metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m342-m343

(Tetra­oxidoselenato-κO)tris­­(thio­urea-κS)zinc(II)

aInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

(Received 7 January 2008; accepted 9 January 2008; online 11 January 2008)

The title structure, [Zn(SeO4)(CH4N2S)3], is isomorphous with sulfatotris(thio­urea)zinc(II). In both structures, the Zn2+ cation is coordinated in a tetra­hedral geometry. The corresponding intra­molecular distances are quite similar except for the Se—O and S—O distances. Although the hydrogen-bonding patterns are similar, there are some differences; in the title structure all the H atoms are involved in the hydrogen-bond pattern, in contrast to the situation in sulfatotris(thio­urea)zinc(II). No reproducible anomalies were detected by differential scanning calorimetry in the range 93–463 K until decomposition started at the higher temperature.

Related literature

For related literature, see: Krupková et al. (2007[Krupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2007). Acta Cryst. E63, m3177-m3178.]); Alex & Phillip (2001[Alex, A. V. & Phillip, J. (2001). J. Appl. Phys. 90, 720-723.]); Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]); PerkinElmer (2001[PerkinElmer (2001). PYRIS Software. Version 4.02. PerkinElmer Instruments, Shelton, CT, USA.]); Ramabadran et al. (1992[Ramabadran, U. B., Zelmon, D. E. & Kennedy, G. C. (1992). Appl. Phys. Lett. 60, 2589-2591.]); Ushasree et al. (1998[Ushasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1998). Bull. Electrochem. 14, 407-410.], 2000[Ushasree, P. M., Muralidharan, R., Jayavel, R. & Ramasamy, P. (2000). J. Cryst. Growth, 210, 741-745.]); Venkataramanan et al. (1995[Venkataramanan, V., Subramanian, C. K. & Bhat, H. L. (1995). J. Appl. Phys. 77, 6049-6051.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SeO4)(CH4N2S)3]

  • Mr = 436.7

  • Orthorhombic, P c a 21

  • a = 11.2045 (2) Å

  • b = 7.8824 (1) Å

  • c = 15.7960 (2) Å

  • V = 1395.08 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.83 mm−1

  • T = 292 K

  • 0.35 × 0.25 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens & Hamilton, 1970[Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.]) Tmin = 0.223, Tmax = 0.602

  • 23449 measured reflections

  • 3150 independent reflections

  • 3004 reflections with I > 3σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.52

  • 3150 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1492 Friedel pairs

  • Flack parameter: −0.020 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4i* 0.89 2.20 3.066 (3) 164
N1—H2N1⋯O3ii* 0.89 2.38 3.072 (3) 135
N2—H1N2⋯O2ii* 0.89 1.98 2.852 (3) 167
N2—H2N2⋯S3 0.89 2.63 3.497 (3) 166
N3—H1N3⋯O3* 0.89 2.17 2.988 (3) 152
N3—H2N3⋯O1iii* 0.89 2.04 2.895 (3) 160
N4—H1N4⋯O2iv* 0.89 2.12 2.999 (3) 168
N4—H2N4⋯S2iii 0.89 2.86 3.643 (2) 148
N5—H1N5⋯O3v* 0.89 2.06 2.938 (3) 170
N5—H2N5⋯O4vi 0.89 2.57 3.297 (3) 139
N6—H1N6⋯S1 0.89 2.73 3.577 (3) 159
N6—H2N6⋯O4v* 0.89 2.19 2.905 (3) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) x, y+1, z; (iii) [x+{\script{1\over 2}}, -y, z]; (iv) [-x+1, -y, z+{\script{1\over 2}}]; (v) [-x+1, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]. * indicates that the pertinent hydrogen bond is also present in Zn[(SC(NH2)2]3(SO4) (Krupková et al., 2007[Krupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2007). Acta Cryst. E63, m3177-m3178.]).

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1997[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1997). SIR97. University of Bari, Italy.]); program(s) used to refine structure: (JANA2000; Petříček et al., 2000[Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: JANA2000.

Supporting information


Comment top

Zinc [tris(thiourea)]sulfate, isomorphous to the title structure, is reported to be a perspective semiorganic non-linear optical material (Ushasree et al., 1998, 2000). It can substitute potassium dihydrogenphosphate in technical applications (Ramabadran et al., 1992; Alex & Phillip, 2001). It has also an exceptionally wide acceptance angle for second harmonic generation (Ramabadran et al., 1992). Its resistance against laser induced damage is good (Venkataramanan et al., 1995).

We have synthesized the title compound since it is expected that it might show similar interesting properties as its known isostructural counterpart (Krupková et al., 2007). As a part of our on-going study of the title compound we report here its structure determination. The investigation od dielectric and optical properties is in progress.

The common features and differences between the hydrogen-bond patterns in both isostructural compounds are shown in Tab. 1. This table shows that the stronger hydrogen bonds are common for both isostructural compounds.

Related literature top

For related literature, see: Krupková et al. (2007); Alex & Phillip (2001); Becker & Coppens (1974); PerkinElmer (2001); Ramabadran et al. (1992); Ushasree et al. (1998, 2000); Venkataramanan et al. (1995).

Experimental top

The title compound has been prepared in a similar way as zinc[tris(thiourea)] sulfate. The preparation was carried out in two steps according to following equations:

(1) [ZnCO3][Zn(OH)2] + 2H2SeO4 + 3H2O 2ZnSeO4.6H2O + CO2

(2) 4ZnSeO4.6H2O + 3 CS(NH2)2 Zn[CS(NH2)2]3}[SeO4]

5.0 g (0.222 M) of ZnCO3[Zn(OH)2] dissolved in 3.6 g (0.2 M) of distilled H2O reacted with 6.45 g (96%) H2SeO4 (0.0427 M) at room temperature. After the neutralization white suspension was obtained. The suspension into which had been poured 50 ml of distilled H2O was heated at 60°C for 30 minutes. The solution became clearer and its pH=4.

Then, at 50°C was added 10.14 g (0.1332 M) of thiourea. The solution became orange-coloured and under stirring it was kept at 50°C for another 10 minutes. An orange precipitate has developed to which another 100 ml of distilled water was added. The mixture was stirred for another 20 minutes and then cooled down to room temperature. After two days, transparent crystals of length of 0.5 mm appeared at the walls of the beaker while an orange precipitate covered its bottom. Next day the precipitate was filtered off, some orange-tinged crystals have been isolated as seeds that were introduced into the filtrate. After a week clear transparent crystals appeared of the size of 1 cm, of the similar HABITUS as zinc[tris(thiourea)] sulfate (Alex & Phillip, 2001).

Refinement top

All the H atoms were discernible in the difference Fourier map and even could be refined. Nevertheless, their coordinates were constrained in riding motion formalism: The pertinent distances equalled to 0.89Å and Uiso(H)=1.2Ueq(N).

The calorimetric experiments were performed on PerkinElmer DSC 7 and Pyris Diamond differential scanning calorimeters using PYRIS Software (PerkinElmer, 2001), with m = 30 mg, a temperature interval of 93–466 K and scanning rate of 10 K/min. No reproducible DSC anomalies were detected until the symptoms of decomposition at 463 K.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: (JANA2000; Petříček et al., 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: (JANA2000; Petříček et al., 2000).

Figures top
[Figure 1] Fig. 1. View of the title molecule with anisotropic displacement parameters shown at the 30% probability level.
(Tetraoxidoselenato-κO)tris(thiourea-κS)zinc(II) top
Crystal data top
[Zn(SeO4)(CH4N2S)3]F(000) = 864
Mr = 436.7Dx = 2.079 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 14388 reflections
a = 11.2045 (2) Åθ = 1.0–27.5°
b = 7.8824 (1) ŵ = 4.83 mm1
c = 15.7960 (2) ÅT = 292 K
V = 1395.08 (4) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube3004 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: gaussian
(Coppens & Hamilton, 1970)
h = 1414
Tmin = 0.223, Tmax = 0.602k = 1010
23449 measured reflectionsl = 1920
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.005
wR(F2) = 0.050Δρmax = 0.36 e Å3
S = 1.52Δρmin = 0.25 e Å3
3150 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
163 parametersExtinction coefficient: 1.65 (5)
0 restraintsAbsolute structure: Flack (1983), 1492 Friedel pairs
48 constraintsAbsolute structure parameter: 0.020 (6)
H-atom parameters constrained
Crystal data top
[Zn(SeO4)(CH4N2S)3]V = 1395.08 (4) Å3
Mr = 436.7Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.2045 (2) ŵ = 4.83 mm1
b = 7.8824 (1) ÅT = 292 K
c = 15.7960 (2) Å0.35 × 0.25 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3150 independent reflections
Absorption correction: gaussian
(Coppens & Hamilton, 1970)
3004 reflections with I > 3σ(I)
Tmin = 0.223, Tmax = 0.602Rint = 0.039
23449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.36 e Å3
S = 1.52Δρmin = 0.25 e Å3
3150 reflectionsAbsolute structure: Flack (1983), 1492 Friedel pairs
163 parametersAbsolute structure parameter: 0.020 (6)
0 restraints
Special details top

Refinement. The Flack parameter converged to the value -0.020 (6), so it was excluded from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43588 (3)0.34032 (3)0.42203 (2)0.02479 (9)
Se10.37373 (2)0.15124 (3)0.2477980.02293 (7)
O10.34191 (19)0.1846 (2)0.34926 (13)0.0363 (6)
O20.29853 (18)0.0173 (2)0.22066 (12)0.0317 (6)
O30.51627 (17)0.1169 (2)0.23987 (16)0.0372 (6)
O40.33169 (19)0.3147 (2)0.19315 (15)0.0392 (6)
S10.57849 (6)0.49589 (8)0.34906 (5)0.03060 (19)
C10.5054 (2)0.6544 (2)0.29483 (16)0.0290 (8)
N10.5667 (2)0.7339 (3)0.23498 (16)0.0401 (8)
N20.3957 (2)0.7021 (3)0.31154 (18)0.0447 (9)
S20.52313 (7)0.17226 (9)0.52667 (5)0.0327 (2)
C20.64030 (18)0.0636 (3)0.48127 (17)0.0314 (8)
N30.6501 (2)0.0405 (4)0.39895 (16)0.0468 (9)
N40.7222 (2)0.0025 (3)0.53155 (17)0.0460 (9)
S30.29592 (6)0.50137 (8)0.49583 (5)0.03039 (18)
C30.3845 (2)0.5992 (3)0.57094 (15)0.0295 (7)
N50.3360 (3)0.6436 (3)0.64329 (16)0.0453 (9)
N60.4979 (2)0.6351 (3)0.55684 (18)0.0455 (9)
H1n10.639540.6983110.221230.0482*
H2n10.5349560.8228060.2085460.0482*
H1n20.3594820.777570.2784280.0536*
H2n20.357420.6588740.3559730.0536*
H1n30.590990.0718090.3646890.0562*
H2n30.715760.0064240.3776120.0562*
H1n40.7187080.0229950.586910.0552*
H2n40.7815260.0595330.5104750.0552*
H1n50.3738390.7153110.6775030.0543*
H2n50.2651470.6018910.6581060.0543*
H1n60.5354570.5895010.5127180.0546*
H2n60.5367980.7050070.5914620.0546*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02747 (16)0.02426 (15)0.02265 (16)0.00004 (11)0.00160 (12)0.00106 (11)
Se10.02532 (13)0.02427 (12)0.01920 (13)0.00028 (8)0.00161 (10)0.00140 (11)
O10.0414 (12)0.0444 (10)0.0231 (9)0.0183 (9)0.0063 (9)0.0069 (8)
O20.0396 (10)0.0290 (9)0.0264 (10)0.0047 (7)0.0031 (8)0.0027 (6)
O30.0268 (9)0.0441 (10)0.0408 (12)0.0020 (8)0.0042 (10)0.0047 (10)
O40.0401 (11)0.0336 (9)0.0441 (12)0.0049 (8)0.0048 (10)0.0138 (9)
S10.0252 (3)0.0343 (3)0.0323 (3)0.0001 (2)0.0004 (3)0.0102 (3)
C10.0314 (15)0.0266 (12)0.0291 (14)0.0051 (10)0.0037 (11)0.0013 (10)
N10.0423 (14)0.0369 (12)0.0412 (15)0.0019 (10)0.0037 (11)0.0138 (11)
N20.0364 (14)0.0400 (13)0.0575 (18)0.0084 (12)0.0078 (13)0.0189 (12)
S20.0354 (4)0.0400 (4)0.0227 (3)0.0119 (3)0.0055 (3)0.0041 (2)
C20.0356 (14)0.0326 (13)0.0260 (14)0.0060 (11)0.0011 (11)0.0012 (10)
N30.0477 (16)0.0652 (17)0.0276 (13)0.0260 (14)0.0023 (11)0.0063 (12)
N40.0435 (15)0.0629 (17)0.0315 (13)0.0267 (12)0.0011 (11)0.0021 (12)
S30.0228 (3)0.0406 (3)0.0279 (3)0.0011 (2)0.0020 (3)0.0110 (3)
C30.0324 (13)0.0296 (12)0.0266 (14)0.0035 (10)0.0047 (11)0.0045 (11)
N50.0384 (15)0.0655 (17)0.0320 (14)0.0047 (12)0.0003 (12)0.0218 (12)
N60.0328 (14)0.0620 (17)0.0418 (16)0.0102 (11)0.0010 (12)0.0253 (12)
Geometric parameters (Å, º) top
Zn1—O11.984 (2)C3—N51.313 (4)
Zn1—S12.3207 (8)C3—N61.321 (3)
Zn1—S22.3330 (8)N1—H1n10.89
Zn1—S32.3302 (7)N1—H2n10.89
Se1—O11.663 (2)N2—H1n20.89
Se1—O21.6307 (18)N2—H2n20.89
Se1—O31.6246 (19)N3—H1n30.89
Se1—O41.621 (2)N3—H2n30.89
S1—C11.722 (2)N4—H1n40.89
C1—N11.326 (3)N4—H2n40.89
C1—N21.313 (4)N5—H1n50.89
S2—C21.724 (2)N5—H2n50.89
C2—N31.317 (4)N6—H1n60.89
C2—N41.306 (3)N6—H2n60.89
S3—C31.729 (2)
Se1—Zn1—S188.22 (2)H1n1—N1—H2n1120.0
Se1—Zn1—S2115.80 (2)C1—N2—H1n2120.0
Se1—Zn1—S3122.45 (2)C1—N2—H2n2120.0
S1—Zn1—S2111.31 (3)H1n2—N2—H2n2120.0
S1—Zn1—S3115.09 (3)C2—N3—H1n3120.0
S2—Zn1—S3103.70 (3)C2—N3—H2n3120.0
O1—Se1—O2105.75 (10)H1n3—N3—H2n3120.0
O1—Se1—O3108.14 (11)C2—N4—H1n4120.0
O1—Se1—O4108.98 (11)C2—N4—H2n4120.0
O2—Se1—O3110.62 (10)H1n4—N4—H2n4120.0
O2—Se1—O4110.95 (10)C3—N5—H1n5120.0
O3—Se1—O4112.15 (11)C3—N5—H2n5120.0
S1—C1—N1116.84 (19)H1n5—N5—H2n5120.0
S1—C1—N2123.6 (2)C3—N6—H1n6120.0
N1—C1—N2119.5 (2)C3—N6—H2n6120.0
S2—C2—N3122.86 (19)H1n6—N6—H2n6120.0
S2—C2—N4117.7 (2)H1n1—N1—H2n1120.0
N3—C2—N4119.4 (2)H1n2—N2—H2n2120.0
S3—C3—N5118.6 (2)H1n3—N3—H2n3120.0
S3—C3—N6122.2 (2)H1n4—N4—H2n4120.0
N5—C3—N6119.2 (2)H1n5—N5—H2n5120.0
C1—N1—H1n1120.0H1n6—N6—H2n6120.0
C1—N1—H2n1120.0

Experimental details

Crystal data
Chemical formula[Zn(SeO4)(CH4N2S)3]
Mr436.7
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)292
a, b, c (Å)11.2045 (2), 7.8824 (1), 15.7960 (2)
V3)1395.08 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.83
Crystal size (mm)0.35 × 0.25 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens & Hamilton, 1970)
Tmin, Tmax0.223, 0.602
No. of measured, independent and
observed [I > 3σ(I)] reflections
23449, 3150, 3004
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.52
No. of reflections3150
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.25
Absolute structureFlack (1983), 1492 Friedel pairs
Absolute structure parameter0.020 (6)

Computer programs: COLLECT (Hooft, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1997), (JANA2000; Petříček et al., 2000), PLATON (Spek, 2003).

Tab. 1. Hydrogen-bond geometry (Å, °). */y indicates that the pertinent hydrogen bond is also present in Zn[(SC(NH2)2]3(SO4), Krupková et al. (2007). top
D-H···AD-HH···AD···AD-H···A*
N1-H1N1···O4i0.892.203.066 (3)164y
N1-H2N1···O3ii0.892.383.072 (3)135y
N2-H1N2···O2ii0.891.982.852 (3)167y
N2-H2N2···S30.892.633.497 (3)166
N3-H1N3···O30.892.172.988 (3)152y
N3-H2N3···O1iii0.892.042.895 (3)160y
N4-H1N4···O2iV0.892.122.999 (3)168y
N4-H2N4···S2iii0.892.863.643 (3)148
N5-H1N5···O3V0.892.062.938 (3)170y
N5-H2N5···O4Vi0.892.573.297 (3)139
N6-H1N6···S10.892.733.577 (3)159
N6-H2N6···O4v0.892.192.905 (3)137y
Symmetry codes:(i) 1/2+x,-y+1, z; (ii) x, y+1, z; (iii) 1/2+x, -y, z; (iv) 1-x, -y, 1/2+z; (v) 1-x, 1-y, 1/2+z; (vi) 1/2-x, y, 1/2+z.
 

Acknowledgements

Support under a CZ–US grant as part of the KONTAKT program (Czech Ministry of Education, Youth and Sports), No. 1P05ME 785, is gratefully acknowledged.

References

First citationAlex, A. V. & Phillip, J. (2001). J. Appl. Phys. 90, 720–723.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1997). SIR97. University of Bari, Italy.  Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationCoppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKrupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2007). Acta Cryst. E63, m3177–m3178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerkinElmer (2001). PYRIS Software. Version 4.02. PerkinElmer Instruments, Shelton, CT, USA.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationRamabadran, U. B., Zelmon, D. E. & Kennedy, G. C. (1992). Appl. Phys. Lett. 60, 2589–2591.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUshasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1998). Bull. Electrochem. 14, 407–410.  CAS Google Scholar
First citationUshasree, P. M., Muralidharan, R., Jayavel, R. & Ramasamy, P. (2000). J. Cryst. Growth, 210, 741–745.  Web of Science CrossRef CAS Google Scholar
First citationVenkataramanan, V., Subramanian, C. K. & Bhat, H. L. (1995). J. Appl. Phys. 77, 6049–6051.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m342-m343
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds