metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

(Glycol-κ2O,O′)nitros­yl(η5-penta­methyl­cyclo­penta­dien­yl)ruthenium(II) bis­­(tri­fluoro­methane­sulfonate)

aDepartment of Chemistry, CNS 359, Ithaca College, Ithaca, NY 14850, USA, and bDepartment of Chemistry, State University of New York at Buffalo, 732 NSC Complex, Buffalo, NY 14260, USA
*Correspondence e-mail: gembicky@buffalo.edu

(Received 11 December 2007; accepted 17 December 2007; online 4 January 2008)

The title compound, [Ru(C10H15)(NO)(HOCH2CH2OH)](CF3SO3)2, possesses a three-legged piano-stool geometry around the Ru atom, with an average Ru—O distance of 2.120 (6) Å and an Ru—N—O angle of 159.45 (14)°. The ethyl­eneglycol ligand forms a non-planar metallacyclic ring by chelating the Ru atom via the O atoms. The O⋯O distances of 2.554 (2) and 2.568 (2) Å are indicative of hydrogen bonding between coordinated ethyl­eneglycol and outer-sphere trifluoro­methane­sulfonate fragments. The crystal packing is stabilized by ionic forces and several CH3⋯·F (2.585 and 2.640 Å) and CH3⋯O inter­actions (2.391, 2.678, 2.694 and 2.699 Å) between the penta­methyl­cyclo­penta­dienyl ligand and trifluoro­methane­sulfonate anion. There is noticeable short inter­molecular contact [2.9039 (16) Å], between an O atom of the SO3 group and a C atom of the penta­methyl­cyclo­penta­dienyl ligand.

Related literature

For closely related ruthenium diol- and alkyl­oxy-chelated structures, see: Hubbard & McVicar (1992[Hubbard, J. L. & McVicar, W. K. (1992). Inorg. Chem. 31, 910-913.]); Yang et al. (1995[Yang, K., Bott, S. G. & Richmond, M. G. (1995). J. Chem. Crystallogr. 25, 283-290.], 1997[Yang, K., Martin, J. A., Bott, S. G. & Richmond, M. G. (1997). Inorg. Chim. Acta, 254, 19-27.]). For chemicaly related complexes, see: Burns & Hubbard (1994[Burns, R. M. & Hubbard, J. L. (1994). J. Am. Chem. Soc. 116, 9514-9520.]); Pearsal et al. (2007[Pearsal, M., Gembicky, M., Dominiak, P., Larsen, A. & Coppens, P. (2007). Acta Cryst. E63, m2596.]); Svetlanova-Larsen et al. (1996[Svetlanova-Larsen, A., Zoch, C. R. & Hubbard, J. L. (1996). Organometallics, 15, 3076-3087.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C10H15)(NO)(C2H6O2)](CF3O3S)2

  • Mr = 626.51

  • Monoclinic, P 21 /n

  • a = 8.5593 (2) Å

  • b = 30.5443 (7) Å

  • c = 8.8608 (2) Å

  • β = 91.295 (1)°

  • V = 2315.96 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 90 (1) K

  • 0.20 × 0.20 × 0.04 mm

Data collection
  • Bruker SMART APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.963

  • 30259 measured reflections

  • 5102 independent reflections

  • 4513 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.04

  • 5102 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.80 (3) 1.76 (3) 2.568 (2) 176 (3)
O3—H3⋯O7 0.80 (3) 1.76 (3) 2.554 (2) 169 (3)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The electrophilic ruthenium center in trifluoromethanesulfonate complexes with a [(C10H15)Ru(NO)] core is reactive towards small molecular nucleophiles, such as water (Svetlanova-Larsen et al., 1996), unsaturated hydrocarbons (Burns & Hubbard, 1994), and alcohols, and results in their binding and activation. For primary and secondary alcohols, after initial coordination, the reaction leads to alcohol oxidation and reduction of the ruthenium center to the Ru=Ru dimer, (Pearsal et al., 2007).In the case of ethylene glycol, however, the coordination product is stabilized by a chelate ring formation and can be isolated and characterized.

Related literature top

For closely related ruthenium-diol and alkyloxide chelated structures, see: Hubbard & McVicar (1992); Yang et al. (1995, 1997. For chemicaly related complexes, see: Burns & Hubbard (1994); Pearsal et al. (2007); Svetlanova-Larsen et al. (1996).

Experimental top

The compound was obtained as a product of reaction between Cp*Ru(NO)(SO3CF3)2 and 3 equivalents of ethylene glycol in chloroform solution (Cp* = C5Me5). The single crystals for the X-ray diffraction studies were grown by solvent diffusion from a dichloromethane/hexane mixture at ambient temperature under inert atmosphere (Pearsal et al., 2007).

All synthetic procedures were carried out in inert atmosphere. 10 µL of HO—CH2CH2—OH (0.213 mmol, 3 equiv) was added to a stirred solution of 40 mg of Cp*Ru(NO)(SO3CF3)2 (0.071 mmol) in 10 ml of CHCl3. A red precipitate formed within 5 min and the initially purple solution became almost colorless. The supernatant was decanted and the precipitate was recrystallized from a CH2Cl2/hexane mixture at -40 °C yielding 30 mg (0.050 mmol, 70%) of analytically pure complex[(C10H15)Ru(NO)(OH—CH2—CH2—OH)]2+ 2[SO3CF3]-. X-ray quality crystals were grown by slow diffusion of hexane into dichloromethane solution. The CHCl3 solvent used in this reaction should be completely ethanol-free, otherwise isolation of the crystalline product becomes difficult due to the reaction between Cp*Ru(NO)(SO3CF3) and ethanol used routinely for stabilization of commercially available chloroform. The compound was characterized by 1H, 19 F, 13 C NMR, and by IR spectroscopy. 1H NMR(CH2Cl2): δ 1.93 (s) (15H, Cp*); δ 1.88 (s) (15H, Cp* minor amounts of starting material existing in equilibrium with product); δ 4.23 (broad) (2H, HO-CHHa—CHHa—OH); δ 3.35 (broad) (2H, HO—CHbH—CHbH—OH); δ 11.13 (2H, 2OH); 13 C NMR (CH2Cl2): δ 119.8 (q, SO3CF3, JC—F = 318.4 Hz); δ 113.9 (C5Me5); δ 67.8 (HO—CH2—CH2—OH), δ 9.6 (C5Me5); 19F{1H} NMR (CH2Cl2): δ -78.6; IR (nujol) vNO 1820 cm-1 (versus); mp 131 C; Anal. Calcd for C14H21NO9RuS2F6 (626): C, 26.80; H, 3.40; N, 2.20; Found: C, 26.82; H, 3.43; N, 2.18.

Refinement top

All non-hydrogen atoms were refined anisotropically. Positions of hydrogen atoms were found from difference Fourier maps, but placed in calculated position and refined in the riding approximation. CH3 H atoms were treated as part of idealized methyl group with torsion angles from electron density. Displacement factors were assigned as Uiso=1.5Ueq (for CH~3~) and Uiso=1.2Ueq for the CH2. Hydroxyl hydrogen atoms were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. , Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown in broken lines.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the columns of Ru-complex and trifluoromethanesulfonate anion (coming out of the plane) along the a-axis direction. Only hydrogen atoms involved in H-bonding are present. Hydrogen bonds are shown as dashed lines.
(Glycol-κ2O,O')nitrosyl(η5-pentamethylcyclopentadienyl)ruthenium(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Ru(C10H15)(NO)(C2H6O2)](CF3O3S)2F(000) = 1256
Mr = 626.51Dx = 1.797 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 6176 reflections
a = 8.5593 (2) Åθ = 2.4–27.1°
b = 30.5443 (7) ŵ = 0.95 mm1
c = 8.8608 (2) ÅT = 90 K
β = 91.295 (1)°Plate, red
V = 2315.96 (9) Å30.20 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX2
diffractometer
5102 independent reflections
Radiation source: rotating anode4513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 27.1°, θmin = 1.3°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 3939
Tmin = 0.833, Tmax = 0.963l = 1111
30259 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0207P)2 + 1.8018P]
where P = (Fo2 + 2Fc2)/3
5102 reflections(Δ/σ)max = 0.003
311 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ru(C10H15)(NO)(C2H6O2)](CF3O3S)2V = 2315.96 (9) Å3
Mr = 626.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5593 (2) ŵ = 0.95 mm1
b = 30.5443 (7) ÅT = 90 K
c = 8.8608 (2) Å0.20 × 0.20 × 0.04 mm
β = 91.295 (1)°
Data collection top
Bruker SMART APEX2
diffractometer
5102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4513 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.963Rint = 0.027
30259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.52 e Å3
5102 reflectionsΔρmin = 0.37 e Å3
311 parameters
Special details top

Experimental. X-ray diffraction data on the title compound were collected at 90 (1) K using a Bruker SMART APEX2 CCD diffractometer installed at a Rigaku rotating anode source (Mo K\a radiation, λ =0.71073 Å), and equipped with an Oxford Cryosystems nitrogen gas-flow apparatus. Data collection was performed with four runs at ϕ = 0.00 °, at ϕ = 90.00 °, at ϕ = 180 ° and at ϕ = 270 ° (600 frames each). Frame width = 0.30 ° in ω. Data were merged, corrected for decay, and treated with multi-scan absorption corrections, Bruker (2004).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.363831 (15)0.628334 (4)0.422226 (16)0.01184 (4)
S10.79684 (5)0.553701 (14)0.22295 (5)0.01778 (10)
S20.38389 (5)0.708576 (14)0.83367 (5)0.01840 (10)
F10.64453 (14)0.67755 (4)0.72541 (14)0.0311 (3)
F20.67642 (15)0.72972 (4)0.88629 (16)0.0364 (3)
F30.61548 (16)0.66532 (4)0.96169 (15)0.0373 (3)
F40.92738 (16)0.58431 (5)0.01957 (15)0.0393 (3)
F50.83784 (17)0.51903 (5)0.04318 (17)0.0461 (4)
F60.67972 (15)0.57350 (4)0.04329 (14)0.0350 (3)
O10.51407 (19)0.58134 (5)0.66923 (18)0.0359 (4)
O20.37028 (15)0.69766 (4)0.44193 (15)0.0160 (3)
H20.372 (3)0.7089 (8)0.524 (3)0.038 (7)*
O30.54090 (15)0.64795 (4)0.27409 (15)0.0183 (3)
H30.611 (3)0.6309 (8)0.263 (3)0.035 (7)*
O40.30874 (16)0.66687 (4)0.81175 (16)0.0237 (3)
O50.38100 (16)0.73629 (4)0.69937 (15)0.0219 (3)
O60.35026 (17)0.73178 (4)0.97014 (16)0.0265 (3)
O70.78423 (16)0.59968 (4)0.26746 (16)0.0252 (3)
O80.94083 (15)0.53366 (4)0.27126 (18)0.0268 (3)
O90.65658 (16)0.52870 (5)0.24344 (18)0.0311 (3)
N10.47625 (18)0.60542 (5)0.57437 (19)0.0210 (3)
C10.4776 (2)0.71981 (6)0.3435 (2)0.0193 (4)
H1A0.51530.74730.39110.023*
H1B0.42460.72710.24630.023*
C20.6118 (2)0.68950 (6)0.3177 (2)0.0207 (4)
H2A0.67850.70070.23650.025*
H2B0.67650.68610.41110.025*
C30.16359 (19)0.58780 (5)0.4961 (2)0.0152 (3)
C40.10739 (19)0.62820 (6)0.4356 (2)0.0155 (3)
C50.15106 (19)0.63035 (6)0.2792 (2)0.0148 (3)
C60.23367 (19)0.59090 (5)0.2443 (2)0.0144 (3)
C70.24397 (19)0.56501 (5)0.3780 (2)0.0139 (3)
C80.1359 (2)0.57127 (6)0.6516 (2)0.0216 (4)
H8A0.13640.59590.72250.032*
H8B0.21870.55060.68080.032*
H8C0.03440.55650.65370.032*
C90.0145 (2)0.66126 (6)0.5195 (2)0.0203 (4)
H9A0.09420.65140.52480.030*
H9B0.01830.68940.46680.030*
H9C0.05860.66460.62190.030*
C100.1076 (2)0.66649 (6)0.1722 (2)0.0194 (4)
H10A0.17650.66570.08540.029*
H10B0.11900.69470.22380.029*
H10C0.00100.66270.13730.029*
C110.3010 (2)0.57971 (6)0.0955 (2)0.0188 (4)
H11A0.39370.56130.11130.028*
H11B0.33040.60670.04330.028*
H11C0.22310.56380.03410.028*
C120.3081 (2)0.51965 (5)0.3901 (2)0.0177 (4)
H12A0.22550.49850.36480.027*
H12B0.34670.51440.49350.027*
H12C0.39420.51620.32000.027*
C130.8112 (2)0.55776 (6)0.0190 (2)0.0236 (4)
C140.5906 (2)0.69451 (6)0.8531 (2)0.0226 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01021 (7)0.00918 (6)0.01600 (7)0.00059 (5)0.00226 (5)0.00032 (5)
S10.0120 (2)0.0172 (2)0.0240 (2)0.00174 (16)0.00207 (17)0.00336 (17)
S20.0227 (2)0.0141 (2)0.0184 (2)0.00311 (17)0.00084 (18)0.00146 (17)
F10.0254 (6)0.0365 (7)0.0316 (7)0.0005 (5)0.0013 (5)0.0093 (5)
F20.0304 (7)0.0261 (6)0.0523 (9)0.0110 (5)0.0083 (6)0.0085 (6)
F30.0422 (8)0.0333 (7)0.0360 (7)0.0061 (6)0.0080 (6)0.0122 (6)
F40.0344 (7)0.0521 (8)0.0320 (7)0.0134 (6)0.0114 (6)0.0015 (6)
F50.0525 (9)0.0368 (8)0.0487 (9)0.0094 (7)0.0059 (7)0.0262 (7)
F60.0314 (7)0.0446 (8)0.0286 (7)0.0055 (6)0.0079 (5)0.0077 (6)
O10.0407 (9)0.0254 (8)0.0406 (9)0.0040 (7)0.0226 (7)0.0138 (7)
O20.0181 (6)0.0113 (6)0.0186 (7)0.0010 (5)0.0008 (5)0.0002 (5)
O30.0142 (6)0.0135 (6)0.0274 (7)0.0029 (5)0.0030 (5)0.0051 (5)
O40.0263 (7)0.0178 (6)0.0270 (7)0.0073 (5)0.0003 (6)0.0023 (5)
O50.0304 (7)0.0149 (6)0.0204 (7)0.0015 (5)0.0002 (6)0.0003 (5)
O60.0361 (8)0.0229 (7)0.0206 (7)0.0018 (6)0.0047 (6)0.0045 (6)
O70.0201 (7)0.0249 (7)0.0307 (8)0.0029 (6)0.0003 (6)0.0092 (6)
O80.0158 (7)0.0213 (7)0.0428 (9)0.0010 (5)0.0103 (6)0.0069 (6)
O90.0161 (7)0.0361 (8)0.0410 (9)0.0091 (6)0.0044 (6)0.0166 (7)
N10.0195 (8)0.0156 (8)0.0274 (9)0.0028 (6)0.0098 (7)0.0008 (6)
C10.0215 (9)0.0137 (8)0.0227 (10)0.0035 (7)0.0014 (7)0.0017 (7)
C20.0166 (9)0.0159 (9)0.0296 (10)0.0072 (7)0.0017 (8)0.0034 (7)
C30.0101 (8)0.0140 (8)0.0213 (9)0.0039 (6)0.0013 (7)0.0010 (7)
C40.0094 (8)0.0140 (8)0.0230 (9)0.0024 (6)0.0024 (7)0.0004 (7)
C50.0110 (8)0.0133 (8)0.0200 (9)0.0022 (6)0.0047 (7)0.0004 (7)
C60.0102 (8)0.0129 (8)0.0200 (9)0.0041 (6)0.0038 (7)0.0017 (7)
C70.0104 (8)0.0111 (8)0.0201 (9)0.0036 (6)0.0032 (7)0.0002 (6)
C80.0215 (10)0.0214 (9)0.0221 (10)0.0016 (7)0.0037 (8)0.0047 (8)
C90.0159 (9)0.0185 (9)0.0264 (10)0.0026 (7)0.0004 (8)0.0010 (7)
C100.0182 (9)0.0161 (8)0.0237 (10)0.0010 (7)0.0052 (7)0.0035 (7)
C110.0212 (9)0.0168 (8)0.0183 (9)0.0010 (7)0.0022 (7)0.0009 (7)
C120.0163 (9)0.0115 (8)0.0252 (10)0.0008 (7)0.0022 (7)0.0018 (7)
C130.0199 (9)0.0226 (9)0.0283 (11)0.0005 (8)0.0001 (8)0.0047 (8)
C140.0261 (10)0.0161 (9)0.0255 (10)0.0049 (7)0.0031 (8)0.0022 (7)
Geometric parameters (Å, º) top
Ru1—N11.7817 (16)C1—H1B0.9900
Ru1—O32.1139 (13)C2—H2A0.9900
Ru1—O22.1252 (12)C2—H2B0.9900
Ru1—C52.1961 (17)C3—C41.425 (2)
Ru1—C42.2008 (17)C3—C71.444 (2)
Ru1—C72.2201 (16)C3—C81.492 (3)
Ru1—C32.2247 (17)C4—C51.445 (3)
Ru1—C62.2257 (17)C4—C91.494 (2)
S1—O81.4328 (14)C5—C61.434 (2)
S1—O91.4379 (14)C5—C101.497 (2)
S1—O71.4633 (14)C6—C71.425 (2)
S1—C131.818 (2)C6—C111.491 (3)
S2—O61.4364 (14)C7—C121.493 (2)
S2—O41.4383 (13)C8—H8A0.9800
S2—O51.4601 (14)C8—H8B0.9800
S2—C141.825 (2)C8—H8C0.9800
F1—C141.336 (2)C9—H9A0.9800
F2—C141.332 (2)C9—H9B0.9800
F3—C141.326 (2)C9—H9C0.9800
F4—C131.333 (2)C10—H10A0.9800
F5—C131.327 (2)C10—H10B0.9800
F6—C131.332 (2)C10—H10C0.9800
O1—N11.158 (2)C11—H11A0.9800
O2—C11.448 (2)C11—H11B0.9800
O2—H20.80 (3)C11—H11C0.9800
O3—C21.455 (2)C12—H12A0.9800
O3—H30.80 (3)C12—H12B0.9800
C1—C21.497 (3)C12—H12C0.9800
C1—H1A0.9900
N1—Ru1—O3101.46 (7)C3—C4—C9125.28 (17)
N1—Ru1—O2108.46 (6)C5—C4—C9126.77 (16)
O3—Ru1—O275.58 (5)C3—C4—Ru172.14 (10)
N1—Ru1—C5150.97 (7)C5—C4—Ru170.63 (9)
O3—Ru1—C5103.33 (6)C9—C4—Ru1124.63 (12)
O2—Ru1—C592.24 (6)C6—C5—C4107.92 (15)
N1—Ru1—C4118.73 (7)C6—C5—C10126.86 (16)
O3—Ru1—C4139.81 (6)C4—C5—C10125.12 (16)
O2—Ru1—C491.23 (6)C6—C5—Ru172.20 (9)
C5—Ru1—C438.38 (7)C4—C5—Ru170.99 (9)
N1—Ru1—C791.78 (7)C10—C5—Ru1125.25 (12)
O3—Ru1—C7118.17 (6)C7—C6—C5107.99 (15)
O2—Ru1—C7153.32 (6)C7—C6—C11126.16 (16)
C5—Ru1—C763.16 (6)C5—C6—C11125.82 (16)
C4—Ru1—C763.29 (6)C7—C6—Ru171.09 (10)
N1—Ru1—C388.01 (7)C5—C6—Ru169.95 (9)
O3—Ru1—C3155.28 (6)C11—C6—Ru1123.16 (12)
O2—Ru1—C3123.30 (6)C6—C7—C3108.26 (15)
C5—Ru1—C363.32 (6)C6—C7—C12126.20 (16)
C4—Ru1—C337.55 (6)C3—C7—C12125.11 (16)
C7—Ru1—C337.93 (6)C6—C7—Ru171.52 (9)
N1—Ru1—C6125.96 (7)C3—C7—Ru171.21 (9)
O3—Ru1—C693.46 (6)C12—C7—Ru1128.90 (12)
O2—Ru1—C6125.57 (6)C3—C8—H8A109.5
C5—Ru1—C637.85 (6)C3—C8—H8B109.5
C4—Ru1—C663.48 (6)H8A—C8—H8B109.5
C7—Ru1—C637.38 (6)C3—C8—H8C109.5
C3—Ru1—C662.99 (7)H8A—C8—H8C109.5
O8—S1—O9116.77 (9)H8B—C8—H8C109.5
O8—S1—O7113.43 (8)C4—C9—H9A109.5
O9—S1—O7114.13 (9)C4—C9—H9B109.5
O8—S1—C13104.41 (9)H9A—C9—H9B109.5
O9—S1—C13103.72 (9)C4—C9—H9C109.5
O7—S1—C13102.10 (9)H9A—C9—H9C109.5
O6—S2—O4116.95 (9)H9B—C9—H9C109.5
O6—S2—O5113.58 (8)C5—C10—H10A109.5
O4—S2—O5113.84 (8)C5—C10—H10B109.5
O6—S2—C14104.43 (9)H10A—C10—H10B109.5
O4—S2—C14103.53 (9)C5—C10—H10C109.5
O5—S2—C14102.23 (9)H10A—C10—H10C109.5
C1—O2—Ru1115.58 (10)H10B—C10—H10C109.5
C1—O2—H2110.5 (19)C6—C11—H11A109.5
Ru1—O2—H2119.9 (19)C6—C11—H11B109.5
C2—O3—Ru1112.50 (11)H11A—C11—H11B109.5
C2—O3—H3106.7 (18)C6—C11—H11C109.5
Ru1—O3—H3116.0 (18)H11A—C11—H11C109.5
O1—N1—Ru1159.45 (14)H11B—C11—H11C109.5
O2—C1—C2107.59 (14)C7—C12—H12A109.5
O2—C1—H1A110.2C7—C12—H12B109.5
C2—C1—H1A110.2H12A—C12—H12B109.5
O2—C1—H1B110.2C7—C12—H12C109.5
C2—C1—H1B110.2H12A—C12—H12C109.5
H1A—C1—H1B108.5H12B—C12—H12C109.5
O3—C2—C1105.25 (14)F5—C13—F6107.53 (16)
O3—C2—H2A110.7F5—C13—F4107.46 (17)
C1—C2—H2A110.7F6—C13—F4107.59 (17)
O3—C2—H2B110.7F5—C13—S1111.59 (15)
C1—C2—H2B110.7F6—C13—S1111.14 (14)
H2A—C2—H2B108.8F4—C13—S1111.33 (14)
C4—C3—C7107.89 (15)F3—C14—F2107.70 (16)
C4—C3—C8125.55 (16)F3—C14—F1107.53 (16)
C7—C3—C8126.49 (16)F2—C14—F1107.52 (16)
C4—C3—Ru170.32 (9)F3—C14—S2111.48 (14)
C7—C3—Ru170.86 (9)F2—C14—S2111.06 (13)
C8—C3—Ru1126.86 (13)F1—C14—S2111.37 (13)
C3—C4—C5107.92 (15)
N1—Ru1—O2—C1101.00 (13)C6—Ru1—C5—C4116.90 (14)
O3—Ru1—O2—C13.51 (11)N1—Ru1—C5—C10167.29 (15)
C5—Ru1—O2—C199.68 (12)O3—Ru1—C5—C1044.76 (16)
C4—Ru1—O2—C1138.07 (12)O2—Ru1—C5—C1030.94 (15)
C7—Ru1—O2—C1121.52 (15)C4—Ru1—C5—C10120.10 (19)
C3—Ru1—O2—C1158.89 (12)C7—Ru1—C5—C10159.84 (18)
C6—Ru1—O2—C180.33 (13)C3—Ru1—C5—C10157.47 (17)
N1—Ru1—O3—C280.50 (13)C6—Ru1—C5—C10123.0 (2)
O2—Ru1—O3—C225.85 (11)C4—C5—C6—C71.15 (18)
C5—Ru1—O3—C2114.74 (12)C10—C5—C6—C7177.64 (16)
C4—Ru1—O3—C2100.18 (14)Ru1—C5—C6—C761.24 (11)
C7—Ru1—O3—C2178.80 (11)C4—C5—C6—C11179.44 (16)
C3—Ru1—O3—C2168.68 (14)C10—C5—C6—C114.1 (3)
C6—Ru1—O3—C2151.73 (12)Ru1—C5—C6—C11117.05 (17)
O3—Ru1—N1—O1137.2 (5)C4—C5—C6—Ru162.39 (11)
O2—Ru1—N1—O1144.4 (5)C10—C5—C6—Ru1121.12 (17)
C5—Ru1—N1—O111.0 (6)N1—Ru1—C6—C727.59 (13)
C4—Ru1—N1—O142.3 (5)O3—Ru1—C6—C7134.43 (10)
C7—Ru1—N1—O117.9 (5)O2—Ru1—C6—C7150.85 (9)
C3—Ru1—N1—O119.8 (5)C5—Ru1—C6—C7118.20 (14)
C6—Ru1—N1—O134.3 (5)C4—Ru1—C6—C779.96 (11)
Ru1—O2—C1—C230.53 (18)C3—Ru1—C6—C737.71 (10)
Ru1—O3—C2—C149.10 (17)N1—Ru1—C6—C5145.78 (11)
O2—C1—C2—O349.83 (19)O3—Ru1—C6—C5107.38 (10)
N1—Ru1—C3—C4146.55 (11)O2—Ru1—C6—C532.66 (12)
O3—Ru1—C3—C499.89 (16)C4—Ru1—C6—C538.23 (10)
O2—Ru1—C3—C435.68 (13)C7—Ru1—C6—C5118.20 (15)
C5—Ru1—C3—C438.20 (10)C3—Ru1—C6—C580.49 (11)
C7—Ru1—C3—C4118.00 (15)N1—Ru1—C6—C1193.83 (15)
C6—Ru1—C3—C480.83 (11)O3—Ru1—C6—C1113.01 (14)
N1—Ru1—C3—C795.46 (11)O2—Ru1—C6—C1187.72 (15)
O3—Ru1—C3—C718.11 (19)C5—Ru1—C6—C11120.38 (18)
O2—Ru1—C3—C7153.68 (9)C4—Ru1—C6—C11158.62 (16)
C5—Ru1—C3—C779.80 (11)C7—Ru1—C6—C11121.42 (18)
C4—Ru1—C3—C7118.00 (15)C3—Ru1—C6—C11159.13 (16)
C6—Ru1—C3—C737.17 (10)C5—C6—C7—C31.59 (18)
N1—Ru1—C3—C826.31 (16)C11—C6—C7—C3179.87 (16)
O3—Ru1—C3—C8139.88 (15)Ru1—C6—C7—C362.10 (11)
O2—Ru1—C3—C884.55 (16)C5—C6—C7—C12174.32 (16)
C5—Ru1—C3—C8158.44 (17)C11—C6—C7—C127.4 (3)
C4—Ru1—C3—C8120.2 (2)Ru1—C6—C7—C12125.16 (17)
C7—Ru1—C3—C8121.77 (19)C5—C6—C7—Ru160.52 (11)
C6—Ru1—C3—C8158.94 (17)C11—C6—C7—Ru1117.77 (17)
C7—C3—C4—C50.71 (19)C4—C3—C7—C61.43 (19)
C8—C3—C4—C5176.24 (16)C8—C3—C7—C6175.48 (16)
Ru1—C3—C4—C561.94 (11)Ru1—C3—C7—C662.30 (11)
C7—C3—C4—C9178.56 (16)C4—C3—C7—C12174.26 (16)
C8—C3—C4—C91.6 (3)C8—C3—C7—C122.6 (3)
Ru1—C3—C4—C9120.22 (17)Ru1—C3—C7—C12124.86 (17)
C7—C3—C4—Ru161.23 (11)C4—C3—C7—Ru160.88 (11)
C8—C3—C4—Ru1121.83 (17)C8—C3—C7—Ru1122.21 (18)
N1—Ru1—C4—C338.92 (13)N1—Ru1—C7—C6157.97 (11)
O3—Ru1—C4—C3140.32 (10)O3—Ru1—C7—C653.96 (11)
O2—Ru1—C4—C3150.82 (11)O2—Ru1—C7—C661.92 (17)
C5—Ru1—C4—C3117.13 (14)C5—Ru1—C7—C637.30 (10)
C7—Ru1—C4—C337.41 (10)C4—Ru1—C7—C680.51 (11)
C6—Ru1—C4—C379.42 (11)C3—Ru1—C7—C6117.56 (14)
N1—Ru1—C4—C5156.05 (10)N1—Ru1—C7—C384.47 (11)
O3—Ru1—C4—C523.19 (14)O3—Ru1—C7—C3171.52 (9)
O2—Ru1—C4—C592.06 (10)O2—Ru1—C7—C355.63 (17)
C7—Ru1—C4—C579.71 (11)C5—Ru1—C7—C380.25 (11)
C3—Ru1—C4—C5117.13 (14)C4—Ru1—C7—C337.04 (10)
C6—Ru1—C4—C537.70 (10)C6—Ru1—C7—C3117.56 (14)
N1—Ru1—C4—C982.06 (16)N1—Ru1—C7—C1235.94 (17)
O3—Ru1—C4—C998.70 (16)O3—Ru1—C7—C1268.07 (17)
O2—Ru1—C4—C929.83 (15)O2—Ru1—C7—C12176.04 (13)
C5—Ru1—C4—C9121.89 (19)C5—Ru1—C7—C12159.34 (18)
C7—Ru1—C4—C9158.40 (18)C4—Ru1—C7—C12157.45 (18)
C3—Ru1—C4—C9121.0 (2)C3—Ru1—C7—C12120.4 (2)
C6—Ru1—C4—C9159.59 (17)C6—Ru1—C7—C12122.0 (2)
C3—C4—C5—C60.26 (19)O8—S1—C13—F556.05 (16)
C9—C4—C5—C6177.54 (16)O9—S1—C13—F566.73 (16)
Ru1—C4—C5—C663.17 (11)O7—S1—C13—F5174.41 (14)
C3—C4—C5—C10176.83 (16)O8—S1—C13—F6176.07 (13)
C9—C4—C5—C101.0 (3)O9—S1—C13—F653.29 (16)
Ru1—C4—C5—C10120.26 (17)O7—S1—C13—F665.57 (15)
C3—C4—C5—Ru162.91 (12)O8—S1—C13—F464.01 (15)
C9—C4—C5—Ru1119.29 (17)O9—S1—C13—F4173.21 (14)
N1—Ru1—C5—C669.71 (18)O7—S1—C13—F454.35 (15)
O3—Ru1—C5—C678.24 (10)O6—S2—C14—F367.93 (15)
O2—Ru1—C5—C6153.94 (10)O4—S2—C14—F354.97 (15)
C4—Ru1—C5—C6116.90 (14)O5—S2—C14—F3173.49 (13)
C7—Ru1—C5—C636.85 (10)O6—S2—C14—F252.17 (16)
C3—Ru1—C5—C679.53 (11)O4—S2—C14—F2175.08 (14)
N1—Ru1—C5—C447.19 (18)O5—S2—C14—F266.40 (15)
O3—Ru1—C5—C4164.86 (9)O6—S2—C14—F1171.97 (13)
O2—Ru1—C5—C489.15 (10)O4—S2—C14—F165.12 (15)
C7—Ru1—C5—C480.06 (10)O5—S2—C14—F153.40 (14)
C3—Ru1—C5—C437.37 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.80 (3)1.76 (3)2.568 (2)176 (3)
O3—H3···O70.80 (3)1.76 (3)2.554 (2)169 (3)

Experimental details

Crystal data
Chemical formula[Ru(C10H15)(NO)(C2H6O2)](CF3O3S)2
Mr626.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.5593 (2), 30.5443 (7), 8.8608 (2)
β (°) 91.295 (1)
V3)2315.96 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.833, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
30259, 5102, 4513
Rint0.027
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.04
No. of reflections5102
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.80 (3)1.76 (3)2.568 (2)176 (3)
O3—H3···O70.80 (3)1.76 (3)2.554 (2)169 (3)
 

Acknowledgements

Support of this research via the PRF 44692.01-GB award by the American Chemical Society and the Cottrell College Award CC6755 from Research Corporation is gratefully acknowledged.

References

First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, R. M. & Hubbard, J. L. (1994). J. Am. Chem. Soc. 116, 9514–9520.  CSD CrossRef CAS Web of Science Google Scholar
First citationHubbard, J. L. & McVicar, W. K. (1992). Inorg. Chem. 31, 910–913.  CSD CrossRef CAS Web of Science Google Scholar
First citationPearsal, M., Gembicky, M., Dominiak, P., Larsen, A. & Coppens, P. (2007). Acta Cryst. E63, m2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSvetlanova-Larsen, A., Zoch, C. R. & Hubbard, J. L. (1996). Organometallics, 15, 3076–3087.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYang, K., Bott, S. G. & Richmond, M. G. (1995). J. Chem. Crystallogr. 25, 283–290.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, K., Martin, J. A., Bott, S. G. & Richmond, M. G. (1997). Inorg. Chim. Acta, 254, 19–27.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds