metal-organic compounds
catena-Poly[[dichloridozinc(II)]-μ-2,5-di-4-pyridyl-1,3,4-thiadiazole-κ2N2:N5]
aCollege of Chemistry and Materials Science, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: ljchen@ms.fjirsm.ac.cn
The title compound, [ZnCl2(C12H8N4S)]n, was obtained by crystallization of 2,5-di-4-pyridyl-1,3,4-thiadiazole with ZnCl2 in an MeOH/CHCl3 solvent system. The structure contains infinite chains of ZnCl2 units connected by the bifunctional thiadiazole ligands, with ZnII adopting a distorted tetrahedral coordination geometry. The dihedral angle between the two pyridyl rings in each ligand is 34.3 (1)°, and the dihedral angles between the thiadiazole ring and the two pyridyl rings are 18.3 (2) and 16.1 (2)°. The shortest Zn⋯Zn distance within each polymeric chain is 11.862 (3) Å, while the shortest interchain Zn⋯Zn distance is 7.057 (3) Å.
Related literature
For related literature, see: Chen et al. (2007); Dong, Ma & Huang (2003); Dong, Ma, Huang, Guo & Smith (2003); Du et al. (2003); Fujita (1998); Huang et al. (2004); Inoue et al. (1996); Maekawam et al. (2000); Moulton & Zaworotko (2001); Xiong et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808001967/bi2274sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001967/bi2274Isup2.hkl
A solution of ZnCl2 (22.7 mg, 0.05 mmol) in MeOH (5 ml) was carefully layered on a solution of 2,5-di-4-pyridyl-1,3,4-thiadiazole (12 mg, 0.05 mmol) in CHCl3 (5 ml) in a straight glass tube. After one week, colorless single crystals were obtained (yield ca 25% based on Zn).
H atoms were placed geometrically with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids (H atoms are omitted). |
[ZnCl2(C12H8N4S)] | F(000) = 752 |
Mr = 376.55 | Dx = 1.799 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2905 reflections |
a = 12.9990 (13) Å | θ = 3.9–27.5° |
b = 5.4039 (5) Å | µ = 2.29 mm−1 |
c = 20.195 (2) Å | T = 293 K |
β = 101.459 (4)° | Prism, white |
V = 1390.3 (2) Å3 | 0.20 × 0.12 × 0.04 mm |
Z = 4 |
Rigaku Mercury CCD diffractometer | 3155 independent reflections |
Radiation source: fine-focus sealed tube | 2688 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 27.5°, θmin = 3.9° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | h = −14→16 |
Tmin = 0.690, Tmax = 0.912 | k = −7→6 |
10073 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0439P)2 + 0.6049P] where P = (Fo2 + 2Fc2)/3 |
3155 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[ZnCl2(C12H8N4S)] | V = 1390.3 (2) Å3 |
Mr = 376.55 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.9990 (13) Å | µ = 2.29 mm−1 |
b = 5.4039 (5) Å | T = 293 K |
c = 20.195 (2) Å | 0.20 × 0.12 × 0.04 mm |
β = 101.459 (4)° |
Rigaku Mercury CCD diffractometer | 3155 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 2688 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.912 | Rint = 0.032 |
10073 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.43 e Å−3 |
3155 reflections | Δρmin = −0.38 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 1.45602 (2) | 1.18961 (6) | 0.680619 (15) | 0.03305 (12) | |
S1 | 1.23784 (6) | 0.24683 (15) | 0.42060 (4) | 0.04195 (19) | |
Cl1 | 1.34567 (6) | 1.43843 (14) | 0.71674 (4) | 0.04576 (19) | |
Cl2 | 1.59540 (6) | 1.29522 (15) | 0.63700 (4) | 0.0476 (2) | |
N1 | 1.37010 (17) | 0.9563 (4) | 0.60991 (10) | 0.0325 (5) | |
N2 | 1.10437 (18) | 0.3373 (5) | 0.49394 (11) | 0.0374 (5) | |
N3 | 1.06015 (18) | 0.1586 (5) | 0.45020 (12) | 0.0385 (6) | |
N4 | 1.01683 (17) | −0.4543 (4) | 0.25889 (10) | 0.0320 (5) | |
C1 | 1.2665 (2) | 0.9276 (5) | 0.60620 (14) | 0.0376 (6) | |
H1A | 1.2329 | 1.0288 | 0.6325 | 0.045* | |
C2 | 1.2081 (2) | 0.7546 (6) | 0.56503 (14) | 0.0370 (6) | |
H2A | 1.1362 | 0.7423 | 0.5630 | 0.044* | |
C3 | 1.2576 (2) | 0.5981 (5) | 0.52646 (12) | 0.0321 (6) | |
C4 | 1.3644 (2) | 0.6283 (6) | 0.53025 (14) | 0.0397 (7) | |
H4A | 1.4002 | 0.5273 | 0.5052 | 0.048* | |
C5 | 1.4169 (2) | 0.8089 (6) | 0.57142 (14) | 0.0403 (7) | |
H5A | 1.4883 | 0.8300 | 0.5727 | 0.048* | |
C6 | 1.1964 (2) | 0.4066 (5) | 0.48470 (12) | 0.0308 (6) | |
C7 | 1.1201 (2) | 0.0891 (5) | 0.40919 (13) | 0.0314 (6) | |
C8 | 1.0874 (2) | −0.1003 (5) | 0.35760 (13) | 0.0317 (6) | |
C9 | 1.0054 (2) | −0.2613 (5) | 0.36310 (14) | 0.0360 (6) | |
H9A | 0.9736 | −0.2536 | 0.4004 | 0.043* | |
C10 | 0.9723 (2) | −0.4310 (5) | 0.31285 (13) | 0.0364 (6) | |
H10A | 0.9165 | −0.5344 | 0.3165 | 0.044* | |
C11 | 1.0960 (2) | −0.3019 (5) | 0.25406 (14) | 0.0390 (7) | |
H11A | 1.1278 | −0.3178 | 0.2169 | 0.047* | |
C12 | 1.1329 (2) | −0.1232 (6) | 0.30118 (14) | 0.0389 (6) | |
H12A | 1.1875 | −0.0193 | 0.2954 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03407 (19) | 0.0322 (2) | 0.03165 (17) | −0.00116 (13) | 0.00357 (13) | 0.00049 (13) |
S1 | 0.0336 (4) | 0.0522 (5) | 0.0429 (4) | −0.0112 (3) | 0.0145 (3) | −0.0163 (3) |
Cl1 | 0.0474 (4) | 0.0385 (4) | 0.0521 (4) | 0.0064 (3) | 0.0115 (3) | −0.0035 (3) |
Cl2 | 0.0436 (4) | 0.0520 (5) | 0.0500 (4) | −0.0069 (3) | 0.0159 (3) | 0.0043 (4) |
N1 | 0.0314 (11) | 0.0336 (13) | 0.0313 (11) | 0.0002 (9) | 0.0032 (9) | −0.0022 (10) |
N2 | 0.0351 (12) | 0.0412 (14) | 0.0370 (12) | −0.0051 (10) | 0.0094 (10) | −0.0086 (11) |
N3 | 0.0344 (12) | 0.0436 (14) | 0.0377 (12) | −0.0044 (11) | 0.0075 (10) | −0.0077 (11) |
N4 | 0.0343 (12) | 0.0300 (12) | 0.0309 (10) | 0.0007 (9) | 0.0045 (9) | 0.0001 (9) |
C1 | 0.0335 (14) | 0.0388 (16) | 0.0396 (14) | 0.0016 (12) | 0.0054 (12) | −0.0069 (13) |
C2 | 0.0287 (14) | 0.0399 (16) | 0.0415 (15) | 0.0031 (12) | 0.0048 (12) | −0.0050 (13) |
C3 | 0.0323 (13) | 0.0339 (15) | 0.0287 (12) | −0.0026 (11) | 0.0024 (10) | 0.0031 (11) |
C4 | 0.0347 (15) | 0.0472 (17) | 0.0382 (14) | −0.0017 (13) | 0.0096 (12) | −0.0131 (13) |
C5 | 0.0291 (14) | 0.0494 (19) | 0.0424 (15) | −0.0044 (12) | 0.0069 (12) | −0.0086 (14) |
C6 | 0.0298 (13) | 0.0323 (14) | 0.0302 (12) | 0.0016 (11) | 0.0056 (10) | −0.0008 (11) |
C7 | 0.0306 (13) | 0.0315 (14) | 0.0318 (12) | −0.0011 (11) | 0.0054 (11) | 0.0022 (11) |
C8 | 0.0300 (13) | 0.0326 (14) | 0.0307 (12) | 0.0009 (11) | 0.0012 (10) | −0.0016 (11) |
C9 | 0.0380 (15) | 0.0404 (16) | 0.0315 (13) | −0.0054 (12) | 0.0119 (12) | −0.0001 (12) |
C10 | 0.0379 (15) | 0.0356 (16) | 0.0365 (14) | −0.0072 (12) | 0.0097 (12) | 0.0005 (12) |
C11 | 0.0371 (15) | 0.0463 (18) | 0.0361 (14) | −0.0061 (13) | 0.0134 (12) | −0.0080 (13) |
C12 | 0.0322 (14) | 0.0443 (16) | 0.0416 (15) | −0.0082 (13) | 0.0106 (12) | −0.0040 (13) |
Zn1—N4i | 2.060 (2) | C2—H2A | 0.930 |
Zn1—N1 | 2.060 (2) | C3—C4 | 1.384 (4) |
Zn1—Cl1 | 2.1939 (8) | C3—C6 | 1.466 (4) |
Zn1—Cl2 | 2.2402 (8) | C4—C5 | 1.373 (4) |
S1—C7 | 1.727 (3) | C4—H4A | 0.930 |
S1—C6 | 1.729 (3) | C5—H5A | 0.930 |
N1—C5 | 1.341 (3) | C7—C8 | 1.462 (4) |
N1—C1 | 1.343 (3) | C8—C12 | 1.390 (4) |
N2—C6 | 1.302 (3) | C8—C9 | 1.397 (4) |
N2—N3 | 1.357 (3) | C9—C10 | 1.372 (4) |
N3—C7 | 1.301 (3) | C9—H9A | 0.930 |
N4—C10 | 1.337 (3) | C10—H10A | 0.930 |
N4—C11 | 1.337 (3) | C11—C12 | 1.374 (4) |
C1—C2 | 1.375 (4) | C11—H11A | 0.930 |
C1—H1A | 0.930 | C12—H12A | 0.930 |
C2—C3 | 1.391 (4) | ||
N4i—Zn1—N1 | 103.11 (9) | C3—C4—H4A | 120.3 |
N4i—Zn1—Cl1 | 107.44 (6) | N1—C5—C4 | 123.0 (3) |
N1—Zn1—Cl1 | 107.78 (7) | N1—C5—H5A | 118.5 |
N4i—Zn1—Cl2 | 104.00 (7) | C4—C5—H5A | 118.5 |
N1—Zn1—Cl2 | 104.64 (6) | N2—C6—C3 | 122.0 (2) |
Cl1—Zn1—Cl2 | 127.44 (3) | N2—C6—S1 | 113.3 (2) |
C7—S1—C6 | 86.95 (13) | C3—C6—S1 | 124.68 (19) |
C5—N1—C1 | 117.7 (2) | N3—C7—C8 | 122.0 (2) |
C5—N1—Zn1 | 121.31 (18) | N3—C7—S1 | 113.6 (2) |
C1—N1—Zn1 | 120.60 (18) | C8—C7—S1 | 124.45 (19) |
C6—N2—N3 | 113.2 (2) | C12—C8—C9 | 117.7 (3) |
C7—N3—N2 | 113.0 (2) | C12—C8—C7 | 122.4 (2) |
C10—N4—C11 | 117.7 (2) | C9—C8—C7 | 119.9 (2) |
C10—N4—Zn1ii | 121.41 (18) | C10—C9—C8 | 119.3 (2) |
C11—N4—Zn1ii | 120.52 (18) | C10—C9—H9A | 120.3 |
N1—C1—C2 | 122.6 (3) | C8—C9—H9A | 120.3 |
N1—C1—H1A | 118.7 | N4—C10—C9 | 122.9 (3) |
C2—C1—H1A | 118.7 | N4—C10—H10A | 118.6 |
C1—C2—C3 | 119.4 (3) | C9—C10—H10A | 118.6 |
C1—C2—H2A | 120.3 | N4—C11—C12 | 123.4 (2) |
C3—C2—H2A | 120.3 | N4—C11—H11A | 118.3 |
C2—C3—C4 | 117.9 (3) | C12—C11—H11A | 118.3 |
C2—C3—C6 | 119.5 (2) | C11—C12—C8 | 118.9 (3) |
C4—C3—C6 | 122.6 (2) | C11—C12—H12A | 120.5 |
C5—C4—C3 | 119.3 (3) | C8—C12—H12A | 120.5 |
C5—C4—H4A | 120.3 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C12H8N4S)] |
Mr | 376.55 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 12.9990 (13), 5.4039 (5), 20.195 (2) |
β (°) | 101.459 (4) |
V (Å3) | 1390.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.29 |
Crystal size (mm) | 0.20 × 0.12 × 0.04 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.690, 0.912 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10073, 3155, 2688 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.089, 1.04 |
No. of reflections | 3155 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.38 |
Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).
Zn1—N4i | 2.060 (2) | Zn1—Cl1 | 2.1939 (8) |
Zn1—N1 | 2.060 (2) | Zn1—Cl2 | 2.2402 (8) |
N4i—Zn1—N1 | 103.11 (9) | N4i—Zn1—Cl2 | 104.00 (7) |
N4i—Zn1—Cl1 | 107.44 (6) | N1—Zn1—Cl2 | 104.64 (6) |
N1—Zn1—Cl1 | 107.78 (7) | Cl1—Zn1—Cl2 | 127.44 (3) |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
References
Brandenburg, K. (1999). DIAMOND. Version 2.0. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, S. M., Zhang, J. & Lu, C. Z. (2007). CrystEngComm, 9, 389–392. Google Scholar
Dong, Y. B., Ma, J. P. & Huang, R. Q. (2003). Inorg. Chem. 42, 294–300. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dong, Y. B., Ma, J. P., Huang, R. Q., Guo, D. S. & Smith, M. D. (2003). Solid State Sci. 5, 1177–1186. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Bu, X. H., Huang, Z., Chen, S. T. & Guo, Y. M. (2003). Inorg. Chem. 42, 552–559. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fujita, M. (1998). Chem. Soc. Rev. 27, 417–425. Web of Science CrossRef CAS Google Scholar
Huang, Z., Song, H. B., Du, M., Chen, S. T. & Bu, X. H. (2004). Inorg. Chem. 43, 931–944. Web of Science CSD CrossRef PubMed CAS Google Scholar
Inoue, K., Hayamizu, T., Iwamura, H., Hashizume, D. & Ohashi, Y. (1996). J. Am. Chem. Soc. 118, 1803–1804. CSD CrossRef CAS Web of Science Google Scholar
Maekawam, M., Konaka, H., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4161–4166. Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiong, R. G., You, X. Z., Abrahams, B. F., Xue, Z. & Chen, C. M. (2001). Angew. Chem. Int. Ed. 40, 4422–4425. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much current research activity of supramolecular coordination polymers with novel topologies and structural motifs is driven by their encouraging potential applications in the fields of nonlinear optics, catalysis and separation, magnetism and molecular recognition (Moulton & Zaworotko, 2001, Xiong et al., 2001, Inoue et al., 1996). Therefore, the discovery and rational design of such coordination polymers is an important and very active topic. One useful strategy for the discovery of novel coordination polymers has been the use of various spacer ligands as the building block (Du et al., 2003, Chen et al., 2007). So far, a wide range of infinite frameworks have already been generated with simple 4,4'-bipyridyl-based ligands (Maekawam et al., 2000, Fujita, 1998).
As previously reported (Dong, Ma & Huang, 2003, Huang et al., 2004), oxadiazole-containing ligands can take versatile bonding modes (it can act as mono-, bi-, tri- and even tetradentate ligand) and the structural geometries of the ligands themselves are also variable. On the other hand, d10 transition metal-containing complexes often show interesting optical properties. Our interest in the supramolecular coordination polymers lead us to use 2,5-di-4-pyridyl-1,3,4-thiadiazole (L) and ZnCl2 as precursors to generate the title compound.
Crystallization of L and ZnCl2 in MeOH/CHCl3 mixed solvent system at room temperature yield the title compound, [Zn(C12H8N4S)Cl2]n. The crystal structure is composed of 1-D zigzag chains with ZnCl2 units connected to each other by the N-donor bifunctional ligands. As shown in Fig. 1, the ZnII center adopts a distorted tetrahedral coordination geometry, defined by two N donors from two 2,5-di-4-pyridyl-1,3,4- thiadiazole ligands (L) and terminal chloride ligands. Both Zn—N bond distances are 2.060 (2) Å, and the two Zn—Cl bond distances are 2.1938 (8) and 2.2402 (8) Å, respectively. The greatest angular distortion from tetrahedral geometry is exhibited by the Cl—Zn—Cl angle of 127.44 (3) ° and by the N—Zn—N angle of 103.11 (9) °. All these values compare well to those reported in other [Zn(4,4'-bipy)] compounds (Dong, Ma, Huang, Guo et al., 2003). The two pyridyl ring groups in each ligand are not coplanar, and the dihedral angle between them is 34.3 (1) °. The dihedral angles between the thiadiazole ring and the two pyridyl ring groups in each ligand are 18.3 (2) ° and 16.1 (2) °. The intrachain Zn···Zn distance is 11.862 (3) Å, while the shortest interchain Zn···Zn distance is 7.057 (3) Å.
In the crystal, the 1-D zigzag chains stack along crystallographic β axis. In the ac plane (Fig. 2), neighboring chains are arranged in opposite directions, and are stacked either in a shoulder-to-shoulder or a staggered fashion.