organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o501-o502

4′-Amino-2,2′′-dioxo-2,2′′,3,3′′-tetra­hydro-1H-indole-3-spiro-1′-cyclo­pent-3′-ene-2′-spiro-3′′-1H-indole-3′,5′,5′-tricarbo­nitrile dihydrate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 10 December 2007; accepted 21 January 2008; online 23 January 2008)

In the title compound, C22H12N6O2·2H2O, the cyclo­pentene ring adopts an envelope conformation, with the spiro C atom bonded to the dicyano-substituted C atom deviating by 0.437 (2) Å from the plane of the remaining four atoms in the ring. The puckering and smallest displacement asymmetry parameters for the ring are q2 = 0.275 (2) Å, φ = 212.4 (4)° and Δs(C2) = 2.7 (2). The dihedral angle between the two indole groups is 60.1 (1)°. The structure contains inter­molecular N—H⋯O hydrogen bonds involving the indole groups and O—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecules.

Related literature

For related literature, see: Akai et al. (2004[Akai, S., Tsujino, T., Akiyama, E., Tanimoto, K., Naka, T. & Kita, Y. (2004). J. Org. Chem. 69, 2478-2486.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Gallagher et al. (1985[Gallagher, G., Lavanchi, P. G., Wilson, J. W., Hieble, J. & Demmarinis, R. M. (1985). J. Med. Chem. 28, 1533-1536.]); Nagata et al. (2001[Nagata, R., Tokunaga, T., Hume, W., Umezone, T., Okazaki, U., Ueki, Y., Kumagai, K., Hourai, S., Nagamine, J., Seki, H., Taiji, M. & Noguchi, H. (2001). J. Med. Chem. 44, 4641-4649.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Williams & Cox (2003[Williams, R. M. & Cox, R. (2003). Acc. Chem. Res. 36, 127-139.]); Zaveri et al. (2004[Zaveri, N. T., Jiang, F., Olsen, C. M., Deschamps, J. R., Parrish, D., Polgar, W. & Toll, L. (2004). J. Med. Chem. 47, 2973-2976.]).

[Scheme 1]

Experimental

Crystal data
  • C22H12N6O2·2H2O

  • Mr = 428.41

  • Orthorhombic, P n a 21

  • a = 17.1850 (16) Å

  • b = 8.9849 (9) Å

  • c = 13.3275 (13) Å

  • V = 2057.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.25 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: none

  • 16968 measured reflections

  • 2551 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.06

  • 2551 reflections

  • 313 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.09 2.905 (2) 158
N2—H2⋯O3i 0.86 2.22 3.032 (3) 157
O3—H3A⋯O1ii 0.85 (1) 2.00 (2) 2.795 (3) 157 (4)
O3—H3B⋯N6iii 0.85 (1) 2.22 (5) 2.834 (3) 129 (5)
O3—H3B⋯O4iv 0.85 (1) 2.62 (3) 3.381 (4) 149 (5)
O4—H4A⋯N4v 0.85 (1) 2.38 (3) 3.171 (5) 155 (7)
O4—H4B⋯N3 0.85 (1) 2.68 (4) 3.392 (4) 142 (6)
N5—H5A⋯O3vi 0.90 (1) 1.97 (1) 2.860 (3) 175 (3)
N5—H5B⋯O4vi 0.90 (1) 2.17 (1) 3.061 (4) 171 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) [-x, -y+1, z+{\script{1\over 2}}]; (v) [-x, -y, z+{\script{1\over 2}}]; (vi) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The indole template is generally recognized as an important structure in medicinal chemistry, and in particular, oxindoles are important constituents of natural indole alkaloids as well as drugs in development and also in the clinic (Akai et al., 2004). Among them, the spiro-oxindole framework is an important structural motif in biologically relevant compounds such as natural products and pharmaceuticals (Williams & Cox, 2003). The oxindole motif is present in the anti-Parkinson's drug ropinirole (Gallagher et al., 1985), in non-opioid nociceptin receptor ligands (Zaveri et al., 2004), and in the growth hormone secretagogues (Nagata et al., 2001). As the title compound is biologically important, we have determined its crystal structure using X-ray diffraction.

One of the oxindole moieties (C2/C13/N2/C14/C19) is planar with atom O2 deviating by 0.127 (1) Å from the plane of five-membered ring. The dihedral angle between the five- (C2/C13/N2/C14/C19) and six-membered (C14—C19) rings is 1.6 (1)°. The cyclopentene ring adopts an envelope conformation with C2 deviating by 0.437 (2) Å from the plane of the rest of the atoms in the ring. The five-membered ring (N1/C6/C1/C12/C7) in the oxindole moieties adopts a slightly twisted conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the cyclopentene ring and the five-membered ring (N1/C6/C1/C12/C7) are q2 = 0.275 (2)Å and 0.091 (2) Å, ϕ = 212.4 (4)° and 56.3 (12)° and Δs(C2) = 2.7 (2) and Δ2(C7) = 0.5 (2), respectively.

Related literature top

For related literature, see: Akai et al. (2004); Cremer & Pople (1975); Gallagher et al. (1985); Nagata et al. (2001); Nardelli (1983); Williams & Cox (2003); Zaveri et al. (2004).

Experimental top

To a stirred mixture of isatylidene malononitrile (2 mmol) and Hantzsch dihydropyridine ester (1 mmol) in ethanol (10 ml), a catalytic amount of indium(III) chloride (20 mol%) was added and the mixture was stirred at room temperature for about 1–2 h. After complete conversion (as indicated by TLC), the reaction mixture was poured into water and extracted with ethyl acetate (2 × 15 ml). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. The resulting product was purified by column chromatography on silica gel (Merck, 60–120 mesh, ethyl acetate-hexane, 4:6) to afford the pure product in 88% yield as a white solid. Crystals were grown by slow evaporation from ethanol.

Refinement top

H atoms of the NH2 group and water molecules were located in a difference Fourier map and refined with the N—H and O—H distances restrained to 0.90 (1) and 0.85 (1) Å, respectively. H atoms bound to C atoms and the N atoms of the indole rings were placed geometrically and refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.86 Å, and Uiso(H) = 1.2 Ueq(C/N). In the absence of significant anomalous scattering effects, 2271 Friedel pairs were merged as equivalent data.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The molecular packing viewed down the a axis, showing O—H···N and O—H···O intermolecular interactions.
[Figure 3] Fig. 3. The molecular packing viewed down the a axis, showing N—H···O intermolecular interactions.
4'-Amino-2,2''-dioxo-2,2'',3,3''-tetrahydro-1H-indole-3-spiro-1'-cyclopent- 3'-ene-2'-spiro-3''-1H-indole-3',5',5'-tricarbonitrile dihydrate top
Crystal data top
C22H12N6O2·2H2OF(000) = 888
Mr = 428.41Dx = 1.383 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2386 reflections
a = 17.1850 (16) Åθ = 2.4–28.0°
b = 8.9849 (9) ŵ = 0.10 mm1
c = 13.3275 (13) ÅT = 293 K
V = 2057.8 (3) Å3Block, colorless
Z = 40.25 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
ω scansh = 2222
16968 measured reflectionsk = 1111
2551 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.1068P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.27 e Å3
9 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H12N6O2·2H2OV = 2057.8 (3) Å3
Mr = 428.41Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.1850 (16) ŵ = 0.10 mm1
b = 8.9849 (9) ÅT = 293 K
c = 13.3275 (13) Å0.25 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2367 reflections with I > 2σ(I)
16968 measured reflectionsRint = 0.022
2551 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0429 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
2551 reflectionsΔρmin = 0.14 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19406 (12)0.1506 (2)0.03645 (16)0.0341 (4)
C20.19661 (11)0.0810 (2)0.14549 (15)0.0320 (4)
C30.11505 (12)0.1206 (2)0.19253 (16)0.0352 (4)
C40.09089 (12)0.2598 (2)0.13339 (17)0.0349 (4)
C50.13624 (13)0.2738 (2)0.05081 (16)0.0354 (4)
C60.16280 (14)0.0331 (2)0.03919 (16)0.0414 (5)
C70.28704 (15)0.0835 (3)0.08495 (19)0.0452 (5)
C80.35505 (18)0.0831 (4)0.1392 (2)0.0614 (7)
H8A0.36360.01430.19020.074*
C90.41025 (19)0.1889 (4)0.1150 (3)0.0679 (8)
H9A0.45700.19060.15010.082*
C100.39785 (17)0.2922 (4)0.0399 (3)0.0612 (7)
H10A0.43580.36290.02560.073*
C110.32867 (16)0.2907 (3)0.0144 (2)0.0489 (6)
H11A0.31980.36070.06450.059*
C120.27339 (13)0.1839 (2)0.00708 (16)0.0375 (4)
C130.25886 (12)0.1685 (2)0.20696 (15)0.0340 (4)
C140.29683 (12)0.0747 (2)0.20308 (17)0.0378 (4)
C150.34057 (15)0.2019 (3)0.2170 (2)0.0493 (6)
H15A0.38820.19920.25010.059*
C160.31063 (17)0.3336 (3)0.1795 (2)0.0564 (7)
H16A0.33880.42110.18780.068*
C170.24070 (18)0.3388 (3)0.1305 (2)0.0581 (7)
H17A0.22210.42930.10650.070*
C180.19709 (16)0.2097 (2)0.1161 (2)0.0489 (6)
H18A0.14970.21290.08240.059*
C190.22569 (13)0.0769 (2)0.15289 (16)0.0364 (4)
C200.12114 (15)0.1500 (3)0.30204 (19)0.0449 (5)
C210.05602 (14)0.0018 (3)0.1798 (2)0.0470 (5)
C220.12327 (16)0.3857 (3)0.0210 (2)0.0506 (6)
N10.22129 (14)0.0067 (2)0.09965 (16)0.0486 (5)
H10.21890.07850.14220.058*
N20.31446 (11)0.0717 (2)0.23268 (15)0.0413 (4)
H20.35640.09620.26390.050*
N30.12535 (18)0.1713 (4)0.38515 (19)0.0706 (7)
N40.01054 (15)0.0884 (3)0.1731 (3)0.0727 (8)
N50.03222 (13)0.3429 (3)0.16605 (18)0.0498 (5)
H5A0.0025 (15)0.311 (3)0.2169 (17)0.048 (7)*
H5B0.011 (2)0.417 (3)0.130 (3)0.070 (10)*
N60.1106 (2)0.4754 (4)0.0785 (3)0.0916 (11)
O10.09597 (11)0.0125 (2)0.04096 (16)0.0567 (5)
O20.25526 (10)0.29951 (16)0.22853 (13)0.0429 (4)
O30.05768 (12)0.7461 (2)0.83632 (15)0.0540 (4)
H3A0.073 (3)0.830 (3)0.858 (3)0.107 (15)*
H3B0.054 (4)0.692 (4)0.888 (2)0.15 (2)*
O40.0238 (2)0.3832 (4)0.5501 (3)0.0938 (9)
H4A0.020 (4)0.322 (6)0.599 (4)0.16 (3)*
H4B0.066 (2)0.360 (6)0.521 (4)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (10)0.0289 (9)0.0294 (9)0.0008 (8)0.0003 (8)0.0036 (7)
C20.0387 (9)0.0268 (9)0.0304 (9)0.0010 (7)0.0022 (8)0.0033 (7)
C30.0384 (9)0.0334 (9)0.0338 (10)0.0009 (8)0.0006 (8)0.0015 (8)
C40.0404 (10)0.0319 (9)0.0325 (9)0.0002 (7)0.0024 (8)0.0019 (8)
C50.0428 (10)0.0329 (10)0.0305 (9)0.0024 (8)0.0017 (8)0.0015 (8)
C60.0565 (13)0.0354 (10)0.0324 (10)0.0013 (9)0.0081 (10)0.0082 (8)
C70.0582 (13)0.0408 (11)0.0367 (11)0.0131 (10)0.0031 (10)0.0020 (9)
C80.0700 (18)0.0639 (17)0.0503 (15)0.0182 (13)0.0193 (14)0.0015 (13)
C90.0570 (16)0.083 (2)0.0642 (18)0.0135 (15)0.0240 (14)0.0145 (17)
C100.0539 (15)0.0616 (16)0.0682 (19)0.0052 (12)0.0088 (14)0.0140 (14)
C110.0552 (14)0.0411 (12)0.0504 (14)0.0037 (10)0.0070 (11)0.0017 (10)
C120.0449 (11)0.0353 (10)0.0321 (10)0.0060 (8)0.0030 (9)0.0003 (8)
C130.0407 (9)0.0341 (9)0.0271 (9)0.0040 (8)0.0010 (8)0.0036 (7)
C140.0443 (10)0.0351 (10)0.0340 (10)0.0029 (8)0.0020 (9)0.0012 (8)
C150.0517 (13)0.0486 (13)0.0476 (13)0.0143 (10)0.0002 (11)0.0010 (11)
C160.0687 (16)0.0374 (11)0.0632 (16)0.0167 (11)0.0081 (13)0.0036 (11)
C170.0764 (18)0.0286 (11)0.0692 (18)0.0006 (11)0.0009 (14)0.0073 (11)
C180.0586 (14)0.0320 (10)0.0563 (14)0.0015 (9)0.0054 (12)0.0061 (10)
C190.0443 (10)0.0300 (9)0.0351 (10)0.0021 (8)0.0006 (9)0.0004 (8)
C200.0473 (12)0.0483 (12)0.0392 (13)0.0044 (10)0.0049 (10)0.0056 (10)
C210.0447 (11)0.0433 (12)0.0530 (14)0.0024 (10)0.0003 (11)0.0055 (10)
C220.0640 (15)0.0478 (12)0.0400 (12)0.0167 (11)0.0151 (11)0.0054 (10)
N10.0696 (13)0.0394 (10)0.0368 (10)0.0049 (9)0.0004 (10)0.0135 (8)
N20.0418 (9)0.0414 (9)0.0406 (10)0.0006 (7)0.0076 (8)0.0047 (8)
N30.0812 (18)0.0944 (19)0.0363 (13)0.0063 (14)0.0041 (11)0.0020 (12)
N40.0595 (13)0.0613 (14)0.097 (2)0.0217 (12)0.0013 (14)0.0057 (15)
N50.0509 (11)0.0526 (12)0.0458 (11)0.0136 (9)0.0108 (10)0.0073 (9)
N60.121 (3)0.084 (2)0.0696 (18)0.0470 (19)0.0373 (18)0.0380 (16)
O10.0578 (11)0.0560 (10)0.0563 (11)0.0089 (8)0.0123 (9)0.0163 (9)
O20.0552 (9)0.0330 (7)0.0404 (8)0.0026 (6)0.0050 (7)0.0110 (6)
O30.0606 (11)0.0517 (9)0.0498 (10)0.0029 (9)0.0094 (9)0.0077 (8)
O40.093 (2)0.091 (2)0.097 (2)0.0319 (15)0.0022 (16)0.0075 (18)
Geometric parameters (Å, º) top
C1—C51.500 (3)C11—H11A0.930
C1—C121.511 (3)C13—O21.213 (3)
C1—C61.556 (3)C13—N21.337 (3)
C1—C21.583 (3)C14—C151.380 (3)
C2—C191.508 (3)C14—C191.394 (3)
C2—C131.560 (3)C14—N21.406 (3)
C2—C31.576 (3)C15—C161.384 (4)
C3—C211.482 (3)C15—H15A0.930
C3—C201.487 (3)C16—C171.369 (4)
C3—C41.535 (3)C16—H16A0.930
C4—N51.328 (3)C17—C181.394 (4)
C4—C51.354 (3)C17—H17A0.930
C5—C221.406 (3)C18—C191.380 (3)
C6—O11.220 (3)C18—H18A0.930
C6—N11.337 (3)C20—N31.126 (4)
C7—C81.374 (4)C21—N41.130 (3)
C7—C121.395 (3)C22—N61.133 (4)
C7—N11.404 (3)N1—H10.860
C8—C91.381 (5)N2—H20.860
C8—H8A0.930N5—H5A0.90 (1)
C9—C101.382 (5)N5—H5B0.90 (1)
C9—H9A0.930O3—H3A0.85 (1)
C10—C111.392 (4)O3—H3B0.85 (1)
C10—H10A0.930O4—H4A0.85 (1)
C11—C121.380 (3)O4—H4B0.85 (1)
C5—C1—C12120.04 (17)C12—C11—H11A120.4
C5—C1—C6110.78 (17)C10—C11—H11A120.4
C12—C1—C6101.37 (17)C11—C12—C7119.2 (2)
C5—C1—C2101.12 (16)C11—C12—C1132.7 (2)
C12—C1—C2113.93 (17)C7—C12—C1108.0 (2)
C6—C1—C2109.64 (16)O2—C13—N2127.39 (19)
C19—C2—C13102.28 (17)O2—C13—C2125.34 (19)
C19—C2—C3118.76 (17)N2—C13—C2107.25 (16)
C13—C2—C3106.69 (16)C15—C14—C19122.0 (2)
C19—C2—C1116.18 (17)C15—C14—N2128.3 (2)
C13—C2—C1107.57 (15)C19—C14—N2109.72 (18)
C3—C2—C1104.56 (15)C14—C15—C16117.2 (2)
C21—C3—C20106.75 (19)C14—C15—H15A121.4
C21—C3—C4110.04 (18)C16—C15—H15A121.4
C20—C3—C4112.24 (19)C17—C16—C15121.9 (2)
C21—C3—C2113.62 (17)C17—C16—H16A119.1
C20—C3—C2111.58 (18)C15—C16—H16A119.1
C4—C3—C2102.72 (16)C16—C17—C18120.6 (2)
N5—C4—C5130.6 (2)C16—C17—H17A119.7
N5—C4—C3119.7 (2)C18—C17—H17A119.7
C5—C4—C3109.72 (18)C19—C18—C17118.6 (3)
C4—C5—C22121.9 (2)C19—C18—H18A120.7
C4—C5—C1114.59 (18)C17—C18—H18A120.7
C22—C5—C1123.10 (19)C18—C19—C14119.7 (2)
O1—C6—N1127.3 (2)C18—C19—C2132.2 (2)
O1—C6—C1124.5 (2)C14—C19—C2107.96 (18)
N1—C6—C1108.2 (2)N3—C20—C3179.4 (3)
C8—C7—C12122.4 (3)N4—C21—C3178.0 (3)
C8—C7—N1127.5 (2)N6—C22—C5178.1 (3)
C12—C7—N1110.0 (2)C6—N1—C7111.51 (19)
C7—C8—C9117.3 (3)C6—N1—H1124.2
C7—C8—H8A121.3C7—N1—H1124.2
C9—C8—H8A121.3C13—N2—C14112.51 (18)
C8—C9—C10121.7 (3)C13—N2—H2123.7
C8—C9—H9A119.1C14—N2—H2123.7
C10—C9—H9A119.1C4—N5—H5A119.9 (19)
C9—C10—C11120.1 (3)C4—N5—H5B123 (3)
C9—C10—H10A119.9H5A—N5—H5B115 (3)
C11—C10—H10A119.9H3A—O3—H3B105.1 (17)
C12—C11—C10119.1 (2)H4A—O4—H4B104.8 (17)
C5—C1—C2—C19158.77 (17)C9—C10—C11—C120.7 (4)
C12—C1—C2—C1971.0 (2)C10—C11—C12—C72.2 (4)
C6—C1—C2—C1941.8 (2)C10—C11—C12—C1179.7 (2)
C5—C1—C2—C1387.37 (18)C8—C7—C12—C112.5 (4)
C12—C1—C2—C1342.8 (2)N1—C7—C12—C11175.0 (2)
C6—C1—C2—C13155.61 (17)C8—C7—C12—C1179.0 (2)
C5—C1—C2—C325.79 (18)N1—C7—C12—C13.5 (3)
C12—C1—C2—C3155.99 (17)C5—C1—C12—C1148.3 (4)
C6—C1—C2—C391.22 (18)C6—C1—C12—C11170.6 (2)
C19—C2—C3—C2137.6 (3)C2—C1—C12—C1171.8 (3)
C13—C2—C3—C21152.32 (18)C5—C1—C12—C7130.0 (2)
C1—C2—C3—C2193.88 (19)C6—C1—C12—C77.7 (2)
C19—C2—C3—C2083.1 (2)C2—C1—C12—C7110.0 (2)
C13—C2—C3—C2031.6 (2)C19—C2—C13—O2173.2 (2)
C1—C2—C3—C20145.38 (18)C3—C2—C13—O247.8 (3)
C19—C2—C3—C4156.44 (18)C1—C2—C13—O263.9 (3)
C13—C2—C3—C488.85 (18)C19—C2—C13—N25.2 (2)
C1—C2—C3—C424.95 (19)C3—C2—C13—N2130.60 (18)
C21—C3—C4—N572.4 (3)C1—C2—C13—N2117.67 (18)
C20—C3—C4—N546.3 (3)C19—C14—C15—C160.5 (4)
C2—C3—C4—N5166.3 (2)N2—C14—C15—C16179.2 (2)
C21—C3—C4—C5106.6 (2)C14—C15—C16—C170.1 (4)
C20—C3—C4—C5134.7 (2)C15—C16—C17—C180.4 (5)
C2—C3—C4—C514.7 (2)C16—C17—C18—C190.4 (5)
N5—C4—C5—C223.5 (4)C17—C18—C19—C140.0 (4)
C3—C4—C5—C22175.3 (2)C17—C18—C19—C2175.9 (3)
N5—C4—C5—C1176.4 (2)C15—C14—C19—C180.4 (4)
C3—C4—C5—C12.4 (3)N2—C14—C19—C18179.4 (2)
C12—C1—C5—C4144.5 (2)C15—C14—C19—C2176.4 (2)
C6—C1—C5—C497.9 (2)N2—C14—C19—C22.6 (3)
C2—C1—C5—C418.3 (2)C13—C2—C19—C18179.1 (3)
C12—C1—C5—C2242.7 (3)C3—C2—C19—C1862.1 (4)
C6—C1—C5—C2274.9 (3)C1—C2—C19—C1864.0 (3)
C2—C1—C5—C22168.9 (2)C13—C2—C19—C144.6 (2)
C5—C1—C6—O141.8 (3)C3—C2—C19—C14121.6 (2)
C12—C1—C6—O1170.3 (2)C1—C2—C19—C14112.2 (2)
C2—C1—C6—O168.9 (3)O1—C6—N1—C7171.7 (2)
C5—C1—C6—N1138.14 (19)C1—C6—N1—C78.3 (3)
C12—C1—C6—N19.6 (2)C8—C7—N1—C6174.1 (3)
C2—C1—C6—N1111.1 (2)C12—C7—N1—C63.2 (3)
C12—C7—C8—C91.1 (4)O2—C13—N2—C14174.4 (2)
N1—C7—C8—C9176.0 (3)C2—C13—N2—C144.0 (2)
C7—C8—C9—C100.5 (5)C15—C14—N2—C13179.9 (2)
C8—C9—C10—C110.7 (5)C19—C14—N2—C131.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.905 (2)158
N2—H2···O3i0.862.223.032 (3)157
O3—H3A···O1ii0.85 (1)2.00 (2)2.795 (3)157 (4)
O3—H3B···N6iii0.85 (1)2.22 (5)2.834 (3)129 (5)
O3—H3B···O4iv0.85 (1)2.62 (3)3.381 (4)149 (5)
O4—H4A···N4v0.85 (1)2.38 (3)3.171 (5)155 (7)
O4—H4B···N30.85 (1)2.68 (4)3.392 (4)142 (6)
N5—H5A···O3vi0.90 (1)1.97 (1)2.860 (3)175 (3)
N5—H5B···O4vi0.90 (1)2.17 (1)3.061 (4)171 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1/2; (v) x, y, z+1/2; (vi) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H12N6O2·2H2O
Mr428.41
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)17.1850 (16), 8.9849 (9), 13.3275 (13)
V3)2057.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16968, 2551, 2367
Rint0.022
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.06
No. of reflections2551
No. of parameters313
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.905 (2)158.0
N2—H2···O3i0.862.223.032 (3)157.3
O3—H3A···O1ii0.85 (1)2.00 (2)2.795 (3)157 (4)
O3—H3B···N6iii0.85 (1)2.22 (5)2.834 (3)129 (5)
O3—H3B···O4iv0.85 (1)2.62 (3)3.381 (4)149 (5)
O4—H4A···N4v0.85 (1)2.38 (3)3.171 (5)155 (7)
O4—H4B···N30.85 (1)2.68 (4)3.392 (4)142 (6)
N5—H5A···O3vi0.90 (1)1.97 (1)2.860 (3)175 (3)
N5—H5B···O4vi0.90 (1)2.17 (1)3.061 (4)171 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1/2; (v) x, y, z+1/2; (vi) x, y+1, z1/2.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC–SAP) and Department of Science and Technology (DST–FIST), Government of India, is acknowledged by DV for providing facilities to the department.

References

First citationAkai, S., Tsujino, T., Akiyama, E., Tanimoto, K., Naka, T. & Kita, Y. (2004). J. Org. Chem. 69, 2478–2486.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGallagher, G., Lavanchi, P. G., Wilson, J. W., Hieble, J. & Demmarinis, R. M. (1985). J. Med. Chem. 28, 1533–1536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNagata, R., Tokunaga, T., Hume, W., Umezone, T., Okazaki, U., Ueki, Y., Kumagai, K., Hourai, S., Nagamine, J., Seki, H., Taiji, M. & Noguchi, H. (2001). J. Med. Chem. 44, 4641–4649.  Web of Science PubMed Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, R. M. & Cox, R. (2003). Acc. Chem. Res. 36, 127–139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZaveri, N. T., Jiang, F., Olsen, C. M., Deschamps, J. R., Parrish, D., Polgar, W. & Toll, L. (2004). J. Med. Chem. 47, 2973–2976.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o501-o502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds