metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridotris(tri­methyl­phosphine)nickel(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 21 November 2007; accepted 4 January 2008; online 11 January 2008)

The title compound, [NiCl2(C3H9P)3], was obtained as a product of the reaction of [NiCl2(PMe3)2] with an equivalent trimethyl­phosphine in diethyl ether. It easily loses trimethyl­phosphine at room temperature to give NiCl2(PMe3)2. There are two independent mol­ecules in the asymmetric unit, and their bond lengths and angles are similar. The Ni environment is trigonal bipyramidal. One Ni, one P and two Cl atoms lie in the equatorial plane, with the remaining two P atoms occupying axial positions. The equatorial Ni—P bond length is shorter than the axial bond lengths.

Related literature

The crystal structure of the related cobalt compound has been reported by Jiao et al. (2007[Jiao, G. L., Li, X. Y., Sun, H. J. & Xu, X. F. (2007). J. Organomet. Chem. 692, 4251-4258.]). For related literature, see: Doriand & Gray (1966[Doriand, Z. & Gray, H. B. (1966). J. Am. Chem. Soc. 88, 1394-1398.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C3H9P)3]

  • Mr = 357.83

  • Orthorhombic, P 21 21 21

  • a = 10.481 (2) Å

  • b = 11.741 (2) Å

  • c = 28.203 (6) Å

  • V = 3470.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 (2) K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.709

  • 26702 measured reflections

  • 7557 independent reflections

  • 7309 reflections with I > 2σ(I)

  • Rint = 0.073

  • 4 standard reflections every 50 reflections intensity decay: 0.02%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.06

  • 7557 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3276 Friedel pairs

  • Flack parameter: 0.006 (8)

Table 1
Selected bond lengths (Å)

Ni1—P3 2.1754 (7)
Ni1—P1 2.2051 (8)
Ni1—P2 2.2088 (8)
Ni1—Cl1 2.2901 (7)
Ni1—Cl2 2.4369 (8)

Data collection: XSCANS (Bruker, 2001[Bruker (2001). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title molecular (Fig.1) contains two molecules in an asymmetric unit. Bond lengths and angles in the two molecules are approximately the same. The nickel atom lies in the center of a trigonal bipyramid in which two chlorine atoms and one P atom form an equatorial plane, two other phosphorus are arranged in axial positions. The equatorial Ni—P bond lengh is shorter than the axial ones. The nickel atoms do not lie on a straight line joining the apical phosphorus atoms. This is due to the apical groups experiencing greater repulsion from the equatorial PMe3 groups. Similar crystal structures have been reported in the literature e.g. tris(trimethylphosphine)diiodocobalt(II) (Jiao et al.(2007)). The lengths of Co—I (2.6) is longer than the range of Ni—Cl bond lengths, angle in the axial position of this compound (169.8 °) is a little bigger than that in the title compound (167.3–168.0 °).

Related literature top

The crystal structure of the related cobalt compound has been reported by Jiao et al. (2007). For related literature, see: Doriand & Gray (1966).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature procedure was followed in the preparation of dichlorodi(trimethylphosphine)nickel (Doriand et al.(1966)). Other chemicals were used by purchased. To the solution of NiCl2(PMe3)2(1.0 g, 3.55 mmol) in 50 ml of diethyl ether was added trimethylphosphine (0.27 g, 3.55 mmol) at 193 K. This mixture was allowed to warm to 293 K and stirred for 6 h to form a dark blue solution, which was filtered. Crystallization from ether at 277 K afforded dark blue crystals suitable for X-ray diffraction analysis. (yield: 1.14 g, 89.8%, m. p: 397.15 K).

Refinement top

All H atoms were positioned geometrically. All the H atoms are refined using a riding model with C—H = 0.96 Å and with Uiso(H) = 1.5 times Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 2001); cell refinement: XSCANS (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. (Only one of the two molecules is shown.)
Dichloridotris(trimethylphosphine)nickel(II) top
Crystal data top
[NiCl2(C3H9P)3]F(000) = 1504
Mr = 357.83Dx = 1.370 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6412 reflections
a = 10.481 (2) Åθ = 1.6–24.2°
b = 11.741 (2) ŵ = 1.68 mm1
c = 28.203 (6) ÅT = 293 K
V = 3470.6 (12) Å3Block, blue
Z = 80.30 × 0.25 × 0.22 mm
Data collection top
Bruker P4
diffractometer
7309 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 27.1°, θmin = 1.4°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1514
Tmin = 0.633, Tmax = 0.709l = 3536
26702 measured reflections4 standard reflections every 50 reflections
7557 independent reflections intensity decay: 0.02%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
7557 reflectionsΔρmax = 0.63 e Å3
289 parametersΔρmin = 0.84 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (8)
Crystal data top
[NiCl2(C3H9P)3]V = 3470.6 (12) Å3
Mr = 357.83Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 10.481 (2) ŵ = 1.68 mm1
b = 11.741 (2) ÅT = 293 K
c = 28.203 (6) Å0.30 × 0.25 × 0.22 mm
Data collection top
Bruker P4
diffractometer
7309 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
Rint = 0.073
Tmin = 0.633, Tmax = 0.7094 standard reflections every 50 reflections
26702 measured reflections intensity decay: 0.02%
7557 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.63 e Å3
S = 1.06Δρmin = 0.84 e Å3
7557 reflectionsAbsolute structure: Flack (1983)
289 parametersAbsolute structure parameter: 0.006 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.72334 (3)0.45758 (2)0.757236 (10)0.02415 (8)
Ni20.89293 (3)0.01317 (2)0.980401 (10)0.02370 (7)
P30.78376 (6)0.52513 (5)0.68901 (2)0.02503 (12)
Cl10.59423 (6)0.50132 (6)0.82016 (2)0.03563 (14)
P60.82135 (6)0.04616 (5)1.04857 (2)0.02697 (13)
Cl40.83645 (6)0.15585 (5)0.92899 (2)0.03198 (13)
P50.77420 (6)0.10238 (5)0.93714 (2)0.02798 (13)
Cl31.07328 (6)0.10289 (5)0.95390 (2)0.03036 (12)
P20.88341 (7)0.53231 (6)0.79757 (2)0.03072 (13)
P41.03877 (6)0.12977 (5)1.00949 (2)0.02620 (13)
Cl20.82969 (7)0.27500 (5)0.76850 (2)0.03829 (15)
P10.56145 (7)0.35783 (5)0.72950 (2)0.03075 (14)
C10.8573 (3)0.6661 (2)0.68588 (9)0.0321 (5)
H1A0.93250.66740.70530.048*
H1B0.79800.72230.69710.048*
H1C0.87990.68270.65360.048*
C20.6552 (3)0.0922 (3)1.05323 (11)0.0411 (6)
H2A0.60000.03181.04300.062*
H2B0.64200.15791.03360.062*
H2C0.63630.11111.08560.062*
C30.9884 (3)0.2639 (2)1.03651 (11)0.0374 (6)
H3A1.06230.30701.04560.056*
H3B0.93900.30681.01410.056*
H3C0.93750.24821.06400.056*
C40.6659 (3)0.5473 (2)0.64191 (9)0.0343 (5)
H4A0.70850.57180.61350.051*
H4B0.60590.60450.65160.051*
H4C0.62160.47720.63580.051*
C51.1530 (3)0.0718 (2)1.05139 (9)0.0343 (5)
H5A1.21950.12641.05680.051*
H5B1.11060.05521.08080.051*
H5C1.18910.00311.03870.051*
C60.7796 (3)0.2542 (2)0.95028 (10)0.0379 (6)
H6A0.86690.27870.95200.057*
H6B0.73830.26830.98010.057*
H6C0.73660.29560.92570.057*
C71.0461 (3)0.5101 (3)0.77589 (11)0.0422 (6)
H7A1.10570.54180.79810.063*
H7B1.05600.54700.74570.063*
H7C1.06180.43000.77240.063*
C80.8737 (4)0.6837 (2)0.81107 (11)0.0452 (7)
H8A0.78820.70240.82060.068*
H8B0.89600.72700.78340.068*
H8C0.93160.70160.83640.068*
C90.6053 (3)0.0687 (2)0.93156 (12)0.0410 (6)
H9A0.56640.12000.90930.061*
H9B0.56470.07660.96190.061*
H9C0.59580.00810.92050.061*
C100.8988 (3)0.4322 (2)0.66093 (9)0.0348 (6)
H10A0.86320.35730.65790.052*
H10B0.97470.42880.67990.052*
H10C0.91960.46140.63010.052*
C111.1422 (3)0.1830 (2)0.96282 (10)0.0374 (6)
H11A1.18930.12090.94930.056*
H11B1.09140.21850.93870.056*
H11C1.20050.23780.97580.056*
C120.8933 (3)0.4679 (3)0.85625 (10)0.0460 (7)
H12A0.90480.38710.85310.069*
H12B0.81590.48290.87340.069*
H12C0.96430.49980.87320.069*
C130.8233 (3)0.0500 (2)1.09934 (9)0.0375 (6)
H13A0.78710.01231.12640.056*
H13B0.90970.07151.10630.056*
H13C0.77430.11681.09210.056*
C140.8227 (3)0.1000 (3)0.87549 (10)0.0397 (6)
H14A0.81260.02430.86310.060*
H14B0.91050.12240.87310.060*
H14C0.77060.15180.85770.060*
C150.5937 (4)0.2620 (3)0.67975 (11)0.0461 (7)
H15A0.66380.21300.68760.069*
H15B0.61480.30600.65220.069*
H15C0.51930.21680.67340.069*
C160.4163 (3)0.4338 (3)0.71333 (12)0.0464 (7)
H16A0.35170.38010.70430.070*
H16B0.43370.48390.68720.070*
H16C0.38690.47750.74000.070*
C170.9083 (3)0.1690 (3)1.07128 (12)0.0450 (7)
H17A0.87400.19051.10150.067*
H17B0.89980.23141.04950.067*
H17C0.99680.14981.07470.067*
C180.5033 (3)0.2572 (3)0.77371 (11)0.0445 (7)
H18A0.46020.29790.79850.067*
H18B0.57400.21590.78690.067*
H18C0.44510.20480.75900.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02733 (15)0.02569 (14)0.01943 (13)0.00089 (11)0.00117 (11)0.00090 (10)
Ni20.02460 (15)0.02604 (14)0.02045 (13)0.00344 (11)0.00030 (10)0.00021 (10)
P30.0271 (3)0.0272 (3)0.0208 (2)0.0007 (2)0.0019 (2)0.0027 (2)
Cl10.0369 (3)0.0433 (3)0.0267 (3)0.0036 (3)0.0070 (2)0.0058 (2)
P60.0296 (3)0.0274 (3)0.0238 (3)0.0001 (2)0.0045 (2)0.0017 (2)
Cl40.0346 (3)0.0306 (3)0.0308 (3)0.0030 (2)0.0036 (2)0.0047 (2)
P50.0269 (3)0.0291 (3)0.0279 (3)0.0028 (3)0.0007 (2)0.0050 (2)
Cl30.0298 (3)0.0325 (3)0.0288 (3)0.0044 (2)0.0025 (2)0.0002 (2)
P20.0312 (3)0.0346 (3)0.0263 (3)0.0017 (3)0.0050 (2)0.0017 (2)
P40.0255 (3)0.0279 (3)0.0252 (3)0.0038 (2)0.0017 (2)0.0002 (2)
Cl20.0429 (4)0.0313 (3)0.0407 (3)0.0099 (3)0.0048 (3)0.0083 (2)
P10.0335 (4)0.0305 (3)0.0283 (3)0.0073 (3)0.0022 (3)0.0017 (2)
C10.0317 (14)0.0327 (12)0.0318 (12)0.0001 (10)0.0021 (10)0.0063 (10)
C20.0389 (15)0.0440 (15)0.0403 (14)0.0060 (13)0.0135 (12)0.0076 (12)
C30.0345 (14)0.0347 (13)0.0429 (15)0.0016 (11)0.0011 (11)0.0072 (11)
C40.0361 (14)0.0391 (13)0.0277 (11)0.0002 (11)0.0042 (10)0.0042 (10)
C50.0309 (13)0.0391 (13)0.0330 (12)0.0022 (11)0.0040 (10)0.0035 (10)
C60.0403 (15)0.0314 (12)0.0420 (14)0.0032 (11)0.0055 (12)0.0074 (10)
C70.0335 (14)0.0498 (16)0.0433 (15)0.0002 (13)0.0032 (12)0.0053 (13)
C80.0547 (19)0.0398 (14)0.0411 (15)0.0059 (13)0.0055 (14)0.0109 (12)
C90.0338 (15)0.0399 (14)0.0493 (16)0.0014 (12)0.0068 (12)0.0076 (12)
C100.0403 (15)0.0352 (13)0.0290 (12)0.0045 (11)0.0073 (11)0.0004 (9)
C110.0325 (14)0.0413 (14)0.0383 (13)0.0090 (11)0.0002 (11)0.0041 (11)
C120.0442 (17)0.0624 (18)0.0315 (13)0.0027 (15)0.0078 (12)0.0088 (13)
C130.0430 (16)0.0403 (13)0.0292 (12)0.0020 (12)0.0013 (11)0.0028 (10)
C140.0417 (16)0.0492 (15)0.0282 (12)0.0030 (13)0.0016 (11)0.0059 (11)
C150.061 (2)0.0377 (14)0.0394 (15)0.0137 (14)0.0029 (14)0.0092 (12)
C160.0386 (17)0.0482 (16)0.0525 (18)0.0079 (13)0.0049 (13)0.0011 (13)
C170.0518 (18)0.0394 (14)0.0438 (15)0.0082 (13)0.0086 (14)0.0130 (12)
C180.0526 (19)0.0380 (14)0.0429 (16)0.0113 (13)0.0106 (14)0.0021 (12)
Geometric parameters (Å, º) top
Ni1—P32.1754 (7)C5—H5B0.9600
Ni1—P12.2051 (8)C5—H5C0.9600
Ni1—P22.2088 (8)C6—H6A0.9600
Ni1—Cl12.2901 (7)C6—H6B0.9600
Ni1—Cl22.4369 (8)C6—H6C0.9600
Ni2—P62.1781 (7)C7—H7A0.9600
Ni2—P52.2086 (7)C7—H7B0.9600
Ni2—P42.2099 (7)C7—H7C0.9600
Ni2—Cl42.2932 (7)C8—H8A0.9600
Ni2—Cl32.4472 (7)C8—H8B0.9600
P3—C101.808 (3)C8—H8C0.9600
P3—C11.828 (3)C9—H9A0.9600
P3—C41.832 (3)C9—H9B0.9600
P6—C171.822 (3)C9—H9C0.9600
P6—C131.823 (3)C10—H10A0.9600
P6—C21.828 (3)C10—H10B0.9600
P5—C141.812 (3)C10—H10C0.9600
P5—C91.820 (3)C11—H11A0.9600
P5—C61.822 (3)C11—H11B0.9600
P2—C81.821 (3)C11—H11C0.9600
P2—C121.822 (3)C12—H12A0.9600
P2—C71.830 (3)C12—H12B0.9600
P4—C51.814 (3)C12—H12C0.9600
P4—C111.816 (3)C13—H13A0.9600
P4—C31.827 (3)C13—H13B0.9600
P1—C161.822 (4)C13—H13C0.9600
P1—C181.823 (3)C14—H14A0.9600
P1—C151.830 (3)C14—H14B0.9600
C1—H1A0.9600C14—H14C0.9600
C1—H1B0.9600C15—H15A0.9600
C1—H1C0.9600C15—H15B0.9600
C2—H2A0.9600C15—H15C0.9600
C2—H2B0.9600C16—H16A0.9600
C2—H2C0.9600C16—H16B0.9600
C3—H3A0.9600C16—H16C0.9600
C3—H3B0.9600C17—H17A0.9600
C3—H3C0.9600C17—H17B0.9600
C4—H4A0.9600C17—H17C0.9600
C4—H4B0.9600C18—H18A0.9600
C4—H4C0.9600C18—H18B0.9600
C5—H5A0.9600C18—H18C0.9600
P3—Ni1—P195.96 (3)H5A—C5—H5B109.5
P3—Ni1—P295.14 (3)P4—C5—H5C109.5
P1—Ni1—P2168.00 (3)H5A—C5—H5C109.5
P3—Ni1—Cl1140.87 (3)H5B—C5—H5C109.5
P1—Ni1—Cl186.52 (3)P5—C6—H6A109.5
P2—Ni1—Cl187.75 (3)P5—C6—H6B109.5
P3—Ni1—Cl2107.63 (3)H6A—C6—H6B109.5
P1—Ni1—Cl286.05 (3)P5—C6—H6C109.5
P2—Ni1—Cl286.26 (3)H6A—C6—H6C109.5
Cl1—Ni1—Cl2111.50 (3)H6B—C6—H6C109.5
P6—Ni2—P595.57 (3)P2—C7—H7A109.5
P6—Ni2—P496.24 (3)P2—C7—H7B109.5
P5—Ni2—P4167.25 (3)H7A—C7—H7B109.5
P6—Ni2—Cl4134.65 (3)P2—C7—H7C109.5
P5—Ni2—Cl487.36 (3)H7A—C7—H7C109.5
P4—Ni2—Cl487.75 (3)H7B—C7—H7C109.5
P6—Ni2—Cl3110.95 (3)P2—C8—H8A109.5
P5—Ni2—Cl385.67 (3)P2—C8—H8B109.5
P4—Ni2—Cl385.64 (3)H8A—C8—H8B109.5
Cl4—Ni2—Cl3114.40 (3)P2—C8—H8C109.5
C10—P3—C1104.12 (13)H8A—C8—H8C109.5
C10—P3—C4102.56 (13)H8B—C8—H8C109.5
C1—P3—C496.91 (13)P5—C9—H9A109.5
C10—P3—Ni1111.20 (9)P5—C9—H9B109.5
C1—P3—Ni1119.71 (9)H9A—C9—H9B109.5
C4—P3—Ni1119.79 (10)P5—C9—H9C109.5
C17—P6—C13102.02 (15)H9A—C9—H9C109.5
C17—P6—C2102.53 (15)H9B—C9—H9C109.5
C13—P6—C297.91 (14)P3—C10—H10A109.5
C17—P6—Ni2113.03 (11)P3—C10—H10B109.5
C13—P6—Ni2119.42 (10)H10A—C10—H10B109.5
C2—P6—Ni2119.09 (11)P3—C10—H10C109.5
C14—P5—C9100.74 (15)H10A—C10—H10C109.5
C14—P5—C6101.65 (14)H10B—C10—H10C109.5
C9—P5—C6105.08 (14)P4—C11—H11A109.5
C14—P5—Ni2111.26 (10)P4—C11—H11B109.5
C9—P5—Ni2117.54 (10)H11A—C11—H11B109.5
C6—P5—Ni2118.11 (10)P4—C11—H11C109.5
C8—P2—C12102.61 (16)H11A—C11—H11C109.5
C8—P2—C7105.13 (16)H11B—C11—H11C109.5
C12—P2—C7101.05 (15)P2—C12—H12A109.5
C8—P2—Ni1116.93 (12)P2—C12—H12B109.5
C12—P2—Ni1110.24 (12)H12A—C12—H12B109.5
C7—P2—Ni1118.62 (10)P2—C12—H12C109.5
C5—P4—C11101.98 (14)H12A—C12—H12C109.5
C5—P4—C3104.01 (14)H12B—C12—H12C109.5
C11—P4—C3100.25 (14)P6—C13—H13A109.5
C5—P4—Ni2117.76 (9)P6—C13—H13B109.5
C11—P4—Ni2110.91 (10)H13A—C13—H13B109.5
C3—P4—Ni2119.26 (10)P6—C13—H13C109.5
C16—P1—C18102.08 (17)H13A—C13—H13C109.5
C16—P1—C15105.26 (17)H13B—C13—H13C109.5
C18—P1—C15100.82 (14)P5—C14—H14A109.5
C16—P1—Ni1118.12 (11)P5—C14—H14B109.5
C18—P1—Ni1111.04 (12)H14A—C14—H14B109.5
C15—P1—Ni1117.16 (12)P5—C14—H14C109.5
P3—C1—H1A109.5H14A—C14—H14C109.5
P3—C1—H1B109.5H14B—C14—H14C109.5
H1A—C1—H1B109.5P1—C15—H15A109.5
P3—C1—H1C109.5P1—C15—H15B109.5
H1A—C1—H1C109.5H15A—C15—H15B109.5
H1B—C1—H1C109.5P1—C15—H15C109.5
P6—C2—H2A109.5H15A—C15—H15C109.5
P6—C2—H2B109.5H15B—C15—H15C109.5
H2A—C2—H2B109.5P1—C16—H16A109.5
P6—C2—H2C109.5P1—C16—H16B109.5
H2A—C2—H2C109.5H16A—C16—H16B109.5
H2B—C2—H2C109.5P1—C16—H16C109.5
P4—C3—H3A109.5H16A—C16—H16C109.5
P4—C3—H3B109.5H16B—C16—H16C109.5
H3A—C3—H3B109.5P6—C17—H17A109.5
P4—C3—H3C109.5P6—C17—H17B109.5
H3A—C3—H3C109.5H17A—C17—H17B109.5
H3B—C3—H3C109.5P6—C17—H17C109.5
P3—C4—H4A109.5H17A—C17—H17C109.5
P3—C4—H4B109.5H17B—C17—H17C109.5
H4A—C4—H4B109.5P1—C18—H18A109.5
P3—C4—H4C109.5P1—C18—H18B109.5
H4A—C4—H4C109.5H18A—C18—H18B109.5
H4B—C4—H4C109.5P1—C18—H18C109.5
P4—C5—H5A109.5H18A—C18—H18C109.5
P4—C5—H5B109.5H18B—C18—H18C109.5

Experimental details

Crystal data
Chemical formula[NiCl2(C3H9P)3]
Mr357.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.481 (2), 11.741 (2), 28.203 (6)
V3)3470.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.633, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
26702, 7557, 7309
Rint0.073
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections7557
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.84
Absolute structureFlack (1983)
Absolute structure parameter0.006 (8)

Computer programs: XSCANS (Bruker, 2001), SHELXTL (Sheldrick, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—P32.1754 (7)Ni1—Cl12.2901 (7)
Ni1—P12.2051 (8)Ni1—Cl22.4369 (8)
Ni1—P22.2088 (8)
 

Acknowledgements

This work was supported by the NSFC (grant Nos. 20572062 and 20372042).

References

First citationBruker (2001). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoriand, Z. & Gray, H. B. (1966). J. Am. Chem. Soc. 88, 1394–1398.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiao, G. L., Li, X. Y., Sun, H. J. & Xu, X. F. (2007). J. Organomet. Chem. 692, 4251–4258.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds