organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Melaminium sulfate

aInstitute of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: haipeng@icm.sdu.edu.cn

(Received 29 November 2007; accepted 18 December 2007; online 4 January 2008)

In the title compound, C3H8N62+·SO42−, the melaminium cations and sulfate anions are inter­connected by N—H⋯N and N—H⋯O hydrogen bonds, forming a layer in the (101) plane. The layers are connected through multiple hydrogen bonds and ππ stacking inter­actions (centroid–centroid distance of about 3.4 Å).

Related literature

For related literature, see: Janczak & Perpétuo (2001a[Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 873-875.],b[Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1431-1433.]); Martin & Pinkerton (1995[Martin, A. & Pinkerton, A. A. (1995). Acta Cryst. C51, 2174-2177.]); Dewar et al. (1985[Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8N62+·SO42−

  • Mr = 224.21

  • Monoclinic, C 2/c

  • a = 18.5787 (3) Å

  • b = 8.6272 (2) Å

  • c = 12.7945 (4) Å

  • β = 129.739 (1)°

  • V = 1576.94 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 (2) K

  • 0.32 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.900

  • 3793 measured reflections

  • 1794 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.00

  • 1794 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O2i 0.87 (3) 1.76 (3) 2.622 (2) 171 (3)
N5—H5⋯O4ii 0.85 (3) 1.76 (3) 2.608 (2) 176 (3)
N3—H3B⋯O2i 0.86 2.59 3.244 (2) 134
N3—H3B⋯O1iii 0.86 2.44 2.944 (2) 118
N3—H3A⋯N4iv 0.86 2.14 3.000 (2) 176
N2—H2B⋯O3i 0.86 1.97 2.822 (2) 172
N2—H2A⋯O3v 0.86 2.02 2.836 (2) 159
N1—H1B⋯O2ii 0.86 1.99 2.838 (2) 169
N1—H1A⋯O1vi 0.86 2.43 2.992 (2) 123
N1—H1A⋯O1vii 0.86 2.11 2.887 (2) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+2, -z+1; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Salts of melamine and its derivatives can develop supramolecular structures via hydrogen bonding by self assembly. Monoprotonated melaminium sulfate hydrate, (C3H7N6)2 SO4.H2O, has been structurally investigated (Janczak & Perpétuo, 2001b). We present here the solid state structure of anhydrous diprotonated melaminium salt.

The internal C—N—C angle at the protonated N atoms [C2—N6—C3 120.35 (15) ° and C2—N5—C1 120.25 (15) °] is significantly larger than the C—N—C angle at the non-protonated N atom [C1—N4—C3 116.79 (15) °]. These differences are due to the steric effect of the lone-pair electrons and are fully consistent with the valence-shell electron-pair repulsion theory (Janczak & Perpétuo, 2001a). The two shortest bonds [N4—C3 1.333 (2) Å and N4—C1 1.338 (2) Å] are those furthest from the protonated ring N atoms. The two longest bonds [N6—C3 1.367 (2) Å and N5—C1 1.373 (2) Å] are those connected to the shortest bonds. This has the effect of opening up the ring bond angles at atoms C1 and C3, thus creating the largest bond angles in the ring [N4—C3—N6 122.4 (1) ° and N4—C1—N5 122.1 (1) °]. A semi-empirical calculation, with the AM1 parameter set (Dewar et al., 1985) on the melaminium residue diprotonated at two ring N atoms, results in almost the same geometrical features as being found in the title compound. The distortion of the aromatic ring is quite similar to that reported for the melaminium diperchlorate monohydrate salt (Martin & Pinkerton, 1995), as well as for melaminium bis(4-hydroxybenzene-sulfonate) dihydrate (Janczak & Perpétuo, 2001a).

The melaminium residue is involved in eleven hydrogen bonds, two N—H···N bonds with the neighbouring melaminium residue and nine N—H···O bonds with six neighbouring SO42- anions. Two of the SO42- anions are acceptors of two and three hydrogen bonds, respectively, while the other four are acceptors of one hydrogen bond each (Fig. 2). The H atoms at the protonated N atoms of the melaminium residue are involved in almost linear N—H···O hydrogen bonds.

Each SO42- ion is involved as an acceptor in nine hydrogen bonds connecting to six melaminium residues. The O1 and O2 atoms are the most interesting ones as they all accept three hydrogen atoms each. O3 forms two hydrogen bonds with melaminium residues via the H atoms of the amino groups, and O4 forms only one hydrogen bond via H5 atom at the protonated N atom of the melaminium residue.

The melaminium residues are interconnected by two almost linear N—H···N hydrogen bonds and five N—H···O hydrogen bonds. The distance between the centroids of the aromatic rings in adjacent layers (symmetry operator 2 - x, +y, 1.5 - z) is about 3.4 Å, which is much shorter than the maximum distance for the π-π stacking interaction (3.8 Å for centroid-centroid distance), indicating strong π-π stacking interactions. The two-dimensional layers are extensively interconnected by multiple hydrongen bonds with sulfate anions and π-π stacking interactions (Fig. 3).

Related literature top

For related literature, see: Janczak & Perpetuo (2001a, 2001b); Martin & Pinkerton (1995); Dewar et al. (1985); Janczak & Perpétuo (2001a, 2001b).

Experimental top

0.126 g (0.001 mol) of melamine was dissolved in 50 ml hot water. To this solution 4 ml 98% sulfate acid was slowly added. After several days, colorless crystals of (I) appeared.

Refinement top

The H atoms bonded to the ring N atoms were located in difference Fourier map and their positions and displacement parameters were refined freely. The amino H atoms were added geometrically and treated as riding, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Diagram showing the hydrogen bonds of the melaminium cation. symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, y, -z + 1/2; (v) -x + 1, y + 1, -z + 1/2; (vi) -x + 3/2, y + 1/2, -z + 1/2; (vii) x, -y, z + 1/2; (viii) x, -y + 1, z + 1/2; (ix) x - 1/2, -y + 1/2, z + 1/2.
[Figure 3] Fig. 3. The molecular packing of (I) in the unit cell showing the hydrogen-bonding interaction (dashed lines).
Melaminium sulfate top
Crystal data top
C3H8N62+·SO42F(000) = 928
Mr = 224.21Dx = 1.889 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.5787 (3) ÅCell parameters from 2920 reflections
b = 8.6272 (2) Åθ = 2.8–27.5°
c = 12.7945 (4) ŵ = 0.42 mm1
β = 129.739 (1)°T = 293 K
V = 1576.94 (7) Å3Prism, colorless
Z = 80.32 × 0.27 × 0.26 mm
Data collection top
Bruker APEX2 CCD
diffractometer
1794 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 2419
Tmin = 0.879, Tmax = 0.900k = 611
3793 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.041P)2 + 3.6165P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1794 reflectionsΔρmax = 0.48 e Å3
136 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
C3H8N62+·SO42V = 1576.94 (7) Å3
Mr = 224.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.5787 (3) ŵ = 0.42 mm1
b = 8.6272 (2) ÅT = 293 K
c = 12.7945 (4) Å0.32 × 0.27 × 0.26 mm
β = 129.739 (1)°
Data collection top
Bruker APEX2 CCD
diffractometer
1794 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
1672 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.900Rint = 0.013
3793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.48 e Å3
1794 reflectionsΔρmin = 0.45 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65733 (3)0.06360 (5)0.27385 (4)0.02105 (15)
O20.63929 (12)0.11467 (16)0.36667 (16)0.0369 (4)
O40.70593 (10)0.08710 (15)0.32413 (17)0.0348 (4)
C20.84604 (12)0.9717 (2)0.65207 (17)0.0210 (3)
N50.86032 (10)0.82418 (17)0.63479 (15)0.0215 (3)
N30.95352 (12)1.16685 (18)0.54108 (18)0.0312 (4)
H3A0.98341.14880.51180.037*
H3B0.94481.26070.55340.037*
O30.71951 (10)0.17704 (15)0.28119 (15)0.0309 (3)
N20.80592 (11)1.00382 (18)0.70342 (17)0.0277 (3)
H2A0.78790.93010.72720.033*
H2B0.79741.09880.71360.033*
C30.92125 (12)1.0513 (2)0.56700 (18)0.0222 (3)
N40.93490 (11)0.90603 (17)0.54780 (16)0.0236 (3)
N10.91024 (13)0.64908 (18)0.55885 (18)0.0317 (4)
H1A0.93720.62590.52590.038*
H1B0.88890.57680.57870.038*
O10.56934 (11)0.0514 (2)0.13681 (16)0.0440 (4)
N60.87638 (11)1.08607 (18)0.61675 (16)0.0232 (3)
C10.90174 (12)0.7934 (2)0.57868 (17)0.0219 (3)
H60.8684 (18)1.183 (3)0.626 (2)0.042 (7)*
H50.8388 (18)0.749 (3)0.651 (3)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0277 (2)0.0160 (2)0.0288 (2)0.00029 (15)0.0224 (2)0.00143 (15)
O20.0657 (10)0.0212 (7)0.0574 (9)0.0009 (7)0.0549 (9)0.0015 (6)
O40.0425 (8)0.0182 (6)0.0605 (10)0.0067 (6)0.0408 (8)0.0085 (6)
C20.0228 (8)0.0197 (8)0.0233 (8)0.0007 (6)0.0160 (7)0.0004 (6)
N50.0284 (7)0.0166 (7)0.0289 (7)0.0010 (6)0.0226 (7)0.0004 (6)
N30.0438 (9)0.0183 (7)0.0528 (10)0.0030 (7)0.0407 (9)0.0011 (7)
O30.0416 (8)0.0189 (6)0.0502 (8)0.0047 (5)0.0377 (7)0.0022 (6)
N20.0395 (9)0.0202 (7)0.0418 (9)0.0002 (6)0.0345 (8)0.0006 (6)
C30.0246 (8)0.0201 (8)0.0274 (8)0.0013 (6)0.0191 (7)0.0010 (6)
N40.0296 (8)0.0185 (7)0.0345 (8)0.0010 (6)0.0259 (7)0.0010 (6)
N10.0519 (10)0.0172 (7)0.0516 (10)0.0016 (7)0.0449 (9)0.0018 (7)
O10.0361 (8)0.0554 (10)0.0329 (8)0.0085 (7)0.0185 (7)0.0045 (7)
N60.0320 (8)0.0156 (7)0.0330 (8)0.0002 (6)0.0259 (7)0.0012 (6)
C10.0254 (8)0.0194 (8)0.0262 (8)0.0003 (6)0.0188 (7)0.0007 (6)
Geometric parameters (Å, º) top
S1—O11.447 (1)N3—H3B0.8600
S1—O31.471 (1)N2—H2A0.8600
S1—O41.475 (1)N2—H2B0.8600
S1—O21.492 (1)C3—N41.333 (2)
C2—N21.300 (2)C3—N61.367 (2)
C2—N51.347 (2)N4—C11.338 (2)
C2—N61.350 (2)N1—C11.300 (2)
N5—C11.373 (2)N1—H1A0.8600
N5—H50.85 (3)N1—H1B0.8600
N3—C31.310 (2)N6—H60.87 (3)
N3—H3A0.8600
O1—S1—O3111.02 (9)C2—N2—H2B120.0
O1—S1—O4111.51 (10)H2A—N2—H2B120.0
O3—S1—O4108.77 (8)N3—C3—N4119.80 (16)
O1—S1—O2109.36 (10)N3—C3—N6117.71 (16)
O3—S1—O2108.65 (8)N4—C3—N6122.46 (16)
O4—S1—O2107.42 (9)C3—N4—C1116.79 (15)
N2—C2—N5121.41 (16)C1—N1—H1A120.0
N2—C2—N6120.69 (16)C1—N1—H1B120.0
N5—C2—N6117.88 (15)H1A—N1—H1B120.0
C2—N5—C1120.25 (15)C2—N6—C3120.35 (15)
C2—N5—H5120.6 (18)C2—N6—H6120.8 (17)
C1—N5—H5118.9 (19)C3—N6—H6118.8 (17)
C3—N3—H3A120.0N1—C1—N4120.09 (16)
C3—N3—H3B120.0N1—C1—N5117.76 (16)
H3A—N3—H3B120.0N4—C1—N5122.13 (15)
C2—N2—H2A120.0
N2—C2—N5—C1179.14 (16)N3—C3—N6—C2176.50 (17)
N6—C2—N5—C12.1 (2)N4—C3—N6—C21.8 (3)
N3—C3—N4—C1178.76 (17)C3—N4—C1—N1178.06 (18)
N6—C3—N4—C10.5 (3)C3—N4—C1—N53.6 (3)
N2—C2—N6—C3177.84 (17)C2—N5—C1—N1177.10 (17)
N5—C2—N6—C30.9 (3)C2—N5—C1—N44.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O2i0.87 (3)1.76 (3)2.622 (2)171 (3)
N5—H5···O4ii0.85 (3)1.76 (3)2.608 (2)176 (3)
N3—H3B···O2i0.862.593.244 (2)134
N3—H3B···O1iii0.862.442.944 (2)118
N3—H3A···N4iv0.862.143.000 (2)176
N2—H2B···O3i0.861.972.822 (2)172
N2—H2A···O3v0.862.022.836 (2)159
N1—H1B···O2ii0.861.992.838 (2)169
N1—H1A···O1vi0.862.432.992 (2)123
N1—H1A···O1vii0.862.112.887 (2)151
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+2, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H8N62+·SO42
Mr224.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.5787 (3), 8.6272 (2), 12.7945 (4)
β (°) 129.739 (1)
V3)1576.94 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.32 × 0.27 × 0.26
Data collection
DiffractometerBruker APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.879, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
3793, 1794, 1672
Rint0.013
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.00
No. of reflections1794
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.45

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O2i0.87 (3)1.76 (3)2.622 (2)171 (3)
N5—H5···O4ii0.85 (3)1.76 (3)2.608 (2)176 (3)
N3—H3B···O2i0.862.593.244 (2)134.1
N3—H3B···O1iii0.862.442.944 (2)117.9
N3—H3A···N4iv0.862.143.000 (2)175.7
N2—H2B···O3i0.861.972.822 (2)172.1
N2—H2A···O3v0.862.022.836 (2)159.0
N1—H1B···O2ii0.861.992.838 (2)168.6
N1—H1A···O1vi0.862.432.992 (2)123.1
N1—H1A···O1vii0.862.112.887 (2)150.7
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+2, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Wen-Tao Yu and Mr Jian-Dong Fan for the data collection and helpful discussions. This work was supported by the Science and Technology Research Program of the Ministry of Education, China (grant No. 305010).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 873–875.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1431–1433.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartin, A. & Pinkerton, A. A. (1995). Acta Cryst. C51, 2174–2177.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds