organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o377-o378

(m-Phenyl­enedi­methyl­ene)di­ammonium p-nitro­phenyl­phosphate perchlorate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 17 December 2007; accepted 28 December 2007; online 4 January 2008)

The title compound, C8H14N22+·C12H8N2O8P·ClO4, was formed by the reaction of α,α-bis-m-xylenediamine and sodium bis-p-nitro­phenyl­phosphate in the presence of Zn(ClO4)·6H2O in methanol solution. The two amine groups of the m-xylenediammonium ion are each protonated and each hydrogen-bonded to two O atoms of the phosphate anion, which acts as a 1,3-bridge. The ammonium groups are arranged matched face to face and each pair is doubly bridged by two perchlorate ions through hydrogen bonding. In addition, there are also weak C—H⋯O inter­actions. Both the N—H⋯O and C—H⋯O inter­actions are contained in a channel down the a axis. The perchlorate oxygen atoms are disordered over two positions with site occupancy factors of ca 0.7 and 0.3.

Related literature

For related literature, see: Gultneh et al. (1996[Gultneh, Y., Allwar, A. B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31-38.], 1999[Gultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S. B., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.])

[Scheme 1]

Experimental

Crystal data
  • C8H14N22+·C12H8N2O8P·ClO4

  • Mr = 576.84

  • Triclinic, [P \overline 1]

  • a = 8.337 (2) Å

  • b = 11.623 (3) Å

  • c = 13.535 (3) Å

  • α = 91.22 (1)°

  • β = 94.32 (1)°

  • γ = 106.06 (1)°

  • V = 1255.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.35 × 0.29 × 0.17 mm

Data collection
  • Bruker P4S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.876, Tmax = 0.941

  • 3673 measured reflections

  • 3388 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 23.0°

  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 1.02

  • 3388 reflections

  • 383 parameters

  • 92 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1D—H1DA⋯O13Ai 0.89 2.13 2.987 (9) 161
N1D—H1DA⋯O14Bi 0.89 2.15 2.99 (2) 158
N1D—H1DA⋯O11Bi 0.89 2.28 2.99 (2) 137
N1D—H1DA⋯O12Ai 0.89 2.49 3.227 (11) 140
N1D—H1DB⋯O3 0.89 1.84 2.706 (5) 164
N1D—H1DC⋯O3i 0.89 1.96 2.846 (6) 174
N3D—H3DA⋯O2ii 0.89 2.15 2.842 (5) 134
N3D—H3DA⋯O13Biii 0.89 2.22 2.753 (17) 118
N3D—H3DA⋯O14Aiii 0.89 2.44 3.042 (9) 125
N3D—H3DB⋯O11A 0.89 2.00 2.859 (10) 163
N3D—H3DB⋯O11B 0.89 2.58 3.17 (2) 125
N3D—H3DC⋯O2 0.89 1.90 2.755 (5) 162
C2A—H2AA⋯O32Biv 0.93 2.57 3.422 (6) 152
C5A—H5AA⋯O11Aiii 0.93 2.56 3.262 (9) 133
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x-1, -y, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Base pairing association of biological molecules through hydrogen bonding is central in molecular recognition and attachment of substrates and drugs at specific sites on proteins and the pairing of nucleotides on DNA strands are important phenomena.

The title compound was formed by the reaction of α,α-bis-m-xylenediammine and sodium bis-p-nitrophenylphosphate in the presence of Zn(ClO4).6H2O in methanol solution in an effort to study the catalytic activity of the Zn(II) complex of m-xylenediamine. The two amine groups on a meta-xylenediamine molecule are each protonated and the two ammonium groups are hydrogen bonded to two O atoms of the phosphate anion which acts as a 1,3-bridge at Namine—O distances of 2.706 (5) Å and 2.755 (5) Å (Fig. 1.). In addition there are weaker intermolecular interactions with adjoining phosphate (2.842 (5) to 2.846 (6) Å) O atoms of adjoining anions. In the unit cell, the ammonium groups on two m-xylenediammonium cations are arranged matched face to face and each pair is doubly intermolecular bridged by two perchlorate ions through hydrogen bonding at Namine—Ophosphate distances ranging from 2.847 (5) Å to 3.183 (11) Å. The source of H+ for the protonation of the amine groups is likely to be the hydrolysis by the aquated Zn2+ consistent with the acidic behavior zinc-bound water molecules of the [Zn—OH2]2+ moiety especially with the assistance of the basic amine groups (Gultneh et al., 1996, Gultneh et al., 1999).

Related literature top

For related literature, see: Gultneh et al. (1996, 1999)

Experimental top

The title compound was formed by the reaction of α,α-bis-m-xylenediammine and sodium bis-p-nitrophenylphosphate in the presence of Zn(ClO4).6H2O in a methanol solution. Crystals of the diammonium-phosphate salt crystallized out of the reaction mixture.

Refinement top

The perchlorate O atoms was idealized over two conformations with occupancies of 0.726 (14) and 0.274 (14). The H atoms were idealized with an N—H distance of 0.89 and C—H distances of 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons). The CH3 and NH3 protons were allowed to rotate about the C—C and C—N axes, respectively.

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The title compound with numbering scheme used. Hydrogen bonding interactions shown as dotted lines. Ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The packing arrangement viewed down the b axis showing the N—H···O and C—H···O interactions (dashed bonds).
(m-Phenylenedimethylene)diammonium p-nitrophenylphosphate perchlorate top
Crystal data top
C8H14N22+·C12H8N2O8P·ClO4Z = 2
Mr = 576.84F(000) = 596
Triclinic, P1Dx = 1.526 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.337 (2) ÅCell parameters from 55 reflections
b = 11.623 (3) Åθ = 2.5–21.5°
c = 13.535 (3) ŵ = 0.29 mm1
α = 91.22 (1)°T = 293 K
β = 94.32 (1)°Prism, pale yellow
γ = 106.06 (1)°0.35 × 0.29 × 0.17 mm
V = 1255.6 (5) Å3
Data collection top
Bruker P4S
diffractometer
2390 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 23.0°, θmin = 2.3°
ω scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.876, Tmax = 0.941l = 1414
3673 measured reflections3 standard reflections every 97 reflections
3388 independent reflections intensity decay: <2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.9482P]
where P = (Fo2 + 2Fc2)/3
3388 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.40 e Å3
92 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H14N22+·C12H8N2O8P·ClO4γ = 106.06 (1)°
Mr = 576.84V = 1255.6 (5) Å3
Triclinic, P1Z = 2
a = 8.337 (2) ÅMo Kα radiation
b = 11.623 (3) ŵ = 0.29 mm1
c = 13.535 (3) ÅT = 293 K
α = 91.22 (1)°0.35 × 0.29 × 0.17 mm
β = 94.32 (1)°
Data collection top
Bruker P4S
diffractometer
2390 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.876, Tmax = 0.941θmax = 23.0°
3673 measured reflections3 standard reflections every 97 reflections
3388 independent reflections intensity decay: <2
Refinement top
R[F2 > 2σ(F2)] = 0.05892 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
3388 reflectionsΔρmin = 0.28 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl0.5118 (2)0.19712 (12)0.45260 (11)0.0662 (5)
P0.06849 (17)0.26311 (10)0.63110 (8)0.0399 (4)
O1A0.0552 (4)0.2737 (2)0.7132 (2)0.0449 (8)
O1B0.2361 (4)0.2578 (3)0.6952 (2)0.0488 (9)
O20.0121 (4)0.1467 (3)0.5758 (2)0.0463 (9)
O30.0908 (4)0.3765 (3)0.5791 (2)0.0513 (9)
O31A0.2691 (6)0.0535 (4)1.0666 (3)0.0811 (13)
O32A0.4735 (6)0.1328 (4)0.9593 (3)0.0762 (12)
O31B0.7414 (6)0.6944 (4)0.9310 (3)0.0884 (14)
O32B0.8000 (6)0.5482 (4)1.0050 (3)0.0906 (15)
O11A0.4392 (10)0.1435 (9)0.3755 (6)0.116 (3)0.726 (14)
O12A0.4323 (16)0.1876 (9)0.5441 (6)0.128 (3)0.726 (14)
O13A0.4991 (12)0.3164 (6)0.4320 (8)0.099 (3)0.726 (14)
O14A0.6843 (9)0.1299 (7)0.4453 (7)0.088 (2)0.726 (14)
O11B0.358 (2)0.201 (2)0.5091 (19)0.113 (6)0.274 (14)
O12B0.480 (3)0.206 (3)0.3531 (11)0.137 (6)0.274 (14)
O13B0.647 (3)0.1098 (18)0.4744 (19)0.103 (6)0.274 (14)
O14B0.542 (2)0.3121 (14)0.4838 (17)0.076 (5)0.274 (14)
N3A0.3393 (7)0.0609 (4)0.9838 (3)0.0567 (12)
N3B0.7181 (6)0.5890 (5)0.9438 (3)0.0639 (13)
N1D0.1990 (6)0.5391 (4)0.4413 (3)0.0585 (12)
H1DA0.28530.59610.47030.088*
H1DB0.17320.47730.48060.088*
H1DC0.11120.56800.43080.088*
N3D0.1619 (6)0.0440 (3)0.4001 (3)0.0560 (12)
H3DA0.17610.03250.41420.084*
H3DB0.26120.05890.39320.084*
H3DC0.09820.09090.44910.084*
C1A0.1208 (6)0.1835 (4)0.7777 (3)0.0402 (12)
C2A0.0489 (7)0.1960 (4)0.8735 (3)0.0542 (14)
H2AA0.04590.25880.89250.065*
C3A0.1197 (7)0.1140 (5)0.9407 (3)0.0565 (15)
H3AA0.07340.12061.00600.068*
C4A0.2586 (6)0.0227 (4)0.9105 (3)0.0444 (12)
C5A0.3275 (7)0.0084 (5)0.8141 (4)0.0555 (14)
H5AA0.41990.05590.79460.067*
C6A0.2572 (7)0.0915 (4)0.7463 (3)0.0526 (14)
H6AA0.30230.08440.68080.063*
C1B0.3478 (6)0.3450 (4)0.7569 (3)0.0420 (12)
C2B0.4513 (7)0.3036 (5)0.8225 (4)0.0570 (15)
H2BA0.43940.22180.82490.068*
C3B0.5722 (7)0.3825 (5)0.8845 (4)0.0601 (15)
H3BA0.64280.35500.92870.072*
C4B0.5863 (6)0.5025 (5)0.8797 (3)0.0508 (13)
C5B0.4850 (7)0.5455 (5)0.8148 (4)0.0555 (14)
H5BA0.49850.62750.81220.067*
C6B0.3629 (7)0.4661 (4)0.7533 (4)0.0523 (13)
H6BA0.29150.49390.70990.063*
C1D0.1025 (6)0.4028 (4)0.2941 (3)0.0462 (13)
C2D0.0742 (7)0.2853 (4)0.3231 (3)0.0480 (13)
H2DA0.14250.26780.37480.058*
C3D0.0540 (6)0.1944 (4)0.2763 (3)0.0452 (12)
C4D0.1541 (7)0.2212 (4)0.1995 (3)0.0513 (13)
H4DA0.24110.16070.16750.062*
C5D0.1255 (7)0.3376 (5)0.1700 (4)0.0585 (15)
H5DA0.19310.35520.11800.070*
C6D0.0016 (7)0.4268 (4)0.2168 (4)0.0523 (14)
H6DA0.02020.50490.19610.063*
C110.2443 (7)0.4993 (5)0.3462 (4)0.0593 (15)
H11A0.34130.46920.35790.071*
H11B0.27440.56720.30410.071*
C310.0792 (7)0.0681 (4)0.3064 (4)0.0561 (15)
H31A0.14700.01420.25390.067*
H31B0.02860.05150.31450.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0684 (12)0.0577 (9)0.0649 (9)0.0092 (8)0.0107 (8)0.0023 (7)
P0.0529 (9)0.0357 (7)0.0278 (6)0.0075 (6)0.0011 (6)0.0040 (5)
O1A0.060 (2)0.0365 (17)0.0373 (17)0.0105 (16)0.0115 (16)0.0053 (14)
O1B0.049 (2)0.0420 (18)0.0501 (19)0.0059 (16)0.0065 (16)0.0006 (15)
O20.061 (2)0.0393 (18)0.0357 (17)0.0107 (16)0.0000 (16)0.0021 (14)
O30.072 (3)0.0381 (18)0.0417 (18)0.0107 (17)0.0052 (17)0.0120 (14)
O31A0.112 (4)0.079 (3)0.043 (2)0.011 (2)0.006 (2)0.021 (2)
O32A0.067 (3)0.071 (3)0.081 (3)0.000 (2)0.012 (2)0.027 (2)
O31B0.090 (4)0.068 (3)0.094 (3)0.007 (3)0.013 (3)0.028 (2)
O32B0.093 (4)0.097 (3)0.062 (3)0.002 (3)0.026 (3)0.001 (2)
O11A0.109 (5)0.151 (6)0.107 (5)0.067 (4)0.022 (4)0.012 (4)
O12A0.153 (7)0.141 (5)0.087 (5)0.051 (5)0.046 (5)0.012 (4)
O13A0.100 (5)0.063 (4)0.119 (6)0.007 (3)0.017 (5)0.021 (4)
O14A0.065 (4)0.077 (4)0.113 (5)0.003 (3)0.004 (4)0.030 (3)
O11B0.111 (9)0.123 (8)0.112 (9)0.052 (7)0.023 (7)0.003 (7)
O12B0.139 (8)0.159 (9)0.114 (8)0.039 (7)0.031 (7)0.001 (7)
O13B0.087 (8)0.091 (8)0.118 (9)0.002 (6)0.016 (7)0.033 (7)
O14B0.078 (7)0.059 (6)0.090 (8)0.019 (6)0.002 (7)0.004 (6)
N3A0.071 (4)0.048 (3)0.052 (3)0.015 (3)0.013 (3)0.011 (2)
N3B0.056 (3)0.076 (4)0.050 (3)0.004 (3)0.002 (2)0.011 (3)
N1D0.062 (3)0.048 (2)0.055 (3)0.003 (2)0.008 (2)0.006 (2)
N3D0.077 (3)0.040 (2)0.043 (2)0.007 (2)0.010 (2)0.0052 (18)
C1A0.050 (3)0.036 (3)0.033 (2)0.008 (2)0.009 (2)0.002 (2)
C2A0.059 (4)0.054 (3)0.037 (3)0.004 (3)0.002 (3)0.004 (2)
C3A0.067 (4)0.064 (3)0.031 (3)0.005 (3)0.002 (3)0.007 (2)
C4A0.051 (3)0.046 (3)0.035 (3)0.011 (3)0.006 (2)0.007 (2)
C5A0.055 (4)0.053 (3)0.045 (3)0.005 (3)0.002 (3)0.001 (2)
C6A0.057 (4)0.056 (3)0.034 (3)0.001 (3)0.003 (2)0.003 (2)
C1B0.042 (3)0.047 (3)0.032 (2)0.002 (2)0.007 (2)0.005 (2)
C2B0.061 (4)0.052 (3)0.050 (3)0.002 (3)0.000 (3)0.017 (3)
C3B0.060 (4)0.071 (4)0.042 (3)0.008 (3)0.006 (3)0.016 (3)
C4B0.044 (3)0.064 (4)0.035 (3)0.001 (3)0.002 (2)0.004 (2)
C5B0.057 (4)0.050 (3)0.054 (3)0.007 (3)0.003 (3)0.010 (3)
C6B0.048 (4)0.052 (3)0.055 (3)0.013 (3)0.001 (3)0.003 (2)
C1D0.052 (4)0.042 (3)0.040 (3)0.004 (2)0.008 (2)0.003 (2)
C2D0.061 (4)0.049 (3)0.036 (3)0.021 (3)0.000 (2)0.006 (2)
C3D0.056 (4)0.044 (3)0.038 (3)0.017 (3)0.006 (2)0.000 (2)
C4D0.057 (4)0.051 (3)0.042 (3)0.011 (3)0.004 (3)0.004 (2)
C5D0.069 (4)0.059 (3)0.050 (3)0.026 (3)0.010 (3)0.005 (3)
C6D0.069 (4)0.044 (3)0.047 (3)0.018 (3)0.012 (3)0.011 (2)
C110.065 (4)0.055 (3)0.053 (3)0.005 (3)0.014 (3)0.007 (3)
C310.081 (4)0.040 (3)0.045 (3)0.013 (3)0.005 (3)0.001 (2)
Geometric parameters (Å, º) top
Cl—O13B1.347 (14)C3A—C4A1.366 (7)
Cl—O12A1.381 (6)C3A—H3AA0.9300
Cl—O12B1.392 (14)C4A—C5A1.373 (6)
Cl—O13A1.397 (6)C5A—C6A1.387 (7)
Cl—O14A1.429 (7)C5A—H5AA0.9300
Cl—O11B1.430 (14)C6A—H6AA0.9300
Cl—O11A1.456 (7)C1B—C2B1.377 (7)
Cl—O14B1.486 (13)C1B—C6B1.381 (7)
P—O21.471 (3)C2B—C3B1.375 (7)
P—O31.480 (3)C2B—H2BA0.9300
P—O1A1.597 (3)C3B—C4B1.370 (7)
P—O1B1.605 (3)C3B—H3BA0.9300
O1A—C1A1.398 (5)C4B—C5B1.370 (7)
O1B—C1B1.385 (5)C5B—C6B1.378 (7)
O31A—N3A1.214 (5)C5B—H5BA0.9300
O32A—N3A1.215 (5)C6B—H6BA0.9300
O31B—N3B1.204 (6)C1D—C6D1.374 (7)
O32B—N3B1.220 (6)C1D—C2D1.391 (6)
N3A—C4A1.469 (6)C1D—C111.504 (7)
N3B—C4B1.476 (6)C2D—C3D1.380 (7)
N1D—C111.469 (6)C2D—H2DA0.9300
N1D—H1DA0.8900C3D—C4D1.379 (7)
N1D—H1DB0.8900C3D—C311.494 (6)
N1D—H1DC0.8900C4D—C5D1.380 (7)
N3D—C311.484 (6)C4D—H4DA0.9300
N3D—H3DA0.8900C5D—C6D1.365 (7)
N3D—H3DB0.8900C5D—H5DA0.9300
N3D—H3DC0.8900C6D—H6DA0.9300
C1A—C6A1.361 (6)C11—H11A0.9700
C1A—C2A1.374 (6)C11—H11B0.9700
C2A—C3A1.375 (7)C31—H31A0.9700
C2A—H2AA0.9300C31—H31B0.9700
O13B—Cl—O12A89.9 (11)C2A—C3A—H3AA120.3
O13B—Cl—O12B116.6 (13)C3A—C4A—C5A121.8 (4)
O12A—Cl—O12B140.3 (11)C3A—C4A—N3A119.1 (4)
O13B—Cl—O13A129.2 (12)C5A—C4A—N3A119.0 (5)
O12A—Cl—O13A111.7 (6)C4A—C5A—C6A119.0 (5)
O12B—Cl—O13A75.2 (11)C4A—C5A—H5AA120.5
O12A—Cl—O14A111.7 (5)C6A—C5A—H5AA120.5
O12B—Cl—O14A101.4 (11)C1A—C6A—C5A118.7 (4)
O13A—Cl—O14A109.4 (5)C1A—C6A—H6AA120.7
O13B—Cl—O11B115.6 (12)C5A—C6A—H6AA120.7
O12B—Cl—O11B108.0 (11)C2B—C1B—C6B120.5 (5)
O13A—Cl—O11B104.9 (11)C2B—C1B—O1B115.2 (4)
O14A—Cl—O11B139.3 (11)C6B—C1B—O1B124.3 (4)
O13B—Cl—O11A104.8 (12)C3B—C2B—C1B120.4 (5)
O12A—Cl—O11A109.8 (5)C3B—C2B—H2BA119.8
O13A—Cl—O11A109.4 (5)C1B—C2B—H2BA119.8
O14A—Cl—O11A104.6 (5)C4B—C3B—C2B118.5 (5)
O11B—Cl—O11A83.4 (10)C4B—C3B—H3BA120.8
O13B—Cl—O14B106.2 (12)C2B—C3B—H3BA120.8
O12A—Cl—O14B92.2 (9)C5B—C4B—C3B122.0 (5)
O12B—Cl—O14B106.5 (11)C5B—C4B—N3B118.6 (5)
O14A—Cl—O14B95.1 (9)C3B—C4B—N3B119.4 (5)
O11B—Cl—O14B102.6 (10)C4B—C5B—C6B119.4 (5)
O11A—Cl—O14B141.7 (8)C4B—C5B—H5BA120.3
O2—P—O3120.85 (18)C6B—C5B—H5BA120.3
O2—P—O1A111.69 (18)C5B—C6B—C1B119.2 (5)
O3—P—O1A103.26 (18)C5B—C6B—H6BA120.4
O2—P—O1B104.05 (18)C1B—C6B—H6BA120.4
O3—P—O1B112.33 (19)C6D—C1D—C2D118.8 (5)
O1A—P—O1B103.54 (17)C6D—C1D—C11121.9 (4)
C1A—O1A—P124.4 (3)C2D—C1D—C11119.3 (5)
C1B—O1B—P129.7 (3)C3D—C2D—C1D120.9 (4)
O31A—N3A—O32A123.2 (5)C3D—C2D—H2DA119.6
O31A—N3A—C4A118.1 (5)C1D—C2D—H2DA119.6
O32A—N3A—C4A118.7 (4)C4D—C3D—C2D119.2 (4)
O31B—N3B—O32B124.1 (5)C4D—C3D—C31120.7 (5)
O31B—N3B—C4B118.6 (5)C2D—C3D—C31120.1 (4)
O32B—N3B—C4B117.2 (5)C3D—C4D—C5D120.1 (5)
C11—N1D—H1DA109.5C3D—C4D—H4DA120.0
C11—N1D—H1DB109.5C5D—C4D—H4DA119.9
H1DA—N1D—H1DB109.5C6D—C5D—C4D120.3 (5)
C11—N1D—H1DC109.5C6D—C5D—H5DA119.9
H1DA—N1D—H1DC109.5C4D—C5D—H5DA119.9
H1DB—N1D—H1DC109.5C5D—C6D—C1D120.8 (5)
C31—N3D—H3DA109.5C5D—C6D—H6DA119.6
C31—N3D—H3DB109.5C1D—C6D—H6DA119.6
H3DA—N3D—H3DB109.5N1D—C11—C1D111.7 (4)
C31—N3D—H3DC109.5N1D—C11—H11A109.3
H3DA—N3D—H3DC109.5C1D—C11—H11A109.3
H3DB—N3D—H3DC109.5N1D—C11—H11B109.3
C6A—C1A—C2A122.4 (4)C1D—C11—H11B109.3
C6A—C1A—O1A119.9 (4)H11A—C11—H11B108.0
C2A—C1A—O1A117.5 (4)N3D—C31—C3D112.9 (4)
C1A—C2A—C3A118.7 (5)N3D—C31—H31A109.0
C1A—C2A—H2AA120.6C3D—C31—H31A109.0
C3A—C2A—H2AA120.6N3D—C31—H31B109.0
C4A—C3A—C2A119.3 (4)C3D—C31—H31B109.0
C4A—C3A—H3AA120.3H31A—C31—H31B107.8
O2—P—O1A—C1A44.8 (4)C1B—C2B—C3B—C4B0.3 (8)
O3—P—O1A—C1A176.1 (3)C2B—C3B—C4B—C5B0.6 (8)
O1B—P—O1A—C1A66.6 (4)C2B—C3B—C4B—N3B178.4 (5)
O2—P—O1B—C1B175.9 (4)O31B—N3B—C4B—C5B6.2 (7)
O3—P—O1B—C1B43.5 (4)O32B—N3B—C4B—C5B175.8 (5)
O1A—P—O1B—C1B67.2 (4)O31B—N3B—C4B—C3B171.7 (5)
P—O1A—C1A—C6A81.8 (5)O32B—N3B—C4B—C3B6.3 (7)
P—O1A—C1A—C2A101.9 (5)C3B—C4B—C5B—C6B1.1 (8)
C6A—C1A—C2A—C3A1.5 (8)N3B—C4B—C5B—C6B179.0 (5)
O1A—C1A—C2A—C3A174.7 (5)C4B—C5B—C6B—C1B1.5 (8)
C1A—C2A—C3A—C4A0.1 (8)C2B—C1B—C6B—C5B1.3 (8)
C2A—C3A—C4A—C5A1.8 (9)O1B—C1B—C6B—C5B176.5 (4)
C2A—C3A—C4A—N3A176.7 (5)C6D—C1D—C2D—C3D0.8 (7)
O31A—N3A—C4A—C3A7.7 (7)C11—C1D—C2D—C3D179.5 (5)
O32A—N3A—C4A—C3A171.3 (5)C1D—C2D—C3D—C4D0.3 (7)
O31A—N3A—C4A—C5A173.8 (5)C1D—C2D—C3D—C31178.1 (5)
O32A—N3A—C4A—C5A7.1 (7)C2D—C3D—C4D—C5D0.2 (8)
C3A—C4A—C5A—C6A2.2 (8)C31—C3D—C4D—C5D177.6 (5)
N3A—C4A—C5A—C6A176.2 (5)C3D—C4D—C5D—C6D0.2 (8)
C2A—C1A—C6A—C5A1.1 (8)C4D—C5D—C6D—C1D0.4 (8)
O1A—C1A—C6A—C5A175.0 (5)C2D—C1D—C6D—C5D0.8 (8)
C4A—C5A—C6A—C1A0.8 (8)C11—C1D—C6D—C5D179.5 (5)
P—O1B—C1B—C2B162.3 (4)C6D—C1D—C11—N1D101.4 (5)
P—O1B—C1B—C6B19.9 (7)C2D—C1D—C11—N1D80.0 (6)
C6B—C1B—C2B—C3B0.7 (8)C4D—C3D—C31—N3D105.0 (5)
O1B—C1B—C2B—C3B177.2 (5)C2D—C3D—C31—N3D77.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1D—H1DA···O13Ai0.892.132.987 (9)161
N1D—H1DA···O14Bi0.892.152.99 (2)158
N1D—H1DA···O11Bi0.892.282.99 (2)137
N1D—H1DA···O12Ai0.892.493.227 (11)140
N1D—H1DB···O30.891.842.706 (5)164
N1D—H1DC···O3i0.891.962.846 (6)174
N3D—H3DA···O2ii0.892.152.842 (5)134
N3D—H3DA···O13Biii0.892.222.753 (17)118
N3D—H3DA···O14Aiii0.892.443.042 (9)125
N3D—H3DB···O11A0.892.002.859 (10)163
N3D—H3DB···O11B0.892.583.17 (2)125
N3D—H3DC···O20.891.902.755 (5)162
C2A—H2AA···O32Biv0.932.573.422 (6)152
C5A—H5AA···O11Aiii0.932.563.262 (9)133
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H14N22+·C12H8N2O8P·ClO4
Mr576.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.337 (2), 11.623 (3), 13.535 (3)
α, β, γ (°)91.22 (1), 94.32 (1), 106.06 (1)
V3)1255.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.29 × 0.17
Data collection
DiffractometerBruker P4S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.876, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
3673, 3388, 2390
Rint0.026
θmax (°)23.0
(sin θ/λ)max1)0.550
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.02
No. of reflections3388
No. of parameters383
No. of restraints92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: XSCANS (Bruker, 1997), XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1D—H1DA···O13Ai0.892.132.987 (9)160.9
N1D—H1DA···O14Bi0.892.152.99 (2)157.8
N1D—H1DA···O11Bi0.892.282.99 (2)136.7
N1D—H1DA···O12Ai0.892.493.227 (11)140.1
N1D—H1DB···O30.891.842.706 (5)164.1
N1D—H1DC···O3i0.891.962.846 (6)173.7
N3D—H3DA···O2ii0.892.152.842 (5)133.8
N3D—H3DA···O13Biii0.892.222.753 (17)118.2
N3D—H3DA···O14Aiii0.892.443.042 (9)125.4
N3D—H3DB···O11A0.892.002.859 (10)162.5
N3D—H3DB···O11B0.892.583.17 (2)125.0
N3D—H3DC···O20.891.902.755 (5)161.9
C2A—H2AA···O32Biv0.932.573.422 (6)152.3
C5A—H5AA···O11Aiii0.932.563.262 (9)132.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

RJB acknowledges the DoD for funds to upgrade the diffractometer.

References

First citationBruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGultneh, Y., Allwar, A. B., Blaise, D., Butcher, R. J., Jasinski, J. M. & Jasinski, J. P. (1996). Inorg. Chim. Acta, 241, 31–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationGultneh, Y., Khan, A. R., Blaise, D., Chaudhry, S. B., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o377-o378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds