metal-organic compounds
Tris(propane-1,2-diamine-κ2N,N′)nickel(II) tetracyanidonickelate(II)
aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.kuchar@upjs.sk
The title compound, [Ni(C3H10N2)3][Ni(CN)4], is built up of [Ni(pn)3]2+ cations (pn is 1,2-diaminopropane) and [Ni(CN)4]2− anions. Both NiII atoms in the cation and the anion lie on a mirror plane. The respective ions interact through Coulombic forces and through a complex network of hydrogen bonds. Extended disorder associated with the cation has been resolved. The occupancies of the respective disordered positions are 0.4:0.4:0.2.
Related literature
For related literature, see: Paharová et al. (2007); Rodriguez et al. (1999); Saha et al. (2005); Smékal et al. (2001); Černák et al. (2002); Bubanec et al. (2004); Potočňák et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: PARST (Nardelli, 1983) and SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
Supporting information
10.1107/S1600536807068420/bg2155sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068420/bg2155Isup2.hkl
To 10 ml of a 0.1 M hot solution of NiSO4.6H2O (0.262 g, 1 mmol) 0.35 ml of pn (4 mmol) were added under continuous stirring, followed by addition of 10 ml of a 0.1 M warm solution of K2[Ni(CN)4].H2O (1 mmol). The resulting clear solution was left for crystallization at room temperature. Single crystals of the title compound, in the form of light violet needles suitable for X-ray studies, appeared after one day.
The structure was solved by direct method. The model (including two 50:50% disordered positions of the pn ligands, forced by the crystallographic mirror symmetry in the cation) was completed by subsequent Fourier syntheses. At this stage the calculated difference Fourier map indicated the presence of further positional disorder of the methyl groups in the pn ligands. The occupational factors refined by fixing the common isotropic thermal parameters of the concerning carbon atoms indicated 50:50 occupancy which was in the subsequent
cycles fixed. Finally, the hydrogen atoms were put in the calculated positions taking into account the observed disorder. Anisotropic thermal parameters were refined for all non-H atoms. All H atoms positions were calculated using the appropriate riding model with isotropic temperature factors being 1.2 times larger then temperature factors of their parent atoms. Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL97.Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell
CELL in IPDS (Stoe & Cie, 1999); data reduction: INTEGRATE in IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: PARST (Nardelli, 1983) and SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. View of the complex cation and complex anion of the title compound. The thermal ellipsoids are drawn at 30% probability level. The disordered positions in the complex cation are shown with light colors (i: x, 0.5 - y, z). |
[Ni(C3H10N2)3][Ni(CN)4] | F(000) = 936 |
Mr = 443.89 | Dx = 1.392 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 1308 reflections |
a = 9.7310 (12) Å | θ = 4.6–30.5° |
b = 13.3770 (14) Å | µ = 1.79 mm−1 |
c = 16.275 (3) Å | T = 193 K |
V = 2118.5 (5) Å3 | Needle, light-violet |
Z = 4 | 0.5 × 0.1 × 0.1 mm |
Stoe IPDS diffractometer | 1947 independent reflections |
Radiation source: fine-focus sealed tube | 1401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 150 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ϕ scans | h = −11→11 |
Absorption correction: gaussian (XPREP in SHELXTL; Siemens, 1996) | k = −15→15 |
Tmin = 0.580, Tmax = 0.815 | l = −19→19 |
14468 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0714P)2] where P = (Fo2 + 2Fc2)/3 |
1947 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.52 e Å−3 |
12 restraints | Δρmin = −0.60 e Å−3 |
[Ni(C3H10N2)3][Ni(CN)4] | V = 2118.5 (5) Å3 |
Mr = 443.89 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.7310 (12) Å | µ = 1.79 mm−1 |
b = 13.3770 (14) Å | T = 193 K |
c = 16.275 (3) Å | 0.5 × 0.1 × 0.1 mm |
Stoe IPDS diffractometer | 1947 independent reflections |
Absorption correction: gaussian (XPREP in SHELXTL; Siemens, 1996) | 1401 reflections with I > 2σ(I) |
Tmin = 0.580, Tmax = 0.815 | Rint = 0.052 |
14468 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 12 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.52 e Å−3 |
1947 reflections | Δρmin = −0.60 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.79310 (7) | 0.2500 | 0.07496 (4) | 0.0430 (2) | |
C1 | 0.8878 (6) | 0.2500 | 0.1736 (4) | 0.0505 (13) | |
N1 | 0.9497 (6) | 0.2500 | 0.2336 (3) | 0.0711 (14) | |
C2 | 0.7945 (5) | 0.1112 (3) | 0.0757 (3) | 0.0605 (10) | |
N2 | 0.7977 (6) | 0.0261 (3) | 0.0772 (3) | 0.0972 (15) | |
C3 | 0.6984 (5) | 0.2500 | −0.0248 (4) | 0.0554 (14) | |
N3 | 0.6348 (6) | 0.2500 | −0.0840 (4) | 0.0746 (15) | |
Ni2 | 0.26627 (6) | 0.2500 | 0.03265 (4) | 0.0396 (2) | |
C4 | 0.0955 (5) | 0.2500 | −0.1180 (3) | 0.0644 (15) | |
H4C | 0.0649 | 0.3200 | −0.1066 | 0.077* | 0.50 |
C5 | 0.2431 (5) | 0.2500 | −0.1451 (4) | 0.0757 (18) | |
H5C | 0.2799 | 0.1810 | −0.1461 | 0.091* | 0.50 |
H5D | 0.2517 | 0.2790 | −0.2008 | 0.091* | 0.50 |
C6 | 0.3879 (5) | 0.0651 (3) | 0.0946 (3) | 0.099 (2) | |
H6C | 0.4498 | 0.0986 | 0.1343 | 0.119* | 0.50 |
H6D | 0.4220 | −0.0039 | 0.0862 | 0.119* | 0.50 |
H6E | 0.4497 | 0.0288 | 0.1327 | 0.119* | 0.50 |
H6F | 0.3922 | 0.0328 | 0.0400 | 0.119* | 0.50 |
C7 | 0.2450 (5) | 0.0615 (3) | 0.1294 (3) | 0.0876 (16) | |
H7C | 0.1813 | 0.0302 | 0.0886 | 0.105* | 0.50 |
H7D | 0.2619 | 0.1215 | 0.1646 | 0.105* | 0.50 |
C8 | 0.0056 (10) | 0.2045 (7) | −0.1810 (6) | 0.083 (3) | 0.50 |
H8C | 0.0391 | 0.1373 | −0.1942 | 0.124* | 0.50 |
H8D | 0.0067 | 0.2458 | −0.2307 | 0.124* | 0.50 |
H8E | −0.0885 | 0.2001 | −0.1599 | 0.124* | 0.50 |
N4 | 0.1011 (6) | 0.1921 (4) | −0.0397 (3) | 0.0509 (14) | 0.50 |
H4A | 0.1155 | 0.1254 | −0.0506 | 0.061* | 0.50 |
H4B | 0.0195 | 0.1984 | −0.0117 | 0.061* | 0.50 |
N5 | 0.3194 (6) | 0.3121 (4) | −0.0839 (3) | 0.0475 (14) | 0.50 |
H5A | 0.2927 | 0.3780 | −0.0871 | 0.057* | 0.50 |
H5B | 0.4126 | 0.3082 | −0.0927 | 0.057* | 0.50 |
N6 | 0.3911 (6) | 0.1202 (4) | 0.0147 (3) | 0.0515 (15) | 0.50 |
H6A | 0.3562 | 0.0811 | −0.0268 | 0.062* | 0.50 |
H6B | 0.4796 | 0.1381 | 0.0015 | 0.062* | 0.50 |
N7 | 0.2107 (6) | 0.1694 (3) | 0.1391 (4) | 0.0539 (15) | 0.50 |
H7A | 0.2568 | 0.1949 | 0.1838 | 0.065* | 0.50 |
H7B | 0.1180 | 0.1763 | 0.1484 | 0.065* | 0.50 |
C9 | 0.258 (3) | −0.0030 (11) | 0.2011 (7) | 0.073 (6) | 0.42 (3) |
H9C | 0.3260 | 0.0252 | 0.2390 | 0.109* | 0.42 (3) |
H9D | 0.2877 | −0.0698 | 0.1837 | 0.109* | 0.42 (3) |
H9E | 0.1689 | −0.0080 | 0.2290 | 0.109* | 0.42 (3) |
N8 | 0.4263 (6) | 0.3269 (3) | 0.0947 (4) | 0.0507 (14) | 0.50 |
H8A | 0.4347 | 0.3038 | 0.1478 | 0.061* | 0.50 |
H8B | 0.5087 | 0.3175 | 0.0681 | 0.061* | 0.50 |
N9 | 0.1551 (6) | 0.3770 (4) | 0.0749 (4) | 0.0532 (15) | 0.50 |
H9A | 0.1265 | 0.4146 | 0.0308 | 0.064* | 0.50 |
H9B | 0.0785 | 0.3565 | 0.1035 | 0.064* | 0.50 |
C10 | 0.181 (3) | 0.5209 (10) | 0.174 (2) | 0.086 (7) | 0.38 (3) |
H10A | 0.2265 | 0.5288 | 0.2274 | 0.130* | 0.38 (3) |
H10B | 0.0836 | 0.5067 | 0.1822 | 0.130* | 0.38 (3) |
H10C | 0.1915 | 0.5827 | 0.1422 | 0.130* | 0.38 (3) |
C11 | 0.445 (3) | 0.023 (2) | 0.1699 (11) | 0.138 (15) | 0.20 |
H11A | 0.5445 | 0.0147 | 0.1636 | 0.207* | 0.20 |
H11B | 0.4024 | −0.0415 | 0.1811 | 0.207* | 0.20 |
H11C | 0.4268 | 0.0690 | 0.2158 | 0.207* | 0.20 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0430 (4) | 0.0313 (3) | 0.0547 (4) | 0.000 | 0.0079 (3) | 0.000 |
C1 | 0.054 (3) | 0.038 (2) | 0.060 (4) | 0.000 | 0.017 (3) | 0.000 |
N1 | 0.074 (4) | 0.085 (4) | 0.054 (3) | 0.000 | 0.005 (3) | 0.000 |
C2 | 0.073 (3) | 0.041 (2) | 0.068 (3) | −0.0044 (18) | 0.004 (2) | −0.0087 (18) |
N2 | 0.152 (5) | 0.0341 (18) | 0.106 (4) | −0.005 (2) | −0.001 (3) | −0.0084 (19) |
C3 | 0.040 (3) | 0.061 (3) | 0.065 (4) | 0.000 | 0.012 (3) | 0.000 |
N3 | 0.053 (3) | 0.101 (4) | 0.070 (4) | 0.000 | 0.000 (3) | 0.000 |
Ni2 | 0.0426 (4) | 0.0279 (3) | 0.0484 (4) | 0.000 | 0.0071 (3) | 0.000 |
C4 | 0.057 (3) | 0.067 (4) | 0.069 (4) | 0.000 | −0.006 (3) | 0.000 |
C5 | 0.065 (4) | 0.110 (5) | 0.052 (3) | 0.000 | −0.002 (3) | 0.000 |
C6 | 0.080 (4) | 0.053 (3) | 0.164 (6) | 0.005 (2) | −0.028 (4) | 0.043 (3) |
C7 | 0.103 (4) | 0.066 (3) | 0.094 (4) | −0.021 (3) | −0.016 (3) | 0.041 (3) |
C8 | 0.067 (6) | 0.099 (7) | 0.082 (6) | −0.007 (5) | −0.011 (6) | −0.005 (5) |
N4 | 0.052 (4) | 0.041 (3) | 0.060 (4) | 0.000 (3) | 0.009 (3) | 0.009 (3) |
N5 | 0.050 (3) | 0.034 (3) | 0.058 (4) | 0.002 (2) | 0.008 (3) | 0.004 (3) |
N6 | 0.052 (4) | 0.032 (3) | 0.071 (4) | 0.001 (2) | 0.008 (3) | −0.003 (3) |
N7 | 0.049 (3) | 0.053 (3) | 0.059 (4) | 0.005 (3) | 0.005 (3) | 0.007 (3) |
C9 | 0.108 (16) | 0.044 (6) | 0.066 (7) | −0.002 (7) | 0.019 (7) | 0.018 (5) |
N8 | 0.054 (3) | 0.046 (3) | 0.052 (4) | −0.002 (3) | 0.014 (3) | −0.004 (3) |
N9 | 0.055 (4) | 0.036 (3) | 0.068 (4) | 0.001 (3) | 0.017 (3) | 0.000 (3) |
C10 | 0.083 (12) | 0.061 (8) | 0.115 (15) | 0.020 (8) | 0.008 (13) | −0.006 (8) |
C11 | 0.11 (2) | 0.20 (4) | 0.10 (3) | −0.07 (3) | 0.032 (19) | −0.08 (3) |
Ni1—C1 | 1.852 (7) | C7—C10i | 1.457 (7) |
Ni1—C2i | 1.856 (4) | C7—C9 | 1.457 (7) |
Ni1—C2 | 1.856 (4) | C7—N7 | 1.490 (3) |
Ni1—C3 | 1.866 (7) | C7—N9i | 1.493 (3) |
C1—N1 | 1.147 (7) | C7—H7C | 1.0000 |
C2—N2 | 1.139 (5) | C7—H7D | 1.0000 |
C3—N3 | 1.145 (8) | C8—H8C | 0.9800 |
Ni2—N7i | 2.112 (6) | C8—H8D | 0.9800 |
Ni2—N7 | 2.112 (6) | C8—H8E | 0.9800 |
Ni2—N8 | 2.122 (6) | N4—H4A | 0.9200 |
Ni2—N8i | 2.122 (6) | N4—H4B | 0.9200 |
Ni2—N9i | 2.128 (6) | N5—H5A | 0.9200 |
Ni2—N9 | 2.128 (6) | N5—H5B | 0.9200 |
Ni2—N5i | 2.135 (6) | N6—H6A | 0.9200 |
Ni2—N5 | 2.135 (6) | N6—H6B | 0.9200 |
Ni2—N4 | 2.137 (6) | N7—H7A | 0.9200 |
Ni2—N4i | 2.137 (6) | N7—H7B | 0.9200 |
Ni2—N6i | 2.139 (5) | C9—H9C | 0.9800 |
Ni2—N6 | 2.139 (5) | C9—H9D | 0.9800 |
C4—C8 | 1.480 (10) | C9—H9E | 0.9800 |
C4—N4 | 1.492 (3) | N8—C6i | 1.492 (3) |
C4—C5 | 1.503 (6) | N8—H8A | 0.9200 |
C4—H4C | 1.0000 | N8—H8B | 0.9200 |
C5—N5 | 1.494 (3) | N9—C7i | 1.493 (3) |
C5—H5C | 0.9900 | N9—H9A | 0.9200 |
C5—H5D | 0.9900 | N9—H9B | 0.9200 |
C6—C11 | 1.457 (7) | C10—C7i | 1.457 (7) |
C6—N6 | 1.495 (3) | C10—H10A | 0.9800 |
C6—C7 | 1.503 (6) | C10—H10B | 0.9800 |
C6—H6C | 0.9900 | C10—H10C | 0.9800 |
C6—H6D | 0.9900 | C11—H11A | 0.9800 |
C6—H6E | 0.9900 | C11—H11B | 0.9800 |
C6—H6F | 0.9900 | C11—H11C | 0.9800 |
C1—Ni1—C2i | 89.46 (14) | C9—C7—C6 | 103.9 (11) |
C1—Ni1—C2 | 89.46 (14) | N7—C7—C6 | 102.5 (4) |
C2i—Ni1—C2 | 178.9 (3) | N9i—C7—C6 | 107.5 (4) |
C1—Ni1—C3 | 179.7 (2) | C9—C7—H7C | 109.7 |
C2i—Ni1—C3 | 90.54 (14) | N7—C7—H7C | 109.7 |
C2—Ni1—C3 | 90.54 (14) | C6—C7—H7C | 109.7 |
N1—C1—Ni1 | 178.2 (5) | C10i—C7—H7D | 113.2 |
N2—C2—Ni1 | 178.6 (5) | C4—C8—H8C | 109.5 |
N3—C3—Ni1 | 176.9 (5) | C4—C8—H8D | 109.5 |
N7—Ni2—N8 | 92.6 (2) | H8C—C8—H8D | 109.5 |
N7i—Ni2—N8i | 92.6 (2) | C4—C8—H8E | 109.5 |
N7i—Ni2—N9i | 90.7 (2) | H8C—C8—H8E | 109.5 |
N8i—Ni2—N9i | 80.36 (19) | H8D—C8—H8E | 109.5 |
N7—Ni2—N9 | 90.7 (2) | C4—N4—Ni2 | 108.0 (3) |
N8—Ni2—N9 | 80.36 (19) | C4—N4—H4A | 110.1 |
N8i—Ni2—N5i | 93.3 (2) | Ni2—N4—H4A | 110.1 |
N9i—Ni2—N5i | 95.7 (2) | C4—N4—H4B | 110.1 |
N8—Ni2—N5 | 93.3 (2) | Ni2—N4—H4B | 110.1 |
N9—Ni2—N5 | 95.7 (2) | H4A—N4—H4B | 108.4 |
N7—Ni2—N4 | 94.3 (2) | C5—N5—Ni2 | 104.8 (3) |
N8—Ni2—N4 | 171.73 (19) | C5—N5—H5A | 110.8 |
N9—Ni2—N4 | 94.9 (2) | Ni2—N5—H5A | 110.8 |
N5—Ni2—N4 | 80.42 (19) | C5—N5—H5B | 110.8 |
N7i—Ni2—N4i | 94.3 (2) | Ni2—N5—H5B | 110.8 |
N8i—Ni2—N4i | 171.73 (19) | H5A—N5—H5B | 108.9 |
N9i—Ni2—N4i | 94.9 (2) | C6—N6—Ni2 | 105.7 (3) |
N5i—Ni2—N4i | 80.42 (19) | C6—N6—H6A | 110.6 |
N7i—Ni2—N6i | 80.95 (19) | Ni2—N6—H6A | 110.6 |
N8i—Ni2—N6i | 92.4 (2) | C6—N6—H6B | 110.6 |
N9i—Ni2—N6i | 168.7 (2) | Ni2—N6—H6B | 110.6 |
N5i—Ni2—N6i | 93.3 (2) | H6F—N6—H6B | 108.4 |
N4i—Ni2—N6i | 93.3 (2) | H6A—N6—H6B | 108.7 |
N7—Ni2—N6 | 80.95 (19) | C7—N7—Ni2 | 110.5 (4) |
N8—Ni2—N6 | 92.4 (2) | C7—N7—H7A | 109.5 |
N9—Ni2—N6 | 168.7 (2) | Ni2—N7—H7A | 109.5 |
N5—Ni2—N6 | 93.3 (2) | C7—N7—H7B | 109.5 |
N4—Ni2—N6 | 93.3 (2) | Ni2—N7—H7B | 109.5 |
C8—C4—N4 | 113.6 (5) | H7A—N7—H7B | 108.1 |
C8—C4—C5 | 111.2 (5) | C7—C9—H9C | 109.5 |
N4—C4—C5 | 102.5 (4) | C7—C9—H9D | 109.5 |
C8—C4—H4C | 109.8 | C7—C9—H9E | 109.5 |
N4—C4—H4C | 109.8 | C6i—N8—Ni2 | 106.6 (4) |
C5—C4—H4C | 109.8 | C6i—N8—H8A | 110.4 |
N5—C5—C4 | 106.2 (4) | Ni2—N8—H8A | 110.4 |
N5—C5—H5C | 110.5 | C6i—N8—H8B | 110.4 |
C4—C5—H5C | 110.5 | Ni2—N8—H8B | 110.4 |
N5—C5—H5D | 110.5 | H8A—N8—H8B | 108.6 |
C4—C5—H5D | 110.5 | C7i—N9—Ni2 | 109.5 (3) |
H5C—C5—H5D | 108.7 | C7i—N9—H9A | 109.8 |
C11—C6—N6 | 155.9 (13) | Ni2—N9—H9A | 109.8 |
C11—C6—C7 | 91.4 (13) | C7i—N9—H9B | 109.8 |
N6—C6—C7 | 111.3 (4) | Ni2—N9—H9B | 109.8 |
N6—C6—H6C | 109.4 | H9A—N9—H9B | 108.2 |
C7—C6—H6C | 109.4 | C7i—C10—H10A | 109.5 |
N6—C6—H6D | 109.4 | C7i—C10—H10B | 109.5 |
C7—C6—H6D | 109.4 | H10A—C10—H10B | 109.5 |
H6C—C6—H6D | 108.0 | C7i—C10—H10C | 109.5 |
C7—C6—H6E | 108.1 | H10A—C10—H10C | 109.5 |
C7—C6—H6F | 111.3 | H10B—C10—H10C | 109.5 |
H6E—C6—H6F | 108.8 | C6—C11—H11A | 109.5 |
C9—C7—N7 | 120.5 (7) | C6—C11—H11B | 109.5 |
C10i—C7—N9i | 117.6 (14) | H6E—C11—H11B | 108.6 |
C10i—C7—C6 | 127.2 (9) | C6—C11—H11C | 109.5 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N2ii | 0.92 | 2.24 | 3.140 (7) | 167 |
N5—H5A···N2iii | 0.92 | 2.17 | 3.083 (6) | 169 |
N5—H5B···N3 | 0.92 | 2.30 | 3.180 (8) | 159 |
N6—H6A···N2ii | 0.92 | 2.23 | 3.073 (7) | 152 |
N6—H6B···N3 | 0.92 | 2.54 | 3.349 (7) | 147 |
N7—H7A···N1iv | 0.92 | 2.42 | 3.295 (8) | 158 |
N7—H7B···N1v | 0.92 | 2.36 | 3.159 (7) | 145 |
N8—H8A···N1iv | 0.92 | 2.07 | 2.985 (8) | 179 |
N9—H9A···N2iii | 0.92 | 2.42 | 3.212 (8) | 144 |
Symmetry codes: (ii) −x+1, −y, −z; (iii) −x+1, y+1/2, −z; (iv) x−1/2, y, −z+1/2; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C3H10N2)3][Ni(CN)4] |
Mr | 443.89 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 193 |
a, b, c (Å) | 9.7310 (12), 13.3770 (14), 16.275 (3) |
V (Å3) | 2118.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.79 |
Crystal size (mm) | 0.5 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | Gaussian (XPREP in SHELXTL; Siemens, 1996) |
Tmin, Tmax | 0.580, 0.815 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14468, 1947, 1401 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.100, 0.92 |
No. of reflections | 1947 |
No. of parameters | 183 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.60 |
Computer programs: EXPOSE in IPDS (Stoe & Cie, 1999), CELL in IPDS (Stoe & Cie, 1999), INTEGRATE in IPDS (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 1997), PARST (Nardelli, 1983) and SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2004), SHELXL97 (Sheldrick, 1997).
Ni1—C1 | 1.852 (7) | Ni2—N9 | 2.128 (6) |
Ni1—C2 | 1.856 (4) | Ni2—N5 | 2.135 (6) |
Ni1—C3 | 1.866 (7) | Ni2—N4 | 2.137 (6) |
Ni2—N7 | 2.112 (6) | Ni2—N6 | 2.139 (5) |
Ni2—N8 | 2.122 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N2i | 0.92 | 2.24 | 3.140 (7) | 166.6 |
N5—H5A···N2ii | 0.92 | 2.17 | 3.083 (6) | 169.4 |
N5—H5B···N3 | 0.92 | 2.30 | 3.180 (8) | 159.3 |
N6—H6A···N2i | 0.92 | 2.23 | 3.073 (7) | 152.1 |
N6—H6B···N3 | 0.92 | 2.54 | 3.349 (7) | 147.0 |
N7—H7A···N1iii | 0.92 | 2.42 | 3.295 (8) | 158.2 |
N7—H7B···N1iv | 0.92 | 2.36 | 3.159 (7) | 145.0 |
N8—H8A···N1iii | 0.92 | 2.07 | 2.985 (8) | 178.7 |
N9—H9A···N2ii | 0.92 | 2.42 | 3.212 (8) | 144.3 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y+1/2, −z; (iii) x−1/2, y, −z+1/2; (iv) x−1, y, z. |
Acknowledgements
This work was supported by the Slovak Grant Agency VEGA (grant No. 1/3550/06) and by the APVV (grant No. 20-005204). The authors thank Professor Werner Massa (Phillips Universität, Marburg) for kind permission to use the diffractometer.
References
Brandenburg, K. (2004). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bubanec, J., Černák, J., Potočňák, I., Drábik, M. & Lipkowski, J. (2004). Chem. Pap. 58, 224–231. CAS Google Scholar
Černák, J., Orendáč, M., Potočňák, I., Chomič, J., Orendáčová, A., Skoršepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66. Google Scholar
Nardelli, M. (1983). Comput. Chem. 7, 95–98. CrossRef CAS Web of Science Google Scholar
Paharová, J., Černák, J., Žák, Z. & Marek, J. (2007). J. Mol. Struct. 842, 117–124. Google Scholar
Potočňák, I., Vavra, M., Steinborn, D. & Wagner, C. (2008). Acta Cryst. E64, m235–m236. Web of Science CrossRef IUCr Journals Google Scholar
Rodriguez, V., Gutierrez-Zorrilla, J. M., Vitoria, P., Luque, A., Roman, P. & Martinez-Ripoll, M. (1999). Inorg. Chim. Acta, 290, 57–63. Web of Science CSD CrossRef CAS Google Scholar
Saha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043–1048. CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1996). XPREP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Smékal, Z., Císařová, I. & Mrozinski, J. (2001). Polyhedron, 20, 3301–3306. Google Scholar
Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDS. Version 2.90. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C13H30N10Ni2, was studied as part of a broader study of cyanocomplexes viewed as magnetic materials [Černák et al.2002). The complex is ionic and built up of [Ni(pn)3]2+cations (pn: 1,2-diaminopropane) and [Ni(CN)~4~]2– anions. Other similar ionic compounds with square tetracyanometallates(II) and [M(L—L)3]2+ cations (M = Ni, Zn, Cd; L—L: a chelating ligand), have already been described [Bubanec et al., 2004; Rodriguez et al., 1999; Paharová et al., 2007]. The Pt analogue was described by Potočňák et al. (2008).
The NiII atom in the complex cation exhibits pseudo-octahedral coordination by six nitrogen atoms from three chelate bonded pn ligands in gauche conformations. As the nickel atom occupies the position on a mirror plane the chelate bonded ligands are disordered in two positions with half occupancy (Fig. 1). Further disorder associated with the position of the methyl groups bonded to the carbon atom was detected so within the same metallocycle both R and S enantiomers are present with the same occupancy. Moreover, the structure is centrosymmetric so both opposite absolute configurations Λδδλ and Δλλδ of the chiral cations are present in the unit cell in equal quantities. It is worth noting that for the synthesis a racemic mixture of the pn ligand was used. The observed geometrical parameters are close to those observed in [Ni(pn)3][Fe(CN)5NO].H2O [Saha et al., 2005].
The charge of the cation is compensated by a [Ni(CN)4]2- anion. The latter is bisected by a mirror plane, leading to a rather regular NiC4 chromophore. The geometric characteristics are similar to those previously reported [Smékal et al., 2001].
The NiII atoms in the respective ions are not connected by covalent bonds, the shortest distance between NiII atoms being 8.527 (1) Å. The cations are connected by a complicated system of weak intermolecular hydrogen bonds of the N—H···N≡C—Ni—C≡N···H—N type, in which also the complex anions take part and where the H···N distance range is 2.103–2.488 Å.