organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di-tert-butyl-4-(morpholinometh­yl)­phenol monohydrate

aChemistry and Biology College, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com

(Received 20 November 2007; accepted 29 December 2007; online 9 January 2008)

In the title compound, C19H31NO2·H2O, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl group is sterically hindered by the adjacent tert-butyl groups. The crystal structure is stabilized by a number of O—H⋯O, O—H⋯N and C—H⋯O hydrogen-bonding inter­actions, involving both the organic and the solvent mol­ecules.

Related literature

For related literature, see: Shu et al. (2005[Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. & Zhang, Y.-C. (2005). Acta Cryst. E61, o4192-o4194.]); Zeng & Chen (2006[Zeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2916-o2917.]); Zeng et al. (2006[Zeng, T., Chen, L.-G., Li, J.-S., Zhang, Y.-C. & Deng, Y. (2006). J. Chem. Res. (M), pp. 794-796.]); Yamazaki & Seguchi (1997[Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431-2439.]); Steiner (1996[Steiner, Th. (1996). Crystallogr. Rev. 6, 1-57.]); Rieker (1968[Rieker, A. (1968). Tetrahedron, 24, 103-115.]).

[Scheme 1]

Experimental

Crystal data
  • C19H31NO2·H2O

  • Mr = 323.46

  • Monoclinic, P 21 /n

  • a = 10.1461 (14) Å

  • b = 9.7118 (12) Å

  • c = 19.966 (2) Å

  • β = 95.166 (8)°

  • V = 1959.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 (2) K

  • 0.32 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.97, Tmax = 0.98

  • 9174 measured reflections

  • 3412 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.03

  • 3412 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2i 0.86 (3) 2.13 (3) 2.884 (2) 146 (3)
O3—H3A⋯N1ii 0.83 (3) 2.10 (3) 2.915 (2) 170 (3)
O1—H1⋯O3 0.85 (3) 1.91 (3) 2.734 (2) 162 (3)
C12—H12B⋯O3 0.96 2.47 3.410 (3) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hindered phenol antioxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). In our research, derivates of 2,6-di-tert-butyl-4-(alkylamino)methylphenol have been studied (Shu et al., 2005; Zeng et al., 2006; Zeng & Chen, 2006). In a former paper, we have reported the transformation of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to N,N-bis(3,5-di-tert-butyl- 4-hydroxylbenzyl)-N-alkylamines (Zeng et al., 2006), and proposed a mechanism by which 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols could trnsform to 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone and then react with another molecule of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols to yield the N,N-bis(3,5-di-tert-butyl-4-hydroxylbenzyl)-N-alkylamines. To confirm this mechanism, a number of experiments have been carried out, viz., the reaction of 2,6-di-tert-butyl-4-(alkylamino)methyl-phenol with different amines, and the products were analysed carefully. For example, when 2,6-di-tert-butyl-4-(butylamino)methyl-phenol reacts with morpholine the title compound (I) was obtained, but the same result was obtained when different 2,6-di-tert-butyl-4-(alkylamino)methyl-phenols such as 2,6-di-tert-butyl-4-(propylamino)methylphenol or 2,6-di-tert-butyl-4-(iso-propylamino)methylphenol were used instead. This behaviour proves the mechanism proposed.

In the title compound, C19H33NO3, the morpholine ring adopts a chair conformation, while the phenolic hydroxyl is hindered by the adjacent tert-butyl groups. The crystal structure is stabilized by a number of O—H···O, O—H···N and C—H···O hydrogen-bonding interactions, where both the organic and the solvato molecules take part (Table 1).

Related literature top

For related literature, see: Shu et al. (2005); Zeng & Chen (2006); Zeng et al. (2006); Yamazaki & Seguchi (1997); Steiner (1996); Rieker (1968).

Experimental top

The 2,6-di-tert-butyl-4-(butylamino)methylphenol was prepared by the indirect reductive amination of 3,5-di-tert-butyl-4-hydroxybenzaldehyde with butlyamine and sodium borhydride, and then separated by silica gel flash column chromatography in 61.5% yield. 2,6-Di-tert-butyl-4-(butylamino)methylphenol (2.91 g, 0.01 mol) and morpholine (1.3 g, 0.015 mol) was dissolved in THF (30 ml) and heated to reflux for 6 h. Then the THF and the extra morpholine was evaporated under reduced pressure.The residue was washed with methanol(10 ml) and the title product (2.89 g) was obtained in 89.5% yield. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and THF.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2(aromatic) or 1.5(methyl)Ueq(C). H atoms attached to O were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (3) Å) with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Molecular diagram of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the unique crystallographic b axis, showing H-bonding interactions in dashed lines.
2,6-Di-tert-butyl-4-(morpholinomethyl)phenol monohydrate top
Crystal data top
C19H31NO2·H2OF(000) = 712
Mr = 323.46Dx = 1.097 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2606 reflections
a = 10.1461 (14) Åθ = 2.2–24.6°
b = 9.7118 (12) ŵ = 0.07 mm1
c = 19.966 (2) ÅT = 294 K
β = 95.166 (8)°Block, colourless
V = 1959.4 (4) Å30.32 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3412 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.97, Tmax = 0.98k = 1111
9174 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2168P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3412 reflectionsΔρmax = 0.21 e Å3
224 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (5)
Crystal data top
C19H31NO2·H2OV = 1959.4 (4) Å3
Mr = 323.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1461 (14) ŵ = 0.07 mm1
b = 9.7118 (12) ÅT = 294 K
c = 19.966 (2) Å0.32 × 0.30 × 0.26 mm
β = 95.166 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2098 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.044
9174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
3412 reflectionsΔρmin = 0.22 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67458 (16)0.44480 (17)0.64823 (7)0.0583 (5)
H10.591 (3)0.445 (3)0.6451 (13)0.087*
O20.77839 (18)0.91614 (16)0.27118 (7)0.0722 (5)
N10.83158 (15)0.70489 (15)0.36930 (8)0.0416 (4)
C10.85010 (18)0.5892 (2)0.48162 (10)0.0439 (5)
C20.78398 (19)0.4645 (2)0.47924 (9)0.0434 (5)
H20.78010.41390.43960.052*
C30.72305 (17)0.41118 (19)0.53319 (9)0.0387 (5)
C40.72865 (18)0.4931 (2)0.59152 (9)0.0404 (5)
C50.79608 (19)0.6196 (2)0.59699 (9)0.0423 (5)
C60.85611 (19)0.6634 (2)0.54058 (10)0.0470 (5)
H60.90220.74640.54290.056*
C70.8063 (2)0.7062 (2)0.66190 (11)0.0547 (6)
C80.6688 (3)0.7499 (3)0.67925 (14)0.0918 (10)
H8A0.61810.66970.68830.138*
H8B0.62490.79940.64200.138*
H8C0.67700.80810.71830.138*
C90.8780 (3)0.6257 (3)0.72030 (11)0.0782 (8)
H9A0.88140.68030.76050.117*
H9B0.96640.60470.71000.117*
H9C0.83110.54170.72700.117*
C100.8867 (3)0.8386 (3)0.65505 (14)0.0845 (9)
H10A0.89050.88930.69640.127*
H10B0.84520.89390.61930.127*
H10C0.97490.81530.64510.127*
C110.6553 (2)0.2692 (2)0.52747 (10)0.0473 (5)
C120.5064 (2)0.2830 (3)0.52936 (14)0.0780 (8)
H12A0.47230.34610.49500.117*
H12B0.48740.31710.57260.117*
H12C0.46550.19460.52160.117*
C130.7121 (3)0.1735 (3)0.58367 (15)0.0959 (10)
H13A0.66860.08580.57940.144*
H13B0.69830.21320.62650.144*
H13C0.80530.16140.58040.144*
C140.6772 (3)0.1980 (3)0.46143 (15)0.0934 (10)
H14A0.77030.18460.45860.140*
H14B0.64190.25420.42450.140*
H14C0.63330.11040.45950.140*
C150.9192 (2)0.6354 (2)0.42175 (10)0.0561 (6)
H15A0.99030.69780.43710.067*
H15B0.95870.55580.40210.067*
C160.8039 (2)0.8458 (2)0.38799 (10)0.0503 (5)
H16A0.88640.89580.39670.060*
H16B0.75910.84590.42890.060*
C170.7184 (3)0.9162 (2)0.33275 (11)0.0682 (7)
H17A0.63360.86960.32640.082*
H17B0.70251.01050.34590.082*
C180.8050 (3)0.7790 (2)0.25213 (11)0.0656 (7)
H18A0.84710.77980.21040.079*
H18B0.72240.72880.24440.079*
C190.8934 (2)0.7072 (2)0.30551 (10)0.0558 (6)
H19A0.90980.61360.29140.067*
H19B0.97780.75470.31180.067*
O30.41145 (17)0.4475 (2)0.66808 (10)0.0767 (6)
H3A0.346 (3)0.403 (3)0.6527 (16)0.115*
H3B0.399 (3)0.471 (3)0.7087 (16)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (9)0.0818 (11)0.0398 (8)0.0044 (8)0.0121 (7)0.0068 (7)
O20.1162 (14)0.0551 (10)0.0476 (10)0.0132 (9)0.0196 (9)0.0160 (8)
N10.0445 (9)0.0453 (10)0.0363 (9)0.0052 (7)0.0108 (7)0.0080 (7)
C10.0354 (11)0.0524 (12)0.0441 (12)0.0105 (9)0.0040 (9)0.0157 (10)
C20.0432 (11)0.0515 (12)0.0356 (11)0.0133 (9)0.0045 (9)0.0030 (9)
C30.0363 (10)0.0429 (11)0.0370 (11)0.0086 (8)0.0040 (8)0.0052 (9)
C40.0377 (10)0.0491 (12)0.0347 (11)0.0070 (9)0.0054 (8)0.0077 (9)
C50.0406 (11)0.0436 (11)0.0420 (11)0.0091 (9)0.0003 (9)0.0033 (9)
C60.0422 (12)0.0452 (12)0.0522 (13)0.0024 (9)0.0030 (9)0.0102 (10)
C70.0603 (14)0.0503 (13)0.0521 (13)0.0063 (10)0.0022 (11)0.0082 (10)
C80.083 (2)0.092 (2)0.102 (2)0.0162 (16)0.0144 (17)0.0440 (18)
C90.102 (2)0.0789 (18)0.0495 (14)0.0049 (15)0.0180 (14)0.0085 (13)
C100.103 (2)0.0620 (16)0.0854 (19)0.0092 (15)0.0098 (16)0.0134 (14)
C110.0504 (13)0.0439 (12)0.0481 (12)0.0047 (9)0.0067 (10)0.0006 (9)
C120.0541 (15)0.0781 (17)0.102 (2)0.0066 (13)0.0081 (14)0.0257 (15)
C130.109 (2)0.0592 (16)0.113 (2)0.0132 (15)0.0220 (19)0.0291 (16)
C140.118 (3)0.0663 (17)0.103 (2)0.0170 (16)0.0472 (19)0.0360 (16)
C150.0447 (12)0.0689 (15)0.0561 (13)0.0127 (10)0.0117 (10)0.0226 (11)
C160.0641 (14)0.0479 (12)0.0399 (11)0.0012 (10)0.0097 (10)0.0008 (10)
C170.097 (2)0.0583 (14)0.0510 (14)0.0245 (13)0.0166 (13)0.0106 (11)
C180.0961 (18)0.0651 (16)0.0373 (12)0.0021 (13)0.0152 (12)0.0048 (11)
C190.0669 (15)0.0560 (13)0.0477 (13)0.0063 (11)0.0230 (11)0.0037 (10)
O30.0590 (11)0.1028 (15)0.0710 (12)0.0152 (9)0.0209 (9)0.0255 (10)
Geometric parameters (Å, º) top
O1—C41.384 (2)C10—H10B0.9600
O1—H10.85 (3)C10—H10C0.9600
O2—C181.418 (3)C11—C121.520 (3)
O2—C171.420 (3)C11—C141.523 (3)
N1—C161.452 (2)C11—C131.529 (3)
N1—C191.470 (2)C12—H12A0.9600
N1—C151.475 (2)C12—H12B0.9600
C1—C61.377 (3)C12—H12C0.9600
C1—C21.383 (3)C13—H13A0.9600
C1—C151.508 (3)C13—H13B0.9600
C2—C31.389 (3)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.407 (3)C14—H14B0.9600
C3—C111.540 (3)C14—H14C0.9600
C4—C51.406 (3)C15—H15A0.9700
C5—C61.394 (3)C15—H15B0.9700
C5—C71.541 (3)C16—C171.505 (3)
C6—H60.9300C16—H16A0.9700
C7—C81.527 (3)C16—H16B0.9700
C7—C91.532 (3)C17—H17A0.9700
C7—C101.535 (3)C17—H17B0.9700
C8—H8A0.9600C18—C191.501 (3)
C8—H8B0.9600C18—H18A0.9700
C8—H8C0.9600C18—H18B0.9700
C9—H9A0.9600C19—H19A0.9700
C9—H9B0.9600C19—H19B0.9700
C9—H9C0.9600O3—H3A0.83 (3)
C10—H10A0.9600O3—H3B0.86 (3)
C4—O1—H1114.2 (18)C14—C11—C3111.80 (18)
C18—O2—C17109.84 (16)C13—C11—C3110.69 (17)
C16—N1—C19108.42 (15)C11—C12—H12A109.5
C16—N1—C15111.52 (16)C11—C12—H12B109.5
C19—N1—C15110.19 (15)H12A—C12—H12B109.5
C6—C1—C2118.17 (18)C11—C12—H12C109.5
C6—C1—C15122.24 (19)H12A—C12—H12C109.5
C2—C1—C15119.50 (19)H12B—C12—H12C109.5
C1—C2—C3123.23 (18)C11—C13—H13A109.5
C1—C2—H2118.4C11—C13—H13B109.5
C3—C2—H2118.4H13A—C13—H13B109.5
C2—C3—C4116.30 (18)C11—C13—H13C109.5
C2—C3—C11120.20 (17)H13A—C13—H13C109.5
C4—C3—C11123.50 (17)H13B—C13—H13C109.5
O1—C4—C5117.30 (17)C11—C14—H14A109.5
O1—C4—C3119.73 (17)C11—C14—H14B109.5
C5—C4—C3122.79 (17)H14A—C14—H14B109.5
C6—C5—C4116.67 (18)C11—C14—H14C109.5
C6—C5—C7120.78 (18)H14A—C14—H14C109.5
C4—C5—C7122.54 (18)H14B—C14—H14C109.5
C1—C6—C5122.79 (19)N1—C15—C1113.94 (16)
C1—C6—H6118.6N1—C15—H15A108.8
C5—C6—H6118.6C1—C15—H15A108.8
C8—C7—C9110.5 (2)N1—C15—H15B108.8
C8—C7—C10106.9 (2)C1—C15—H15B108.8
C9—C7—C10106.0 (2)H15A—C15—H15B107.7
C8—C7—C5110.41 (18)N1—C16—C17110.61 (17)
C9—C7—C5110.66 (17)N1—C16—H16A109.5
C10—C7—C5112.2 (2)C17—C16—H16A109.5
C7—C8—H8A109.5N1—C16—H16B109.5
C7—C8—H8B109.5C17—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B108.1
C7—C8—H8C109.5O2—C17—C16111.77 (19)
H8A—C8—H8C109.5O2—C17—H17A109.3
H8B—C8—H8C109.5C16—C17—H17A109.3
C7—C9—H9A109.5O2—C17—H17B109.3
C7—C9—H9B109.5C16—C17—H17B109.3
H9A—C9—H9B109.5H17A—C17—H17B107.9
C7—C9—H9C109.5O2—C18—C19111.22 (19)
H9A—C9—H9C109.5O2—C18—H18A109.4
H9B—C9—H9C109.5C19—C18—H18A109.4
C7—C10—H10A109.5O2—C18—H18B109.4
C7—C10—H10B109.5C19—C18—H18B109.4
H10A—C10—H10B109.5H18A—C18—H18B108.0
C7—C10—H10C109.5N1—C19—C18110.34 (18)
H10A—C10—H10C109.5N1—C19—H19A109.6
H10B—C10—H10C109.5C18—C19—H19A109.6
C12—C11—C14106.5 (2)N1—C19—H19B109.6
C12—C11—C13110.2 (2)C18—C19—H19B109.6
C14—C11—C13106.5 (2)H19A—C19—H19B108.1
C12—C11—C3110.90 (17)H3A—O3—H3B108 (3)
C6—C1—C2—C30.3 (3)C6—C5—C7—C100.1 (3)
C15—C1—C2—C3176.91 (17)C4—C5—C7—C10179.16 (19)
C1—C2—C3—C41.6 (3)C2—C3—C11—C12113.3 (2)
C1—C2—C3—C11177.92 (17)C4—C3—C11—C1267.3 (2)
C2—C3—C4—O1177.58 (16)C2—C3—C11—C145.5 (3)
C11—C3—C4—O11.9 (3)C4—C3—C11—C14174.0 (2)
C2—C3—C4—C52.5 (3)C2—C3—C11—C13124.1 (2)
C11—C3—C4—C5177.00 (17)C4—C3—C11—C1355.4 (3)
O1—C4—C5—C6176.67 (16)C16—N1—C15—C177.3 (2)
C3—C4—C5—C61.4 (3)C19—N1—C15—C1162.21 (18)
O1—C4—C5—C72.4 (3)C6—C1—C15—N199.6 (2)
C3—C4—C5—C7177.63 (17)C2—C1—C15—N184.0 (2)
C2—C1—C6—C51.5 (3)C19—N1—C16—C1756.5 (2)
C15—C1—C6—C5177.96 (17)C15—N1—C16—C17177.96 (17)
C4—C5—C6—C10.6 (3)C18—O2—C17—C1657.6 (3)
C7—C5—C6—C1179.70 (17)N1—C16—C17—O257.9 (3)
C6—C5—C7—C8119.3 (2)C17—O2—C18—C1958.2 (3)
C4—C5—C7—C861.6 (3)C16—N1—C19—C1857.2 (2)
C6—C5—C7—C9118.0 (2)C15—N1—C19—C18179.50 (18)
C4—C5—C7—C961.0 (3)O2—C18—C19—N159.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.86 (3)2.13 (3)2.884 (2)146 (3)
O3—H3A···N1ii0.83 (3)2.10 (3)2.915 (2)170 (3)
O1—H1···O30.85 (3)1.91 (3)2.734 (2)162 (3)
C12—H12B···O30.962.473.410 (3)167
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H31NO2·H2O
Mr323.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.1461 (14), 9.7118 (12), 19.966 (2)
β (°) 95.166 (8)
V3)1959.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
9174, 3412, 2098
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.04
No. of reflections3412
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.86 (3)2.13 (3)2.884 (2)146 (3)
O3—H3A···N1ii0.83 (3)2.10 (3)2.915 (2)170 (3)
O1—H1···O30.85 (3)1.91 (3)2.734 (2)162 (3)
C12—H12B···O30.962.473.410 (3)166.6
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.

References

First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRieker, A. (1968). Tetrahedron, 24, 103–115.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. & Zhang, Y.-C. (2005). Acta Cryst. E61, o4192–o4194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiner, Th. (1996). Crystallogr. Rev. 6, 1–57.  CrossRef CAS Google Scholar
First citationYamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431–2439.  CrossRef CAS Google Scholar
First citationZeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2916–o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, T., Chen, L.-G., Li, J.-S., Zhang, Y.-C. & Deng, Y. (2006). J. Chem. Res. (M), pp. 794–796.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds