organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­amino-6-methyl-1,3,5-triazine ethanol solvate

aSchool of Physics and Chemistry Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China.
*Correspondence e-mail: xzh729@126.com

(Received 23 December 2007; accepted 2 January 2008; online 9 January 2008)

The crystal structure of the title compound, C4H7N5·C2H6O, is determined by extensive hydrogen bonding. A sequence of dimeric associations, formed by N—H(amino)⋯N(ring), connects the triazine rings into a mol­ecular tape. Mol­ecules are linked into a supra­molecular structure by N—H⋯O and O—H⋯O hydrogen bonds. The asymmetric unit consists of two formula units.

Related literature

For general background, see: Sebenik et al. (1989[Sebenik, A., Osredkar, U. & Zigon, M. (1989). Polym. Bull. 22, 155-161.]); Tashiro & Oiwa (1981[Tashiro, T. & Oiwa, M. (1981). J. Polym. Sci. Polym. Chem. 19, 645-654.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N5·C2H6O

  • Mr = 171.21

  • Triclinic, [P \overline 1]

  • a = 8.3860 (6) Å

  • b = 9.1514 (6) Å

  • c = 11.9104 (9) Å

  • α = 88.703 (1)°

  • β = 87.614 (2)°

  • γ = 76.668 (2)°

  • V = 888.56 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.34 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Version 1.22. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 7627 measured reflections

  • 3111 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.07

  • 3111 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N7i 0.86 2.11 2.9666 (18) 171
N5—H5D⋯N8ii 0.86 2.19 3.0132 (19) 159
N5—H5E⋯O2iii 0.86 2.29 3.0071 (19) 142
N10—H10A⋯O2iv 0.86 2.10 2.9337 (18) 163
O2—H2⋯O1v 0.82 1.90 2.7185 (18) 174
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Triazine compounds are used in pharmaceutical industry as coupling agents for the synthesis of peptides and as side chain of antibiotics, as well as in formulating bactericides and fungicides. 2,4-Diamino-6-methyl-1,3,5-triazine (acetoguanamine) is used as an intermediate for pharmaceuticals and as a modifier and flexibilizer of formaldehyde resins (Sebenik et al., 1989, Tashiro et al., 1981).

The crystal structure of the title compound (Fig. 1) consists of triazine and solvate ethanol molecule. The amino groups are coplanar with the ring plane, the dihedral angle between the triazine ring (C2,N2,C4,N1,C3,N3) and the ring (C8,N7,C9,N8,C10,N6) is 12.73 (7)°. A lot of hydrogen bonds are observed (Table 1), each NH2 group acts as a donor in hydrogen bond with the ring nitrogen atoms of neighboring molecules, these contacts and the cross-linking interactions stabilize the crystal packing.

Related literature top

For general background, see: Sebenik et al. (1989); Tashiro & Oiwa (1981).

Experimental top

2,4-diamino-6-methyl-1,3,5-triazine (0.625 g, 0.05 mol) was added to a stirred solvent of ethanol (100 ml) at 50°C for 3 h. After cooling to room temperature, the mixture was filtered. The filtrate was set aside for one week to obtain colorless crystals.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,4-Diamino-6-methyl-1,3,5-triazine ethanol solvate top
Crystal data top
C4H7N5·C2H6OZ = 4
Mr = 171.21F(000) = 368.0
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3860 (6) ÅCell parameters from 3111 reflections
b = 9.1514 (6) Åθ = 1.7–25.0°
c = 11.9104 (9) ŵ = 0.09 mm1
α = 88.703 (1)°T = 273 K
β = 87.614 (2)°Block, colorless
γ = 76.668 (2)°0.34 × 0.26 × 0.21 mm
V = 888.56 (11) Å3
Data collection top
Bruker CCD area-detector
diffractometer
3111 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.975, Tmax = 0.985k = 1010
7627 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2811P]
where P = (Fo2 + 2Fc2)/3
3111 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H7N5·C2H6Oγ = 76.668 (2)°
Mr = 171.21V = 888.56 (11) Å3
Triclinic, P1Z = 4
a = 8.3860 (6) ÅMo Kα radiation
b = 9.1514 (6) ŵ = 0.09 mm1
c = 11.9104 (9) ÅT = 273 K
α = 88.703 (1)°0.34 × 0.26 × 0.21 mm
β = 87.614 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2619 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.017
7627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3111 reflectionsΔρmin = 0.19 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0454 (2)0.41963 (19)0.15635 (15)0.0388 (4)
H1A0.06530.47780.15270.058*
H1B0.08920.39460.08170.058*
H1C0.11100.47700.19200.058*
C20.04756 (19)0.27874 (17)0.22268 (13)0.0290 (4)
C30.07229 (18)0.14537 (17)0.34835 (13)0.0258 (3)
C40.18337 (18)0.04532 (17)0.27722 (13)0.0268 (3)
C50.6644 (3)0.2978 (3)0.0124 (2)0.0651 (6)
H5A0.73940.20120.00890.098*
H5B0.72120.37160.03480.098*
H5C0.62000.32440.06020.098*
C60.5286 (2)0.2917 (2)0.09584 (17)0.0486 (5)
H6A0.57300.26280.16910.058*
H6B0.45480.39000.10190.058*
C70.3737 (2)0.18852 (18)0.49621 (15)0.0342 (4)
H7A0.41720.11320.44120.051*
H7B0.26830.17650.52410.051*
H7C0.44690.17800.55720.051*
C80.35597 (18)0.34072 (16)0.44340 (12)0.0254 (3)
C90.47170 (18)0.50943 (16)0.34763 (12)0.0244 (3)
C100.20147 (18)0.56977 (16)0.39979 (12)0.0255 (3)
N10.05944 (15)0.02890 (14)0.34824 (11)0.0279 (3)
N20.18531 (16)0.17023 (15)0.21443 (11)0.0299 (3)
N30.08554 (15)0.27267 (14)0.28518 (11)0.0284 (3)
N40.20112 (16)0.13534 (15)0.41484 (11)0.0323 (3)
H4A0.19840.05630.45590.039*
H4B0.28710.20790.41670.039*
N60.20797 (15)0.43256 (14)0.44771 (11)0.0273 (3)
N70.49186 (15)0.37128 (13)0.39648 (10)0.0268 (3)
N80.32886 (15)0.61343 (14)0.34805 (11)0.0274 (3)
N90.05530 (15)0.66659 (15)0.40412 (12)0.0336 (3)
H9A0.04420.75460.37420.040*
H9B0.02760.64090.43680.040*
N100.60412 (15)0.54140 (15)0.29698 (11)0.0309 (3)
H10A0.59790.62760.26500.037*
H10B0.69590.47590.29620.037*
O10.44204 (16)0.18580 (16)0.06094 (10)0.0475 (4)
H10.36070.18970.10240.071*
C110.0989 (3)0.1326 (3)0.89654 (19)0.0599 (6)
H11A0.13240.11240.97250.090*
H11B0.03210.06550.87690.090*
H11C0.03700.23440.89000.090*
C120.2460 (2)0.1100 (2)0.81971 (17)0.0495 (5)
H12A0.30360.00530.82370.059*
H12B0.21030.13100.74340.059*
N50.31467 (16)0.06868 (15)0.26948 (12)0.0353 (3)
H5D0.31800.14900.30910.042*
H5E0.39610.06190.22490.042*
O20.35702 (16)0.19983 (16)0.84251 (11)0.0461 (3)
H20.37690.19310.90950.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (10)0.0326 (9)0.0423 (10)0.0051 (7)0.0017 (8)0.0095 (8)
C20.0299 (8)0.0272 (8)0.0294 (8)0.0059 (7)0.0023 (6)0.0018 (6)
C30.0241 (8)0.0242 (8)0.0282 (8)0.0041 (6)0.0011 (6)0.0001 (6)
C40.0250 (8)0.0267 (8)0.0281 (8)0.0051 (6)0.0004 (6)0.0010 (6)
C50.0531 (13)0.0762 (16)0.0747 (16)0.0344 (12)0.0045 (11)0.0046 (12)
C60.0485 (11)0.0488 (11)0.0516 (12)0.0174 (9)0.0003 (9)0.0063 (9)
C70.0298 (9)0.0250 (8)0.0454 (10)0.0028 (7)0.0032 (7)0.0040 (7)
C80.0248 (8)0.0233 (8)0.0269 (8)0.0032 (6)0.0004 (6)0.0019 (6)
C90.0251 (8)0.0230 (7)0.0242 (8)0.0037 (6)0.0001 (6)0.0011 (6)
C100.0237 (8)0.0244 (8)0.0270 (8)0.0028 (6)0.0012 (6)0.0002 (6)
N10.0247 (7)0.0251 (7)0.0313 (7)0.0019 (5)0.0038 (5)0.0036 (5)
N20.0293 (7)0.0285 (7)0.0311 (7)0.0062 (6)0.0035 (5)0.0031 (6)
N30.0257 (7)0.0258 (7)0.0321 (7)0.0030 (5)0.0003 (5)0.0039 (5)
N40.0258 (7)0.0250 (7)0.0419 (8)0.0007 (5)0.0089 (6)0.0058 (6)
N60.0237 (7)0.0234 (7)0.0334 (7)0.0032 (5)0.0008 (5)0.0007 (5)
N70.0241 (7)0.0228 (7)0.0312 (7)0.0013 (5)0.0016 (5)0.0015 (5)
N80.0251 (7)0.0239 (7)0.0309 (7)0.0016 (5)0.0009 (5)0.0026 (5)
N90.0223 (7)0.0269 (7)0.0478 (9)0.0005 (5)0.0038 (6)0.0078 (6)
N100.0237 (7)0.0253 (7)0.0411 (8)0.0017 (5)0.0039 (6)0.0054 (6)
O10.0477 (8)0.0614 (9)0.0398 (7)0.0274 (7)0.0112 (6)0.0083 (6)
C110.0513 (12)0.0746 (15)0.0606 (14)0.0303 (11)0.0095 (10)0.0034 (11)
C120.0453 (11)0.0601 (13)0.0463 (11)0.0190 (10)0.0023 (9)0.0044 (9)
N50.0260 (7)0.0298 (7)0.0455 (8)0.0005 (6)0.0105 (6)0.0072 (6)
O20.0461 (8)0.0581 (8)0.0391 (7)0.0241 (6)0.0010 (6)0.0112 (6)
Geometric parameters (Å, º) top
C1—C21.494 (2)C8—N71.3327 (19)
C1—H1A0.9600C9—N101.3300 (19)
C1—H1B0.9600C9—N81.3471 (19)
C1—H1C0.9600C9—N71.3571 (19)
C2—N31.327 (2)C10—N91.3364 (19)
C2—N21.340 (2)C10—N81.3459 (19)
C3—N41.332 (2)C10—N61.3580 (19)
C3—N11.3466 (19)N4—H4A0.8600
C3—N31.3576 (19)N4—H4B0.8600
C4—N51.332 (2)N9—H9A0.8600
C4—N11.346 (2)N9—H9B0.8600
C4—N21.355 (2)N10—H10A0.8600
C5—C61.490 (3)N10—H10B0.8600
C5—H5A0.9600O1—H10.8200
C5—H5B0.9600C11—C121.482 (3)
C5—H5C0.9600C11—H11A0.9600
C6—O11.417 (2)C11—H11B0.9600
C6—H6A0.9700C11—H11C0.9600
C6—H6B0.9700C12—O21.415 (2)
C7—C81.494 (2)C12—H12A0.9700
C7—H7A0.9600C12—H12B0.9700
C7—H7B0.9600N5—H5D0.8600
C7—H7C0.9600N5—H5E0.8600
C8—N61.3285 (19)O2—H20.8200
C2—C1—H1A109.5N10—C9—N7116.38 (13)
C2—C1—H1B109.5N8—C9—N7124.41 (13)
H1A—C1—H1B109.5N9—C10—N8118.57 (13)
C2—C1—H1C109.5N9—C10—N6116.26 (13)
H1A—C1—H1C109.5N8—C10—N6125.17 (13)
H1B—C1—H1C109.5C4—N1—C3114.56 (13)
N3—C2—N2125.90 (14)C2—N2—C4114.89 (13)
N3—C2—C1117.42 (14)C2—N3—C3114.50 (13)
N2—C2—C1116.68 (14)C3—N4—H4A120.0
N4—C3—N1117.82 (13)C3—N4—H4B120.0
N4—C3—N3116.89 (13)H4A—N4—H4B120.0
N1—C3—N3125.28 (13)C8—N6—C10114.35 (12)
N5—C4—N1117.59 (14)C8—N7—C9114.99 (12)
N5—C4—N2117.68 (13)C10—N8—C9114.81 (12)
N1—C4—N2124.72 (14)C10—N9—H9A120.0
C6—C5—H5A109.5C10—N9—H9B120.0
C6—C5—H5B109.5H9A—N9—H9B120.0
H5A—C5—H5B109.5C9—N10—H10A120.0
C6—C5—H5C109.5C9—N10—H10B120.0
H5A—C5—H5C109.5H10A—N10—H10B120.0
H5B—C5—H5C109.5C6—O1—H1109.5
O1—C6—C5109.36 (17)C12—C11—H11A109.5
O1—C6—H6A109.8C12—C11—H11B109.5
C5—C6—H6A109.8H11A—C11—H11B109.5
O1—C6—H6B109.8C12—C11—H11C109.5
C5—C6—H6B109.8H11A—C11—H11C109.5
H6A—C6—H6B108.3H11B—C11—H11C109.5
C8—C7—H7A109.5O2—C12—C11114.80 (17)
C8—C7—H7B109.5O2—C12—H12A108.6
H7A—C7—H7B109.5C11—C12—H12A108.6
C8—C7—H7C109.5O2—C12—H12B108.6
H7A—C7—H7C109.5C11—C12—H12B108.6
H7B—C7—H7C109.5H12A—C12—H12B107.5
N6—C8—N7126.22 (13)C4—N5—H5D120.0
N6—C8—C7117.53 (13)C4—N5—H5E120.0
N7—C8—C7116.25 (13)H5D—N5—H5E120.0
N10—C9—N8119.21 (13)C12—O2—H2109.5
N5—C4—N1—C3177.19 (14)N7—C8—N6—C100.8 (2)
N2—C4—N1—C33.9 (2)C7—C8—N6—C10178.93 (13)
N4—C3—N1—C4178.53 (14)N9—C10—N6—C8178.84 (13)
N3—C3—N1—C40.9 (2)N8—C10—N6—C82.1 (2)
N3—C2—N2—C40.2 (2)N6—C8—N7—C91.2 (2)
C1—C2—N2—C4178.97 (14)C7—C8—N7—C9179.03 (13)
N5—C4—N2—C2177.66 (14)N10—C9—N7—C8177.94 (13)
N1—C4—N2—C23.4 (2)N8—C9—N7—C82.4 (2)
N2—C2—N3—C32.9 (2)N9—C10—N8—C9179.85 (13)
C1—C2—N3—C3176.34 (14)N6—C10—N8—C91.1 (2)
N4—C3—N3—C2178.33 (14)N10—C9—N8—C10179.00 (13)
N1—C3—N3—C22.3 (2)N7—C9—N8—C101.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N7i0.862.112.9666 (18)171
N5—H5D···N8ii0.862.193.0132 (19)159
N5—H5E···O2iii0.862.293.0071 (19)142
N10—H10A···O2iv0.862.102.9337 (18)163
O2—H2···O1v0.821.902.7185 (18)174
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H7N5·C2H6O
Mr171.21
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.3860 (6), 9.1514 (6), 11.9104 (9)
α, β, γ (°)88.703 (1), 87.614 (2), 76.668 (2)
V3)888.56 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.26 × 0.21
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7627, 3111, 2619
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.07
No. of reflections3111
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N7i0.862.112.9666 (18)170.5
N5—H5D···N8ii0.862.193.0132 (19)159.0
N5—H5E···O2iii0.862.293.0071 (19)141.5
N10—H10A···O2iv0.862.102.9337 (18)162.5
O2—H2···O1v0.821.902.7185 (18)174.1
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

This work was supported by the Nomarch Education Foundation of Guizhou, China (No. 2004–07).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Version 1.22. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSebenik, A., Osredkar, U. & Zigon, M. (1989). Polym. Bull. 22, 155–161.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashiro, T. & Oiwa, M. (1981). J. Polym. Sci. Polym. Chem. 19, 645–654.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds