metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m345-m346

Poly[[di­aqua-μ2-4,4′-bi­pyridyl-μ2-o-phthalato-nickel(II)] dihydrate]

aResearch Academy of Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China, bState Key Laboratory of Applied Organic Chemistry, Lanzhou, Gansu 730000, People's Republic of China, and cState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: xiawj@hit.edu.cn

(Received 21 November 2007; accepted 29 November 2007; online 16 January 2008)

In the title layer complex, {[Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2O}n, the Ni atom has a distorted octa­hedral environment, defined by the phthalate and 4,4′-bipyridyl ligands which link the Ni atoms, forming a square lattice in the bc plane. This extends into a three-dimensional supra­molecular network through O—H⋯O hydrogen-bonding inter­actions. The Ni atom lies on, and both ligands are bis­ected by, a crystallographic twofold axis.

Related literature

For related literature, see: Burrows et al. (2000[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Ma et al. (2003[Ma, C., Chen, C., Liu, Q., Liao, D., Li, L. & Sun, L. (2003). New J. Chem. 27, 890-894.]); Zheng et al. (1999[Zheng, L. M., Fang, X., Lii, K. H., Song, H.-H., Xin, X.-Q., Fun, H.-K., Chinnakali, K. & Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 2311-2316.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2O

  • Mr = 451.07

  • Monoclinic, P 2/c

  • a = 7.6160 (15) Å

  • b = 11.372 (2) Å

  • c = 12.954 (4) Å

  • β = 123.63 (2)°

  • V = 934.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 (2) K

  • 0.55 × 0.35 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.58, Tmax = 0.76

  • 8992 measured reflections

  • 2142 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.091

  • S = 1.12

  • 2142 reflections

  • 149 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1W 2.1244 (14)
Ni1—N1i 2.135 (2)
Ni1—O1 2.1383 (15)
Ni1—N2 2.152 (2)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O1 0.84 (3) 2.056 (16) 2.809 (2) 149 (3)
O1W—H1WA⋯O2Wii 0.84 (3) 1.906 (11) 2.716 (2) 163 (2)
O1W—H1WB⋯O2iii 0.83 (3) 1.874 (10) 2.703 (2) 174 (2)
O2W—H2WB⋯O2iv 0.84 (2) 2.009 (11) 2.834 (2) 169 (3)
Symmetry codes: (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The construction of novel metal coordination polymers, based on the interaction between metal ions and organic ligands has attracted widespread interest among chemists owing to their potential applications and intriguing variety of architectures and topologies. (Hagrman et al., 1999). In the design of coordination polymers with different dimensions, Pht, 4,4'-bipy, and some other ligands have proved promising (Ma et al., 2003, Burrows et al., 2000). Among these, the bridging coordination modes of Pht have revealed as favouring the formation of polymeric structures. We report here the synthesis and structure of the title compound containing two-dimensional polymeric layers of [Ni(Pht)(4,4'-bipy)(H2O)2]n in which the metal atoms are connected by bridging Pht and 4,4'-bipy ligands.

The Pht and 4,4'-bipy ligands have C2 intrinsic symmetry with a two fold axis that passes through the midpoints of the C7–C7iii and C9–C9iii bonds in Pht and through the N1 and N2 atoms in 4,4'-bipy, thus determining their geometry (Fig. 1). The two pyridyl rings in the 4,4'-bipy group are not coplanar, the dihedral angle subtended being 54.0°. The cation also lies on the two fold axis and is coordinated by two N atoms from the 4,4'-bipy molecules, two O atoms from the Pht residue, and two O atoms of the H2O molecules forming a distorted octahedral environment. The Ni atoms form a square lattice in the bc plane, one side being directed along the a axis due to the 1, 6-bridging function of the Pht residue [the Ni–Ni distance is 7.616 (2) Å], and the other side being stretched along the b axis owing to the endo-bidentate function of the 4.4'-bipy molecule [the Ni–Ni distance is 11.372 (2) Å] (Fig. 2). The formation of lattices of this type is encountered rather often when the bridging bidentate 4,4'-bipy ligand is combined with another bridging ligand, such as [Co(C2O4)(4,4'-bipy)]n (Zheng et al., 1999). The layers are united into a three-dimensional framework along c axis by H-bonds involving coordinated (O1W), uncoordinated (O2W) water molecules and a carboxyl oxygen atom (Fig. 3 and Table 2). The distance between neighboring layers is 5.39 (1) Å.

Related literature top

For related literature, see: Burrows et al. (2000); Hagrman et al. (1999); Ma et al. (2003); Zheng et al. (1999).

Experimental top

All reagents were of analytical grade and were used without further purification. A mixture of NiCl2.6H2O(0.25 g, 1.05 mmol), H2Pht (0.2 g, 1.20 mmol), 4,4'-bipy (0.2 g, 1.04 mmol) and distilled water (12 ml) was neutralized to pH =5.5 with sodium hydroxide aqueous solution under stirring for 1 h and sealed in a 20 ml Teflon-lined stainless steel reactor, then heated at 170 °C for 3days. After cooling to room temperature, the green block crystals were isolated, washed with distilled water, and dried at ambient temperature.Yield: 0.17 g (36% based on Ni).

Refinement top

All H atoms attached to C atoms and unambiguously defined by stereochemistry were placed in calculated positions (H–C = 0.93 Å) and allowed to ride, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were located in late-stage difference maps and refined with restrained distances of O—H = 0.85 (1) Å, H···H = 1.35 (2) Å and free Uĩso~(H).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 50% probability level [Symmetry codes: (i) x, y - 1, z; (ii) -x, y, -z + 1/2; (iii) -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. Polymer layer in the title compound. (The uncoordinated waters have been omitted for clarity).
[Figure 3] Fig. 3. Formation of a three-dimensional framework in the title compound (dashed lines show hydrogen bonds).
Poly[[diaqua-µ2-4,4'-bipyridyl-µ2-o-phthalato-nickel(II)] dihydrate] top
Crystal data top
[Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2OF(000) = 468
Mr = 451.07Dx = 1.604 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 8171 reflections
a = 7.6160 (15) Åθ = 3.2–27.5°
b = 11.372 (2) ŵ = 1.09 mm1
c = 12.954 (4) ÅT = 298 K
β = 123.63 (2)°Block, green
V = 934.2 (4) Å30.55 × 0.35 × 0.25 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2142 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 98
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.58, Tmax = 0.76l = 1616
8992 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.4267P]
where P = (Fo2 + 2Fc2)/3
2142 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2OV = 934.2 (4) Å3
Mr = 451.07Z = 2
Monoclinic, P2/cMo Kα radiation
a = 7.6160 (15) ŵ = 1.09 mm1
b = 11.372 (2) ÅT = 298 K
c = 12.954 (4) Å0.55 × 0.35 × 0.25 mm
β = 123.63 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2142 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
1968 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.76Rint = 0.020
8992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.53 e Å3
2142 reflectionsΔρmin = 0.25 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.72030 (2)0.25000.01769 (12)
O10.3358 (2)0.70882 (11)0.37051 (13)0.0245 (3)
O20.6416 (2)0.65853 (13)0.39977 (15)0.0373 (4)
N10.00000.09196 (17)0.25000.0177 (4)
N20.00000.53103 (17)0.25000.0207 (4)
C10.0330 (3)0.03021 (15)0.15229 (16)0.0223 (4)
H10.05740.07130.08340.027*
C20.0327 (3)0.09169 (15)0.14895 (16)0.0228 (4)
H20.05420.13070.07970.027*
C30.00000.1551 (2)0.25000.0191 (5)
C40.00000.28534 (19)0.25000.0197 (5)
C50.1289 (3)0.34832 (15)0.22487 (18)0.0244 (4)
H50.21560.30930.20640.029*
C60.1261 (3)0.47013 (15)0.22773 (19)0.0244 (4)
H60.21610.51150.21350.029*
C70.4933 (2)0.84072 (14)0.30166 (14)0.0160 (3)
C80.4914 (3)0.94753 (17)0.35359 (18)0.0259 (4)
H80.48540.94790.42340.031*
C90.4982 (3)1.05329 (17)0.3028 (2)0.0340 (5)
H90.50031.12400.33960.041*
C100.4895 (3)0.72697 (14)0.36067 (16)0.0190 (3)
O1W0.0029 (2)0.71811 (10)0.08697 (12)0.0216 (3)
O2W0.3483 (3)0.58768 (15)0.56342 (15)0.0392 (4)
H2WA0.385 (5)0.608 (2)0.516 (2)0.059*
H1WA0.091 (3)0.673 (2)0.034 (2)0.048 (8)*
H1WB0.113 (2)0.705 (2)0.090 (2)0.032 (6)*
H2WB0.362 (5)0.5147 (9)0.571 (3)0.060 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01990 (18)0.01195 (17)0.02568 (19)0.0000.01542 (14)0.000
O10.0194 (6)0.0303 (7)0.0295 (7)0.0009 (5)0.0170 (5)0.0078 (5)
O20.0295 (7)0.0349 (8)0.0598 (10)0.0140 (6)0.0324 (7)0.0256 (7)
N10.0185 (9)0.0120 (9)0.0227 (9)0.0000.0114 (8)0.000
N20.0248 (10)0.0118 (9)0.0321 (11)0.0000.0198 (9)0.000
C10.0291 (9)0.0149 (8)0.0235 (8)0.0001 (7)0.0150 (7)0.0013 (6)
C20.0321 (9)0.0146 (8)0.0236 (8)0.0013 (7)0.0166 (7)0.0030 (6)
C30.0201 (11)0.0096 (10)0.0275 (12)0.0000.0131 (10)0.000
C40.0252 (12)0.0099 (10)0.0244 (11)0.0000.0141 (10)0.000
C50.0296 (9)0.0142 (7)0.0389 (10)0.0027 (7)0.0249 (8)0.0006 (7)
C60.0283 (9)0.0146 (8)0.0404 (10)0.0007 (7)0.0253 (8)0.0018 (7)
C70.0138 (7)0.0157 (7)0.0199 (7)0.0003 (6)0.0102 (6)0.0001 (6)
C80.0241 (9)0.0256 (9)0.0307 (9)0.0027 (7)0.0170 (8)0.0102 (7)
C90.0275 (10)0.0166 (8)0.0555 (13)0.0019 (7)0.0214 (10)0.0107 (8)
C100.0189 (8)0.0211 (8)0.0199 (8)0.0004 (6)0.0126 (7)0.0024 (6)
O1W0.0231 (6)0.0197 (6)0.0284 (7)0.0027 (5)0.0182 (6)0.0048 (5)
O2W0.0393 (8)0.0440 (9)0.0432 (9)0.0144 (7)0.0283 (7)0.0197 (7)
Geometric parameters (Å, º) top
Ni1—O1W2.1244 (14)C3—C41.481 (3)
Ni1—O1Wi2.1244 (14)C4—C51.392 (2)
Ni1—N1ii2.135 (2)C4—C5i1.392 (2)
Ni1—O12.1383 (15)C5—C61.386 (2)
Ni1—O1i2.1383 (15)C5—H50.9300
Ni1—N22.152 (2)C6—H60.9300
O1—C101.263 (2)C7—C81.393 (2)
O2—C101.247 (2)C7—C7iv1.397 (3)
N1—C11.344 (2)C7—C101.511 (2)
N1—C1i1.344 (2)C8—C91.385 (3)
N1—Ni1iii2.135 (2)C8—H80.9300
N2—C61.339 (2)C9—C9iv1.384 (5)
N2—C6i1.339 (2)C9—H90.9300
C1—C21.387 (2)O1W—H1WA0.84 (3)
C1—H10.9300O1W—H1WB0.83 (3)
C2—C31.391 (2)O2W—H2WA0.84 (3)
C2—H20.9300O2W—H2WB0.84 (2)
C3—C2i1.391 (2)
O1W—Ni1—O1Wi178.66 (6)C2—C3—C2i117.6 (2)
O1W—Ni1—N1ii90.67 (3)C2—C3—C4121.22 (11)
O1Wi—Ni1—N1ii90.67 (3)C2i—C3—C4121.22 (11)
O1W—Ni1—O193.34 (6)C5—C4—C5i118.0 (2)
O1Wi—Ni1—O186.58 (6)C5—C4—C3120.98 (10)
N1ii—Ni1—O193.50 (4)C5i—C4—C3120.98 (11)
O1W—Ni1—O1i86.58 (6)C6—C5—C4119.00 (17)
O1Wi—Ni1—O1i93.34 (6)C6—C5—H5120.5
N1ii—Ni1—O1i93.50 (4)C4—C5—H5120.5
O1—Ni1—O1i173.00 (7)N2—C6—C5123.11 (17)
O1W—Ni1—N289.33 (3)N2—C6—H6118.4
O1Wi—Ni1—N289.33 (3)C5—C6—H6118.4
N1ii—Ni1—N2180.0C8—C7—C7iv119.25 (11)
O1—Ni1—N286.50 (4)C8—C7—C10119.60 (16)
O1i—Ni1—N286.50 (4)C7iv—C7—C10121.10 (9)
C10—O1—Ni1135.82 (12)C9—C8—C7120.97 (19)
C1—N1—C1i117.0 (2)C9—C8—H8119.5
C1—N1—Ni1iii121.51 (10)C7—C8—H8119.5
C1i—N1—Ni1iii121.51 (10)C9iv—C9—C8119.73 (12)
C6—N2—C6i117.7 (2)C9iv—C9—H9120.1
C6—N2—Ni1121.15 (10)C8—C9—H9120.1
C6i—N2—Ni1121.15 (10)O2—C10—O1124.17 (16)
N1—C1—C2123.31 (16)O2—C10—C7117.79 (15)
N1—C1—H1118.3O1—C10—C7118.01 (15)
C2—C1—H1118.3Ni1—O1W—H1WA109.8 (19)
C1—C2—C3119.41 (16)Ni1—O1W—H1WB121.7 (17)
C1—C2—H2120.3H1WA—O1W—H1WB108.2 (19)
C3—C2—H2120.3H2WA—O2W—H2WB106 (2)
O1W—Ni1—O1—C1018.21 (17)C2i—C3—C4—C5126.71 (13)
O1Wi—Ni1—O1—C10163.14 (17)C2—C3—C4—C5i126.71 (13)
N1ii—Ni1—O1—C1072.67 (17)C2i—C3—C4—C5i53.29 (13)
N2—Ni1—O1—C10107.33 (17)C5i—C4—C5—C60.97 (13)
O1W—Ni1—N2—C643.77 (11)C3—C4—C5—C6179.03 (13)
O1Wi—Ni1—N2—C6136.23 (11)C6i—N2—C6—C51.05 (14)
O1—Ni1—N2—C649.62 (11)Ni1—N2—C6—C5178.95 (14)
O1i—Ni1—N2—C6130.38 (11)C4—C5—C6—N22.1 (3)
O1W—Ni1—N2—C6i136.23 (11)C7iv—C7—C8—C91.3 (3)
O1Wi—Ni1—N2—C6i43.77 (11)C10—C7—C8—C9178.96 (17)
O1—Ni1—N2—C6i130.38 (11)C7—C8—C9—C9iv1.6 (4)
O1i—Ni1—N2—C6i49.62 (11)Ni1—O1—C10—O2133.71 (17)
Ni1iii—N1—C1—C2179.49 (13)Ni1—O1—C10—C748.5 (2)
N1—C1—C2—C31.0 (3)C8—C7—C10—O2119.1 (2)
C1—C2—C3—C2i0.47 (12)C7iv—C7—C10—O258.5 (3)
C1—C2—C3—C4179.53 (12)C8—C7—C10—O158.9 (2)
C2—C3—C4—C553.29 (13)C7iv—C7—C10—O1123.5 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.84 (3)2.06 (2)2.809 (2)149 (3)
O1W—H1WA···O2Wi0.84 (3)1.91 (1)2.716 (2)163 (2)
O1W—H1WB···O2iv0.83 (3)1.87 (1)2.703 (2)174 (2)
O2W—H2WB···O2v0.84 (2)2.01 (1)2.834 (2)169 (3)
Symmetry codes: (i) x, y, z+1/2; (iv) x+1, y, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2O
Mr451.07
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)7.6160 (15), 11.372 (2), 12.954 (4)
β (°) 123.63 (2)
V3)934.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.55 × 0.35 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.58, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
8992, 2142, 1968
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.091, 1.12
No. of reflections2142
No. of parameters149
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.25

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected bond lengths (Å) top
Ni1—O1W2.1244 (14)Ni1—O12.1383 (15)
Ni1—N1i2.135 (2)Ni1—N22.152 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.84 (3)2.056 (16)2.809 (2)149 (3)
O1W—H1WA···O2Wii0.84 (3)1.906 (11)2.716 (2)163 (2)
O1W—H1WB···O2iii0.83 (3)1.874 (10)2.703 (2)174 (2)
O2W—H2WB···O2iv0.84 (2)2.009 (11)2.834 (2)169 (3)
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the New Century Talent Program of the Chinese Ministry of Education.

References

First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845–3854.  Web of Science CSD CrossRef Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, C., Chen, C., Liu, Q., Liao, D., Li, L. & Sun, L. (2003). New J. Chem. 27, 890–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZheng, L. M., Fang, X., Lii, K. H., Song, H.-H., Xin, X.-Q., Fun, H.-K., Chinnakali, K. & Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 2311–2316.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m345-m346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds