metal-organic compounds
(Tetraoxidoselenato-κO)tris(thiourea-κS)zinc(II)
aInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2, Czech Republic
*Correspondence e-mail: fabry@fzu.cz
The title structure, [Zn(SeO4)(CH4N2S)3], is isomorphous with sulfatotris(thiourea)zinc(II). In both structures, the Zn2+ cation is coordinated in a tetrahedral geometry. The corresponding intramolecular distances are quite similar except for the Se—O and S—O distances. Although the hydrogen-bonding patterns are similar, there are some differences; in the title structure all the H atoms are involved in the hydrogen-bond pattern, in contrast to the situation in sulfatotris(thiourea)zinc(II). No reproducible anomalies were detected by in the range 93–463 K until decomposition started at the higher temperature.
Related literature
For related literature, see: Krupková et al. (2007); Alex & Phillip (2001); Becker & Coppens (1974); PerkinElmer (2001); Ramabadran et al. (1992); Ushasree et al. (1998, 2000); Venkataramanan et al. (1995).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: (JANA2000; Petříček et al., 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: JANA2000.
Supporting information
10.1107/S1600536808000743/bq2062sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808000743/bq2062Isup2.hkl
The title compound has been prepared in a similar way as zinc[tris(thiourea)] sulfate. The preparation was carried out in two steps according to following equations:
(1) [ZnCO3][Zn(OH)2] + 2H2SeO4 + 3H2O → 2ZnSeO4.6H2O + CO2
(2) 4ZnSeO4.6H2O + 3 CS(NH2)2 → Zn[CS(NH2)2]3}[SeO4]
5.0 g (0.222 M) of ZnCO3[Zn(OH)2] dissolved in 3.6 g (0.2 M) of distilled H2O reacted with 6.45 g (96%) H2SeO4 (0.0427 M) at room temperature. After the neutralization white suspension was obtained. The suspension into which had been poured 50 ml of distilled H2O was heated at 60°C for 30 minutes. The solution became clearer and its pH=4.
Then, at 50°C was added 10.14 g (0.1332 M) of thiourea. The solution became orange-coloured and under stirring it was kept at 50°C for another 10 minutes. An orange precipitate has developed to which another 100 ml of distilled water was added. The mixture was stirred for another 20 minutes and then cooled down to room temperature. After two days, transparent crystals of length of 0.5 mm appeared at the walls of the beaker while an orange precipitate covered its bottom. Next day the precipitate was filtered off, some orange-tinged crystals have been isolated as seeds that were introduced into the filtrate. After a week clear transparent crystals appeared of the size of 1 cm, of the similar HABITUS as zinc[tris(thiourea)] sulfate (Alex & Phillip, 2001).
All the H atoms were discernible in the difference Fourier map and even could be refined. Nevertheless, their coordinates were constrained in riding motion formalism: The pertinent distances equalled to 0.89Å and Uiso(H)=1.2Ueq(N).
The calorimetric experiments were performed on PerkinElmer DSC 7 and Pyris Diamond differential scanning calorimeters using PYRIS Software (PerkinElmer, 2001), with m = 30 mg, a temperature interval of 93–466 K and scanning rate of 10 K/min. No reproducible DSC anomalies were detected until the symptoms of decomposition at 463 K.
Data collection: COLLECT (Hooft, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: (JANA2000; Petříček et al., 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: (JANA2000; Petříček et al., 2000).Fig. 1. View of the title molecule with anisotropic displacement parameters shown at the 30% probability level. |
[Zn(SeO4)(CH4N2S)3] | F(000) = 864 |
Mr = 436.7 | Dx = 2.079 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2c -2ac | Cell parameters from 14388 reflections |
a = 11.2045 (2) Å | θ = 1.0–27.5° |
b = 7.8824 (1) Å | µ = 4.83 mm−1 |
c = 15.7960 (2) Å | T = 292 K |
V = 1395.08 (4) Å3 | Prism, colourless |
Z = 4 | 0.35 × 0.25 × 0.1 mm |
Nonius KappaCCD diffractometer | 3150 independent reflections |
Radiation source: fine-focus sealed tube | 3004 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: gaussian (Coppens & Hamilton, 1970) | h = −14→14 |
Tmin = 0.223, Tmax = 0.602 | k = −10→10 |
23449 measured reflections | l = −19→20 |
Refinement on F2 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2] |
R[F2 > 2σ(F2)] = 0.022 | (Δ/σ)max = 0.005 |
wR(F2) = 0.050 | Δρmax = 0.36 e Å−3 |
S = 1.52 | Δρmin = −0.25 e Å−3 |
3150 reflections | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
163 parameters | Extinction coefficient: 1.65 (5) |
0 restraints | Absolute structure: Flack (1983), 1492 Friedel pairs |
48 constraints | Absolute structure parameter: −0.020 (6) |
H-atom parameters constrained |
[Zn(SeO4)(CH4N2S)3] | V = 1395.08 (4) Å3 |
Mr = 436.7 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 11.2045 (2) Å | µ = 4.83 mm−1 |
b = 7.8824 (1) Å | T = 292 K |
c = 15.7960 (2) Å | 0.35 × 0.25 × 0.1 mm |
Nonius KappaCCD diffractometer | 3150 independent reflections |
Absorption correction: gaussian (Coppens & Hamilton, 1970) | 3004 reflections with I > 3σ(I) |
Tmin = 0.223, Tmax = 0.602 | Rint = 0.039 |
23449 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.050 | Δρmax = 0.36 e Å−3 |
S = 1.52 | Δρmin = −0.25 e Å−3 |
3150 reflections | Absolute structure: Flack (1983), 1492 Friedel pairs |
163 parameters | Absolute structure parameter: −0.020 (6) |
0 restraints |
Refinement. The Flack parameter converged to the value -0.020 (6), so it was excluded from the final refinement. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.43588 (3) | 0.34032 (3) | 0.42203 (2) | 0.02479 (9) | |
Se1 | 0.37373 (2) | 0.15124 (3) | 0.247798 | 0.02293 (7) | |
O1 | 0.34191 (19) | 0.1846 (2) | 0.34926 (13) | 0.0363 (6) | |
O2 | 0.29853 (18) | −0.0173 (2) | 0.22066 (12) | 0.0317 (6) | |
O3 | 0.51627 (17) | 0.1169 (2) | 0.23987 (16) | 0.0372 (6) | |
O4 | 0.33169 (19) | 0.3147 (2) | 0.19315 (15) | 0.0392 (6) | |
S1 | 0.57849 (6) | 0.49589 (8) | 0.34906 (5) | 0.03060 (19) | |
C1 | 0.5054 (2) | 0.6544 (2) | 0.29483 (16) | 0.0290 (8) | |
N1 | 0.5667 (2) | 0.7339 (3) | 0.23498 (16) | 0.0401 (8) | |
N2 | 0.3957 (2) | 0.7021 (3) | 0.31154 (18) | 0.0447 (9) | |
S2 | 0.52313 (7) | 0.17226 (9) | 0.52667 (5) | 0.0327 (2) | |
C2 | 0.64030 (18) | 0.0636 (3) | 0.48127 (17) | 0.0314 (8) | |
N3 | 0.6501 (2) | 0.0405 (4) | 0.39895 (16) | 0.0468 (9) | |
N4 | 0.7222 (2) | 0.0025 (3) | 0.53155 (17) | 0.0460 (9) | |
S3 | 0.29592 (6) | 0.50137 (8) | 0.49583 (5) | 0.03039 (18) | |
C3 | 0.3845 (2) | 0.5992 (3) | 0.57094 (15) | 0.0295 (7) | |
N5 | 0.3360 (3) | 0.6436 (3) | 0.64329 (16) | 0.0453 (9) | |
N6 | 0.4979 (2) | 0.6351 (3) | 0.55684 (18) | 0.0455 (9) | |
H1n1 | 0.63954 | 0.698311 | 0.22123 | 0.0482* | |
H2n1 | 0.534956 | 0.822806 | 0.208546 | 0.0482* | |
H1n2 | 0.359482 | 0.77757 | 0.278428 | 0.0536* | |
H2n2 | 0.35742 | 0.658874 | 0.355973 | 0.0536* | |
H1n3 | 0.59099 | 0.071809 | 0.364689 | 0.0562* | |
H2n3 | 0.71576 | −0.006424 | 0.377612 | 0.0562* | |
H1n4 | 0.718708 | 0.022995 | 0.58691 | 0.0552* | |
H2n4 | 0.781526 | −0.059533 | 0.510475 | 0.0552* | |
H1n5 | 0.373839 | 0.715311 | 0.677503 | 0.0543* | |
H2n5 | 0.265147 | 0.601891 | 0.658106 | 0.0543* | |
H1n6 | 0.535457 | 0.589501 | 0.512718 | 0.0546* | |
H2n6 | 0.536798 | 0.705007 | 0.591462 | 0.0546* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02747 (16) | 0.02426 (15) | 0.02265 (16) | 0.00004 (11) | 0.00160 (12) | −0.00106 (11) |
Se1 | 0.02532 (13) | 0.02427 (12) | 0.01920 (13) | −0.00028 (8) | 0.00161 (10) | 0.00140 (11) |
O1 | 0.0414 (12) | 0.0444 (10) | 0.0231 (9) | −0.0183 (9) | 0.0063 (9) | −0.0069 (8) |
O2 | 0.0396 (10) | 0.0290 (9) | 0.0264 (10) | −0.0047 (7) | −0.0031 (8) | −0.0027 (6) |
O3 | 0.0268 (9) | 0.0441 (10) | 0.0408 (12) | 0.0020 (8) | 0.0042 (10) | 0.0047 (10) |
O4 | 0.0401 (11) | 0.0336 (9) | 0.0441 (12) | 0.0049 (8) | 0.0048 (10) | 0.0138 (9) |
S1 | 0.0252 (3) | 0.0343 (3) | 0.0323 (3) | 0.0001 (2) | 0.0004 (3) | 0.0102 (3) |
C1 | 0.0314 (15) | 0.0266 (12) | 0.0291 (14) | −0.0051 (10) | −0.0037 (11) | 0.0013 (10) |
N1 | 0.0423 (14) | 0.0369 (12) | 0.0412 (15) | 0.0019 (10) | 0.0037 (11) | 0.0138 (11) |
N2 | 0.0364 (14) | 0.0400 (13) | 0.0575 (18) | 0.0084 (12) | 0.0078 (13) | 0.0189 (12) |
S2 | 0.0354 (4) | 0.0400 (4) | 0.0227 (3) | 0.0119 (3) | 0.0055 (3) | 0.0041 (2) |
C2 | 0.0356 (14) | 0.0326 (13) | 0.0260 (14) | 0.0060 (11) | 0.0011 (11) | 0.0012 (10) |
N3 | 0.0477 (16) | 0.0652 (17) | 0.0276 (13) | 0.0260 (14) | 0.0023 (11) | −0.0063 (12) |
N4 | 0.0435 (15) | 0.0629 (17) | 0.0315 (13) | 0.0267 (12) | −0.0011 (11) | 0.0021 (12) |
S3 | 0.0228 (3) | 0.0406 (3) | 0.0279 (3) | 0.0011 (2) | −0.0020 (3) | −0.0110 (3) |
C3 | 0.0324 (13) | 0.0296 (12) | 0.0266 (14) | 0.0035 (10) | −0.0047 (11) | −0.0045 (11) |
N5 | 0.0384 (15) | 0.0655 (17) | 0.0320 (14) | −0.0047 (12) | 0.0003 (12) | −0.0218 (12) |
N6 | 0.0328 (14) | 0.0620 (17) | 0.0418 (16) | −0.0102 (11) | 0.0010 (12) | −0.0253 (12) |
Zn1—O1 | 1.984 (2) | C3—N5 | 1.313 (4) |
Zn1—S1 | 2.3207 (8) | C3—N6 | 1.321 (3) |
Zn1—S2 | 2.3330 (8) | N1—H1n1 | 0.89 |
Zn1—S3 | 2.3302 (7) | N1—H2n1 | 0.89 |
Se1—O1 | 1.663 (2) | N2—H1n2 | 0.89 |
Se1—O2 | 1.6307 (18) | N2—H2n2 | 0.89 |
Se1—O3 | 1.6246 (19) | N3—H1n3 | 0.89 |
Se1—O4 | 1.621 (2) | N3—H2n3 | 0.89 |
S1—C1 | 1.722 (2) | N4—H1n4 | 0.89 |
C1—N1 | 1.326 (3) | N4—H2n4 | 0.89 |
C1—N2 | 1.313 (4) | N5—H1n5 | 0.89 |
S2—C2 | 1.724 (2) | N5—H2n5 | 0.89 |
C2—N3 | 1.317 (4) | N6—H1n6 | 0.89 |
C2—N4 | 1.306 (3) | N6—H2n6 | 0.89 |
S3—C3 | 1.729 (2) | ||
Se1—Zn1—S1 | 88.22 (2) | H1n1—N1—H2n1 | 120.0 |
Se1—Zn1—S2 | 115.80 (2) | C1—N2—H1n2 | 120.0 |
Se1—Zn1—S3 | 122.45 (2) | C1—N2—H2n2 | 120.0 |
S1—Zn1—S2 | 111.31 (3) | H1n2—N2—H2n2 | 120.0 |
S1—Zn1—S3 | 115.09 (3) | C2—N3—H1n3 | 120.0 |
S2—Zn1—S3 | 103.70 (3) | C2—N3—H2n3 | 120.0 |
O1—Se1—O2 | 105.75 (10) | H1n3—N3—H2n3 | 120.0 |
O1—Se1—O3 | 108.14 (11) | C2—N4—H1n4 | 120.0 |
O1—Se1—O4 | 108.98 (11) | C2—N4—H2n4 | 120.0 |
O2—Se1—O3 | 110.62 (10) | H1n4—N4—H2n4 | 120.0 |
O2—Se1—O4 | 110.95 (10) | C3—N5—H1n5 | 120.0 |
O3—Se1—O4 | 112.15 (11) | C3—N5—H2n5 | 120.0 |
S1—C1—N1 | 116.84 (19) | H1n5—N5—H2n5 | 120.0 |
S1—C1—N2 | 123.6 (2) | C3—N6—H1n6 | 120.0 |
N1—C1—N2 | 119.5 (2) | C3—N6—H2n6 | 120.0 |
S2—C2—N3 | 122.86 (19) | H1n6—N6—H2n6 | 120.0 |
S2—C2—N4 | 117.7 (2) | H1n1—N1—H2n1 | 120.0 |
N3—C2—N4 | 119.4 (2) | H1n2—N2—H2n2 | 120.0 |
S3—C3—N5 | 118.6 (2) | H1n3—N3—H2n3 | 120.0 |
S3—C3—N6 | 122.2 (2) | H1n4—N4—H2n4 | 120.0 |
N5—C3—N6 | 119.2 (2) | H1n5—N5—H2n5 | 120.0 |
C1—N1—H1n1 | 120.0 | H1n6—N6—H2n6 | 120.0 |
C1—N1—H2n1 | 120.0 |
Experimental details
Crystal data | |
Chemical formula | [Zn(SeO4)(CH4N2S)3] |
Mr | 436.7 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 292 |
a, b, c (Å) | 11.2045 (2), 7.8824 (1), 15.7960 (2) |
V (Å3) | 1395.08 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.83 |
Crystal size (mm) | 0.35 × 0.25 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Gaussian (Coppens & Hamilton, 1970) |
Tmin, Tmax | 0.223, 0.602 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 23449, 3150, 3004 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.050, 1.52 |
No. of reflections | 3150 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.25 |
Absolute structure | Flack (1983), 1492 Friedel pairs |
Absolute structure parameter | −0.020 (6) |
Computer programs: COLLECT (Hooft, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1997), (JANA2000; Petříček et al., 2000), PLATON (Spek, 2003).
D-H···A | D-H | H···A | D···A | D-H···A | * |
N1-H1N1···O4i | 0.89 | 2.20 | 3.066 (3) | 164 | y |
N1-H2N1···O3ii | 0.89 | 2.38 | 3.072 (3) | 135 | y |
N2-H1N2···O2ii | 0.89 | 1.98 | 2.852 (3) | 167 | y |
N2-H2N2···S3 | 0.89 | 2.63 | 3.497 (3) | 166 | |
N3-H1N3···O3 | 0.89 | 2.17 | 2.988 (3) | 152 | y |
N3-H2N3···O1iii | 0.89 | 2.04 | 2.895 (3) | 160 | y |
N4-H1N4···O2iV | 0.89 | 2.12 | 2.999 (3) | 168 | y |
N4-H2N4···S2iii | 0.89 | 2.86 | 3.643 (3) | 148 | |
N5-H1N5···O3V | 0.89 | 2.06 | 2.938 (3) | 170 | y |
N5-H2N5···O4Vi | 0.89 | 2.57 | 3.297 (3) | 139 | |
N6-H1N6···S1 | 0.89 | 2.73 | 3.577 (3) | 159 | |
N6-H2N6···O4v | 0.89 | 2.19 | 2.905 (3) | 137 | y |
Symmetry codes:(i) 1/2+x,-y+1, z; (ii) x, y+1, z; (iii) 1/2+x, -y, z; (iv) 1-x, -y, 1/2+z; (v) 1-x, 1-y, 1/2+z; (vi) 1/2-x, y, 1/2+z. |
Acknowledgements
Support under a CZ–US grant as part of the KONTAKT program (Czech Ministry of Education, Youth and Sports), No. 1P05ME 785, is gratefully acknowledged.
References
Alex, A. V. & Phillip, J. (2001). J. Appl. Phys. 90, 720–723. Web of Science CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1997). SIR97. University of Bari, Italy. Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83. CrossRef IUCr Journals Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Krupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2007). Acta Cryst. E63, m3177–m3178. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
PerkinElmer (2001). PYRIS Software. Version 4.02. PerkinElmer Instruments, Shelton, CT, USA. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic. Google Scholar
Ramabadran, U. B., Zelmon, D. E. & Kennedy, G. C. (1992). Appl. Phys. Lett. 60, 2589–2591. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ushasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1998). Bull. Electrochem. 14, 407–410. CAS Google Scholar
Ushasree, P. M., Muralidharan, R., Jayavel, R. & Ramasamy, P. (2000). J. Cryst. Growth, 210, 741–745. Web of Science CrossRef CAS Google Scholar
Venkataramanan, V., Subramanian, C. K. & Bhat, H. L. (1995). J. Appl. Phys. 77, 6049–6051. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Zinc [tris(thiourea)]sulfate, isomorphous to the title structure, is reported to be a perspective semiorganic non-linear optical material (Ushasree et al., 1998, 2000). It can substitute potassium dihydrogenphosphate in technical applications (Ramabadran et al., 1992; Alex & Phillip, 2001). It has also an exceptionally wide acceptance angle for second harmonic generation (Ramabadran et al., 1992). Its resistance against laser induced damage is good (Venkataramanan et al., 1995).
We have synthesized the title compound since it is expected that it might show similar interesting properties as its known isostructural counterpart (Krupková et al., 2007). As a part of our on-going study of the title compound we report here its structure determination. The investigation od dielectric and optical properties is in progress.
The common features and differences between the hydrogen-bond patterns in both isostructural compounds are shown in Tab. 1. This table shows that the stronger hydrogen bonds are common for both isostructural compounds.