10C | 109.5 | N1—C19—H19A | 109.6 |
H10B—C10—H10C | 109.5 | C18—C19—H19A | 109.6 |
C12—C11—C14 | 106.5 (2) | N1—C19—H19B | 109.6 |
C12—C11—C13 | 110.2 (2) | C18—C19—H19B | 109.6 |
C14—C11—C13 | 106.5 (2) | H19A—C19—H19B | 108.1 |
C12—C11—C3 | 110.90 (17) | H3A—O3—H3B | 108 (3) |
C6—C1—C2—C3 | 0.3 (3) | C6—C5—C7—C10 | 0.1 (3) |
C15—C1—C2—C3 | 176.91 (17) | C4—C5—C7—C10 | 179.16 (19) |
C1—C2—C3—C4 | 1.6 (3) | C2—C3—C11—C12 | −113.3 (2) |
C1—C2—C3—C11 | −177.92 (17) | C4—C3—C11—C12 | 67.3 (2) |
C2—C3—C4—O1 | −177.58 (16) | C2—C3—C11—C14 | 5.5 (3) |
C11—C3—C4—O1 | 1.9 (3) | C4—C3—C11—C14 | −174.0 (2) |
C2—C3—C4—C5 | −2.5 (3) | C2—C3—C11—C13 | 124.1 (2) |
C11—C3—C4—C5 | 177.00 (17) | C4—C3—C11—C13 | −55.4 (3) |
O1—C4—C5—C6 | 176.67 (16) | C16—N1—C15—C1 | 77.3 (2) |
C3—C4—C5—C6 | 1.4 (3) | C19—N1—C15—C1 | −162.21 (18) |
O1—C4—C5—C7 | −2.4 (3) | C6—C1—C15—N1 | −99.6 (2) |
C3—C4—C5—C7 | −177.63 (17) | C2—C1—C15—N1 | 84.0 (2) |
C2—C1—C6—C5 | −1.5 (3) | C19—N1—C16—C17 | 56.5 (2) |
C15—C1—C6—C5 | −177.96 (17) | C15—N1—C16—C17 | 177.96 (17) |
C4—C5—C6—C1 | 0.6 (3) | C18—O2—C17—C16 | 57.6 (3) |
C7—C5—C6—C1 | 179.70 (17) | N1—C16—C17—O2 | −57.9 (3) |
C6—C5—C7—C8 | 119.3 (2) | C17—O2—C18—C19 | −58.2 (3) |
C4—C5—C7—C8 | −61.6 (3) | C16—N1—C19—C18 | −57.2 (2) |
C6—C5—C7—C9 | −118.0 (2) | C15—N1—C19—C18 | −179.50 (18) |
C4—C5—C7—C9 | 61.0 (3) | O2—C18—C19—N1 | 59.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O2i | 0.86 (3) | 2.13 (3) | 2.884 (2) | 146 (3) |
O3—H3A···N1ii | 0.83 (3) | 2.10 (3) | 2.915 (2) | 170 (3) |
O1—H1···O3 | 0.85 (3) | 1.91 (3) | 2.734 (2) | 162 (3) |
C12—H12B···O3 | 0.96 | 2.47 | 3.410 (3) | 167 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H31NO2·H2O |
Mr | 323.46 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 10.1461 (14), 9.7118 (12), 19.966 (2) |
β (°) | 95.166 (8) |
V (Å3) | 1959.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.32 × 0.30 × 0.26 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.97, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9174, 3412, 2098 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.151, 1.04 |
No. of reflections | 3412 |
No. of parameters | 224 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.22 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O2i | 0.86 (3) | 2.13 (3) | 2.884 (2) | 146 (3) |
O3—H3A···N1ii | 0.83 (3) | 2.10 (3) | 2.915 (2) | 170 (3) |
O1—H1···O3 | 0.85 (3) | 1.91 (3) | 2.734 (2) | 162 (3) |
C12—H12B···O3 | 0.96 | 2.47 | 3.410 (3) | 166.6 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.
References
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Rieker, A. (1968). Tetrahedron, 24, 103–115. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. & Zhang, Y.-C. (2005). Acta Cryst. E61, o4192–o4194. Web of Science CSD CrossRef IUCr Journals Google Scholar
Steiner, Th. (1996). Crystallogr. Rev. 6, 1–57. CrossRef CAS Google Scholar
Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431–2439. CrossRef CAS Google Scholar
Zeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2916–o2917. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, T., Chen, L.-G., Li, J.-S., Zhang, Y.-C. & Deng, Y. (2006). J. Chem. Res. (M), pp. 794–796. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hindered phenol antioxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). In our research, derivates of 2,6-di-tert-butyl-4-(alkylamino)methylphenol have been studied (Shu et al., 2005; Zeng et al., 2006; Zeng & Chen, 2006). In a former paper, we have reported the transformation of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to N,N-bis(3,5-di-tert-butyl- 4-hydroxylbenzyl)-N-alkylamines (Zeng et al., 2006), and proposed a mechanism by which 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols could trnsform to 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone and then react with another molecule of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to yield the N,N-bis(3,5-di-tert-butyl-4-hydroxylbenzyl)-N-alkylamines. To confirm this mechanism, a number of experiments have been carried out, viz., the reaction of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenol with different amines, and the products were analysed carefully. For example, when 2,6-di-tert-butyl-4-(butylamino)methyl-phenol reacts with morpholine the title compound (I) was obtained, but the same result was obtained when different 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols such as 2,6-di-tert-butyl-4-(propylamino)methylphenol or 2,6-di-tert-butyl-4-(iso-propylamino)methylphenol were used instead. This behaviour proves the mechanism proposed.
In the title compound, C19H33NO3, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl is hindered by the adjacent tert-butyl groups. The crystal structure is stabilized by a number of O—H···O, O—H···N and C—H···O hydrogen-bonding interactions, where both the organic and the solvato molecules take part (Table 1).