organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-5-methyl­imidazolidine-2,4-dione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: shameed@qau.edu.pk

(Received 30 November 2007; accepted 19 December 2007; online 16 January 2008)

In the title compound, C10H9FN2O2, the dihedral angle between the hydantoin unit and the benzene ring is 65.55 (5)°. The atoms in the hydantoin ring are coplanar, with a mean deviation of 0.015 Å and a maximum deviation of 0.075 (2) Å for one carbonyl O atom. N—H⋯O hydrogen bonds link the mol­ecules into one-dimensional chains, with one carbonyl group acting as a bifurcated acceptor and the other accepting no hydrogen bonds.

Related literature

For related literature, see: Ahmad et al. (2000[Ahmad, R., Jabeen, R., Zia-ul-Haq, M., Nadeem, H., Duddeck, H. & Verspohl, E. J. (2000). Z. Naturforsch. Teil B, 55, 203-207.], 2002[Ahmad, I., Hameed, S., Duddeck, H., Lenzen, S., Rustenbeck, I. & Ahmad, R. (2002). Z. Naturforsch. Teil B, 57, 349-354.]); Balavoine et al. (2007[Balavoine, F., Malabre, P., Alleaume, T., Rey, A., Cherfils, V., Jeanneton, O., Seigneurin-Venin, S. & Revah, F. (2007). Bioorg. Med. Chem. Lett. 17, 3754-3759.]); Mullica et al. (1998[Mullica, D. F., Trawick, M. L., Wu, P. W. N. & Sappenfield, E. L. (1998). J. Chem. Crystallogr. 28, 761-765.]); Park et al. (2007[Park, H. S., Choi, H. J., Shin, H. S., Lee, S. K. & Park, M. S. (2007). Bull. Korean Chem. Soc. 28, 751-757.]); Rajic et al. (2006[Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837-848.]); Sheppeck et al. (2007[Sheppeck, J. E., Gilmore, J. L., Tebben, A., Xue, C. B., Liu, R. Q., Decieco, C. P. & Duan, J. J. W. (2007). Bioorg. Med. Chem. Lett. 17, 2769-2774.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9FN2O2

  • Mr = 208.19

  • Orthorhombic, P b c a

  • a = 7.096 (2) Å

  • b = 11.348 (3) Å

  • c = 22.661 (7) Å

  • V = 1824.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 (2) K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: none

  • 13516 measured reflections

  • 2083 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.094

  • S = 1.22

  • 2083 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 2.04 (2) 2.8834 (17) 160.5 (18)
N2—H2⋯O1ii 0.89 (2) 1.96 (2) 2.8318 (17) 165.9 (17)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Active research is being carried out in this laboratory on the synthesis of sulfonyl cyclic ureas and their evaluation as hypoglycemic agents (Ahmad et al., 2002; Ahmad et al., 2000). Imidazolidine-2,4-diones, a class of cyclic urea molecules, exhibit diverse biological activities like anti-cancer (Sheppeck et al., 2007), anti-viral (Rajic et al., 2006), COX-2 inhibitors (Park et al., 2007) and hormone receptor antagonists (Balavoine et al., 2007). The title compound (Fig. 1) was synthesized as an intermediate for onward conversion to sulfonyl derivatives for hypoglycemic assay. It contains a hydantoin ring attached to a methyl and p-flourophenyl group at the chiral centre C1. All bond distances are in agreement with experimental values found in similar compounds. The atoms in the hydantoin ring are planar as expected (Mullica et al., 1998) with a mean standard deviation of 0.015 Å. The C2—O1 and C3—O2 bond distances are 1.2320 (17) Å and 1.2080 (17) Å, respectively, which are close to the standard value for C?O (1.20 Å). The dihedral angle subtended by the p-flourophenyl group at the chiral centre C(1) is 65.55 (5)°.

Related literature top

For related literature, see: Ahmad et al. (2000, 2002); Balavoine et al. (2007); Mullica et al. (1998); Park et al. (2007); Rajic et al. (2006); Sheppeck et al. (2007).

Experimental top

4-Fluoroacetophenone (0.1 mol) and ammonium carbonate (0.6 mol) were placed in a 100 ml round bottom flask. Potassium cyanide (0.1 mol) was dissolved in aqueous ethanol (60%) and added to the reaction flask. The mixture was heated on an oil bath at 328–333 K until the reaction was completed (monitored by TLC). After cooling to room temperature, the reaction mixture was concentrated and acidified using conc. HCl. The resulting precipitate was filtered, dissolved in saturated NaOH(aq) solution and extracted with diethyl ether (25 ml). The aqueous layer was acidified to precipitate the title compound, which was filtered, dried and recrystallized from ethanol/water. Yield: 75%; m.p. 485–488 K; Rf (pet. ether/ethyl acetate 1:2) 0.58.

IR (KBr, νmax, cm-1): 3412, 3245, 3058, 2989, 1773, 1719, 1602, 1378, 1274, 838; 1H-NMR (acetone-d6) δ: 1.80 (3H, s), 7.18 (2H, m), 7.64 (2H, m), 7.71 (1H, bs), 9.72 (1H, bs); EIMS (m/z, %): 208 (M+, 20), 193 (65), 165 (5), 137 (36), 122 (100), 95 (25); Elemental analysis calculated: C 57.69, H 4.36, N 13.46; found: C 57.62, H 4.38, N 13.60%.

Refinement top

H atoms bound to N atoms were located in difference Fourier maps and refined freely with isotropic displacement parameters. Other H atoms were placed in idealized positions and treated as riding, with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and TEXSAN (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at the 30% probability level for non-H atoms.
5-(4-Fluorophenyl)-5-methylimidazolidine-2,4-dione top
Crystal data top
C10H9FN2O2F(000) = 864
Mr = 208.19Dx = 1.516 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 5426 reflections
a = 7.096 (2) Åθ = 3.0–27.5°
b = 11.348 (3) ŵ = 0.12 mm1
c = 22.661 (7) ÅT = 123 K
V = 1824.7 (10) Å3Block, colorless
Z = 80.34 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 98
13516 measured reflectionsk = 1413
2083 independent reflectionsl = 1729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.028P)2 + 1.2798P]
where P = (Fo2 + 2Fc2)/3
2083 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H9FN2O2V = 1824.7 (10) Å3
Mr = 208.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.096 (2) ŵ = 0.12 mm1
b = 11.348 (3) ÅT = 123 K
c = 22.661 (7) Å0.34 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2054 reflections with I > 2σ(I)
13516 measured reflectionsRint = 0.026
2083 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 0.31 e Å3
2083 reflectionsΔρmin = 0.16 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13701 (19)0.06340 (11)0.10194 (6)0.0127 (3)
N10.09007 (16)0.16162 (10)0.06286 (5)0.0141 (2)
H10.025 (3)0.1859 (17)0.0547 (9)0.028 (5)*
C20.23589 (19)0.19597 (12)0.02932 (6)0.0135 (3)
O10.23772 (14)0.27474 (9)0.00808 (4)0.0167 (2)
N20.38961 (17)0.12558 (10)0.04332 (5)0.0151 (3)
H20.504 (3)0.1445 (16)0.0305 (8)0.024 (5)*
C30.34432 (19)0.04077 (11)0.08415 (6)0.0129 (3)
O20.44614 (15)0.03631 (8)0.10246 (4)0.0177 (2)
C40.13117 (18)0.09904 (11)0.16706 (6)0.0118 (3)
C50.08781 (19)0.21387 (12)0.18428 (6)0.0150 (3)
H50.06070.27190.15530.018*
C60.0841 (2)0.24367 (12)0.24395 (6)0.0175 (3)
H60.05420.32170.25600.021*
C70.1246 (2)0.15835 (13)0.28513 (6)0.0170 (3)
C80.1685 (2)0.04404 (12)0.26982 (6)0.0158 (3)
H80.19540.01340.29920.019*
C90.17244 (19)0.01526 (12)0.21023 (6)0.0139 (3)
H90.20370.06280.19870.017*
C100.0141 (2)0.04446 (12)0.08893 (6)0.0183 (3)
H10A0.11790.02580.09750.027*
H10B0.05490.11050.11370.027*
H10C0.02670.06600.04720.027*
F10.12297 (14)0.18871 (8)0.34320 (4)0.0258 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (6)0.0140 (6)0.0116 (6)0.0001 (5)0.0008 (5)0.0028 (5)
N10.0104 (5)0.0188 (6)0.0132 (5)0.0008 (4)0.0007 (4)0.0057 (4)
C20.0120 (6)0.0168 (6)0.0115 (6)0.0011 (5)0.0016 (5)0.0003 (5)
O10.0127 (5)0.0210 (5)0.0166 (5)0.0002 (4)0.0000 (4)0.0079 (4)
N20.0112 (6)0.0183 (6)0.0159 (6)0.0004 (4)0.0011 (4)0.0053 (5)
C30.0145 (6)0.0138 (6)0.0105 (6)0.0007 (5)0.0001 (5)0.0003 (5)
O20.0183 (5)0.0163 (5)0.0186 (5)0.0042 (4)0.0014 (4)0.0030 (4)
C40.0092 (6)0.0147 (6)0.0115 (6)0.0016 (5)0.0008 (5)0.0009 (5)
C50.0145 (6)0.0137 (6)0.0169 (6)0.0010 (5)0.0012 (5)0.0026 (5)
C60.0172 (7)0.0145 (6)0.0209 (7)0.0014 (5)0.0052 (5)0.0037 (5)
C70.0155 (7)0.0229 (7)0.0125 (6)0.0043 (5)0.0030 (5)0.0042 (5)
C80.0147 (6)0.0194 (6)0.0132 (6)0.0015 (5)0.0001 (5)0.0037 (5)
C90.0136 (6)0.0133 (6)0.0148 (6)0.0002 (5)0.0007 (5)0.0009 (5)
C100.0200 (7)0.0196 (7)0.0152 (6)0.0070 (5)0.0006 (5)0.0002 (5)
F10.0347 (5)0.0288 (5)0.0140 (4)0.0055 (4)0.0051 (4)0.0061 (4)
Geometric parameters (Å, º) top
C1—N11.4620 (17)C5—C61.394 (2)
C1—C41.5306 (18)C5—H50.950
C1—C101.5316 (19)C6—C71.375 (2)
C1—C31.5468 (19)C6—H60.950
N1—C21.3417 (18)C7—F11.3604 (16)
N1—H10.88 (2)C7—C81.378 (2)
C2—O11.2320 (17)C8—C91.3897 (19)
C2—N21.3887 (18)C8—H80.950
N2—C31.3732 (17)C9—H90.950
N2—H20.89 (2)C10—H10A0.980
C3—O21.2080 (17)C10—H10B0.980
C4—C51.3946 (19)C10—H10C0.980
C4—C91.3952 (18)
N1—C1—C4112.11 (11)C6—C5—C4120.14 (13)
N1—C1—C10111.28 (11)C6—C5—H5119.9
C4—C1—C10112.42 (11)C4—C5—H5119.9
N1—C1—C3100.68 (10)C7—C6—C5118.92 (13)
C4—C1—C3108.71 (10)C7—C6—H6120.5
C10—C1—C3111.03 (11)C5—C6—H6120.5
C2—N1—C1112.89 (11)F1—C7—C6118.45 (13)
C2—N1—H1120.3 (13)F1—C7—C8118.92 (13)
C1—N1—H1125.2 (13)C6—C7—C8122.62 (13)
O1—C2—N1127.49 (13)C7—C8—C9118.05 (12)
O1—C2—N2124.48 (12)C7—C8—H8121.0
N1—C2—N2108.02 (11)C9—C8—H8121.0
C3—N2—C2111.91 (11)C8—C9—C4121.13 (12)
C3—N2—H2127.1 (12)C8—C9—H9119.4
C2—N2—H2120.3 (12)C4—C9—H9119.4
O2—C3—N2126.79 (13)C1—C10—H10A109.5
O2—C3—C1126.84 (12)C1—C10—H10B109.5
N2—C3—C1106.37 (11)H10A—C10—H10B109.5
C5—C4—C9119.13 (12)C1—C10—H10C109.5
C5—C4—C1121.51 (12)H10A—C10—H10C109.5
C9—C4—C1119.35 (12)H10B—C10—H10C109.5
C4—C1—N1—C2113.75 (13)C10—C1—C4—C5127.12 (14)
C10—C1—N1—C2119.38 (13)C3—C1—C4—C5109.54 (14)
C3—C1—N1—C21.65 (14)N1—C1—C4—C9179.95 (12)
C1—N1—C2—O1178.84 (13)C10—C1—C4—C953.70 (17)
C1—N1—C2—N20.49 (15)C3—C1—C4—C969.63 (15)
O1—C2—N2—C3176.54 (13)C9—C4—C5—C60.6 (2)
N1—C2—N2—C32.81 (16)C1—C4—C5—C6179.82 (12)
C2—N2—C3—O2176.10 (13)C4—C5—C6—C70.3 (2)
C2—N2—C3—C13.79 (15)C5—C6—C7—F1179.19 (12)
N1—C1—C3—O2176.71 (13)C5—C6—C7—C80.1 (2)
C4—C1—C3—O265.37 (17)F1—C7—C8—C9178.99 (12)
C10—C1—C3—O258.79 (17)C6—C7—C8—C90.3 (2)
N1—C1—C3—N23.18 (13)C7—C8—C9—C40.7 (2)
C4—C1—C3—N2114.74 (12)C5—C4—C9—C80.9 (2)
C10—C1—C3—N2121.09 (12)C1—C4—C9—C8179.95 (12)
N1—C1—C4—C50.87 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.04 (2)2.8834 (17)160.5 (18)
N2—H2···O1ii0.89 (2)1.96 (2)2.8318 (17)165.9 (17)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H9FN2O2
Mr208.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)7.096 (2), 11.348 (3), 22.661 (7)
V3)1824.7 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13516, 2083, 2054
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.094, 1.22
No. of reflections2083
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.16

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 1997) and TEXSAN (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.04 (2)2.8834 (17)160.5 (18)
N2—H2···O1ii0.89 (2)1.96 (2)2.8318 (17)165.9 (17)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative Program for a Doctoral Fellowship at Gifu University, Japan.

References

First citationAhmad, I., Hameed, S., Duddeck, H., Lenzen, S., Rustenbeck, I. & Ahmad, R. (2002). Z. Naturforsch. Teil B, 57, 349–354.  CAS Google Scholar
First citationAhmad, R., Jabeen, R., Zia-ul-Haq, M., Nadeem, H., Duddeck, H. & Verspohl, E. J. (2000). Z. Naturforsch. Teil B, 55, 203–207.  CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBalavoine, F., Malabre, P., Alleaume, T., Rey, A., Cherfils, V., Jeanneton, O., Seigneurin-Venin, S. & Revah, F. (2007). Bioorg. Med. Chem. Lett. 17, 3754–3759.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMullica, D. F., Trawick, M. L., Wu, P. W. N. & Sappenfield, E. L. (1998). J. Chem. Crystallogr. 28, 761–765.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, H. S., Choi, H. J., Shin, H. S., Lee, S. K. & Park, M. S. (2007). Bull. Korean Chem. Soc. 28, 751–757.  CAS Google Scholar
First citationRajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837-848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheppeck, J. E., Gilmore, J. L., Tebben, A., Xue, C. B., Liu, R. Q., Decieco, C. P. & Duan, J. J. W. (2007). Bioorg. Med. Chem. Lett. 17, 2769–2774.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds