organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Phenyl-6′-thia­cyclo­heptane-1-spiro-2′-perhydro­pyrrolizine-3′-spiro-3′′-indoline-2,2′′-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 10 December 2007; accepted 29 December 2007; online 23 January 2008)

The thia­zolidine ring and the pyrrolidine ring in the title compound, C25H26N2O2S, both adopt an envelope conformation. The seven-membered ring has a twist-chair conformation. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Kumar et al. (2006[Kumar, R. G., Gayathri, D., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o4821-o4823.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Si et al. (2005[Si, X., McManus, B. M., Zhang, J., Yuan, J., Cheung, C., Esfandiarei, M., Suarez, A., Morgan, A. & Luo, H. (2005). J. Virol. 79, 8014-8023.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2O2S

  • Mr = 418.54

  • Triclinic, [P \overline 1]

  • a = 8.9846 (10) Å

  • b = 10.3564 (11) Å

  • c = 12.8124 (14) Å

  • α = 80.147 (2)°

  • β = 71.012 (2)°

  • γ = 67.497 (2)°

  • V = 1040.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 (2) K

  • 0.26 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11582 measured reflections

  • 4697 independent reflections

  • 3880 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.157

  • S = 1.08

  • 4697 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.04 2.859 (2) 160
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

It has been reported that pyrrolidine derivatives reduce Coxsackievirus B3 replication through inhibition of the Ubiquitin-Proteasome pathway (Si et al., 2005). They are found to have antimicrobial and antifungal activity against various pathogens except Bacillus subtilis (Amal Raj et al., 2003). As the derivatives of pyrrolidine and oxindole are of pharmacological importance, we have undertaken the X-ray crystal structure determination of the title compound.

The bond lengths and bond angles of the title compound are comparable with a similar structure (Kumar et al., 2006). The sum of the bond angles around N1 atom [341.8 (5)°] indicates sp3 hybridization. The dihedral angle between the phenyl ring and the six membered in the oxindole moiety is 40.5 (1)°.

The thiazolidine ring adopts an envelope conformation with S1 atom deviating by 0.764 (1) Å. The pyrrolidine ring (N1/C1—C4) adopts an envelope conformation with C2 atom deviating by -0.655 (2) Å. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the pyrrolidine ring, five membered ring (N2/C7/C1/C13/C8) in the oxindole moiety and the thiazolidine ring are q2 = 0.424 (2), 0.068 (2), 0.443 (2) Å, ϕ = 80.4 (3), 264.7 (18), 355.5 (3)° and Δs(C2) = 7.7 (2), Δ2(N2) = 0.9 (3), Δs(S1) = 5.9 (2).

The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds generating a centrosymmetric dimeric ring motif [R22(8)].

Related literature top

For related literature, see: Amal Raj et al. (2003); Cremer & Pople (1975); Kumar et al. (2006); Nardelli (1983); Xiaoning Si et al. (2005).

Experimental top

A mixture of isatin (0.147 g, 1 mmol), thiaproline, (0.135 g, 1 mmol) and benzylidenecycloheptanone (1 mmol) in methanol (20 ml) was refluxed until the disappearance of the starting materials. The reaction mixture was then concentrated in vacuo and extracted with water (50 ml) and dichloromethane (50 ml). The organic layer was washed with brine solution, dried with anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography with hexane-ethylacetate (8:2) mixture to get title compound. The pure compound was recrystallized from ethanol.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS90 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis, H atoms not involved in hydrogen bonding have been omitted.
1'-Phenyl-6'-thiacycloheptane-1-spiro-2'-perhydropyrrolizine-3'-spiro-3''- indoline-2,2''-dione top
Crystal data top
C25H26N2O2SZ = 2
Mr = 418.54F(000) = 444
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9846 (10) ÅCell parameters from 2358 reflections
b = 10.3564 (11) Åθ = 1.7–25.0°
c = 12.8124 (14) ŵ = 0.18 mm1
α = 80.147 (2)°T = 293 K
β = 71.012 (2)°Block, colorless
γ = 67.497 (2)°0.26 × 0.25 × 0.23 mm
V = 1040.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 1111
11582 measured reflectionsk = 1313
4697 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2981P]
where P = (Fo2 + 2Fc2)/3
4697 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H26N2O2Sγ = 67.497 (2)°
Mr = 418.54V = 1040.0 (2) Å3
Triclinic, P1Z = 2
a = 8.9846 (10) ÅMo Kα radiation
b = 10.3564 (11) ŵ = 0.18 mm1
c = 12.8124 (14) ÅT = 293 K
α = 80.147 (2)°0.26 × 0.25 × 0.23 mm
β = 71.012 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3880 reflections with I > 2σ(I)
11582 measured reflectionsRint = 0.023
4697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
4697 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2327 (2)0.71980 (19)0.35784 (14)0.0267 (4)
C20.1643 (2)0.84561 (18)0.27522 (14)0.0245 (4)
C30.2629 (2)0.93969 (19)0.27834 (14)0.0275 (4)
H30.38070.89160.23860.033*
C40.2543 (2)0.9308 (2)0.39991 (15)0.0309 (4)
H40.15031.00220.43860.037*
C50.4043 (3)0.9465 (3)0.4219 (2)0.0486 (6)
H5A0.36750.99610.48870.058*
H5B0.45680.99890.36070.058*
C60.3716 (3)0.7143 (3)0.4993 (2)0.0477 (6)
H6A0.40630.61460.49180.057*
H6B0.32560.73250.57730.057*
C70.1116 (2)0.63856 (19)0.41978 (14)0.0283 (4)
C80.3423 (3)0.4830 (2)0.31052 (16)0.0340 (4)
C90.4440 (3)0.3632 (2)0.25409 (19)0.0474 (6)
H90.41180.28550.26480.057*
C100.5958 (3)0.3639 (3)0.1810 (2)0.0552 (7)
H100.66650.28570.14040.066*
C110.6440 (3)0.4783 (3)0.1674 (2)0.0521 (6)
H110.74820.47500.11930.063*
C120.5404 (3)0.5984 (2)0.22390 (18)0.0410 (5)
H120.57410.67520.21410.049*
C130.3852 (2)0.6016 (2)0.29553 (15)0.0311 (4)
C140.2143 (3)0.79473 (19)0.15917 (15)0.0312 (4)
C150.1212 (3)0.7116 (2)0.13959 (18)0.0435 (5)
H15A0.06940.67110.20930.052*
H15B0.19900.63600.09200.052*
C160.0142 (4)0.8082 (3)0.0852 (2)0.0584 (7)
H16A0.03700.85840.02160.070*
H16B0.05760.75140.05880.070*
C170.1593 (3)0.9132 (3)0.1619 (2)0.0600 (7)
H17A0.22340.86310.21720.072*
H17B0.23260.97630.11930.072*
C180.1110 (3)1.0007 (2)0.22123 (19)0.0433 (5)
H18A0.21131.07770.25380.052*
H18B0.03391.04060.16690.052*
C190.0288 (2)0.9197 (2)0.31231 (15)0.0307 (4)
H19A0.07930.84970.34740.037*
H19B0.05610.98440.36790.037*
C200.2132 (2)1.0876 (2)0.22729 (15)0.0300 (4)
C210.3124 (3)1.1172 (2)0.12397 (17)0.0393 (5)
H210.40701.04590.08760.047*
C220.2726 (3)1.2504 (3)0.07487 (19)0.0503 (6)
H220.34061.26810.00600.060*
C230.1336 (4)1.3570 (2)0.1268 (2)0.0512 (6)
H230.10511.44610.09240.061*
C240.0365 (3)1.3313 (2)0.2302 (2)0.0477 (6)
H240.05651.40390.26650.057*
C250.0765 (3)1.1980 (2)0.28063 (18)0.0385 (5)
H250.01101.18220.35110.046*
N10.2471 (2)0.79135 (17)0.44146 (12)0.0312 (4)
N20.1822 (2)0.50686 (17)0.38528 (14)0.0365 (4)
H20.13470.44510.40660.044*
O10.02147 (18)0.68469 (15)0.49036 (11)0.0377 (3)
O20.3167 (2)0.82744 (17)0.08308 (11)0.0449 (4)
S10.55069 (8)0.77332 (8)0.43717 (6)0.0609 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (9)0.0307 (9)0.0235 (8)0.0144 (8)0.0074 (7)0.0014 (7)
C20.0295 (9)0.0258 (9)0.0194 (8)0.0125 (7)0.0066 (7)0.0012 (7)
C30.0301 (9)0.0301 (9)0.0234 (9)0.0143 (8)0.0045 (7)0.0014 (7)
C40.0358 (10)0.0354 (10)0.0264 (9)0.0176 (8)0.0091 (8)0.0014 (8)
C50.0577 (15)0.0605 (15)0.0485 (13)0.0368 (12)0.0255 (11)0.0027 (11)
C60.0591 (15)0.0524 (14)0.0437 (12)0.0251 (12)0.0296 (11)0.0099 (10)
C70.0345 (10)0.0316 (10)0.0220 (8)0.0166 (8)0.0096 (7)0.0051 (7)
C80.0395 (11)0.0309 (10)0.0289 (9)0.0104 (9)0.0115 (8)0.0039 (8)
C90.0591 (15)0.0308 (11)0.0446 (12)0.0088 (10)0.0154 (11)0.0015 (9)
C100.0559 (15)0.0376 (12)0.0446 (13)0.0071 (11)0.0077 (11)0.0015 (10)
C110.0362 (12)0.0530 (15)0.0435 (13)0.0005 (11)0.0028 (10)0.0044 (11)
C120.0337 (11)0.0433 (12)0.0383 (11)0.0108 (9)0.0075 (9)0.0052 (9)
C130.0316 (10)0.0327 (10)0.0259 (9)0.0092 (8)0.0100 (8)0.0043 (7)
C140.0404 (11)0.0272 (9)0.0255 (9)0.0110 (8)0.0103 (8)0.0001 (7)
C150.0661 (15)0.0409 (12)0.0357 (11)0.0268 (11)0.0212 (10)0.0010 (9)
C160.0824 (19)0.0688 (17)0.0485 (14)0.0382 (15)0.0401 (14)0.0050 (12)
C170.0601 (16)0.0745 (18)0.0625 (16)0.0296 (14)0.0409 (14)0.0135 (14)
C180.0408 (12)0.0444 (12)0.0435 (12)0.0107 (10)0.0202 (10)0.0068 (10)
C190.0298 (10)0.0352 (10)0.0259 (9)0.0123 (8)0.0075 (8)0.0028 (8)
C200.0372 (10)0.0313 (10)0.0273 (9)0.0189 (8)0.0090 (8)0.0001 (7)
C210.0471 (12)0.0397 (11)0.0316 (10)0.0215 (10)0.0057 (9)0.0000 (9)
C220.0710 (17)0.0501 (14)0.0367 (12)0.0360 (13)0.0131 (11)0.0110 (10)
C230.0764 (17)0.0352 (12)0.0554 (14)0.0290 (12)0.0331 (13)0.0147 (10)
C240.0562 (14)0.0318 (11)0.0581 (14)0.0125 (10)0.0222 (12)0.0057 (10)
C250.0442 (12)0.0363 (11)0.0350 (10)0.0169 (9)0.0070 (9)0.0037 (9)
N10.0371 (9)0.0375 (9)0.0259 (8)0.0184 (7)0.0141 (7)0.0032 (7)
N20.0430 (10)0.0299 (8)0.0372 (9)0.0191 (7)0.0074 (8)0.0041 (7)
O10.0382 (8)0.0393 (8)0.0332 (7)0.0206 (6)0.0002 (6)0.0013 (6)
O20.0558 (10)0.0530 (9)0.0247 (7)0.0257 (8)0.0002 (7)0.0059 (6)
S10.0454 (4)0.0753 (5)0.0743 (5)0.0243 (3)0.0318 (3)0.0007 (4)
Geometric parameters (Å, º) top
C1—N11.466 (2)C12—C131.389 (3)
C1—C131.534 (3)C12—H120.9300
C1—C71.560 (2)C14—O21.206 (2)
C1—C21.592 (2)C14—C151.505 (3)
C2—C141.531 (2)C15—C161.532 (3)
C2—C191.547 (3)C15—H15A0.9700
C2—C31.560 (2)C15—H15B0.9700
C3—C201.516 (3)C16—C171.514 (4)
C3—C41.523 (2)C16—H16A0.9700
C3—H30.9800C16—H16B0.9700
C4—N11.469 (2)C17—C181.530 (3)
C4—C51.535 (3)C17—H17A0.9700
C4—H40.9800C17—H17B0.9700
C5—S11.796 (3)C18—C191.537 (3)
C5—H5A0.9700C18—H18A0.9700
C5—H5B0.9700C18—H18B0.9700
C6—N11.445 (3)C19—H19A0.9700
C6—S11.830 (2)C19—H19B0.9700
C6—H6A0.9700C20—C251.389 (3)
C6—H6B0.9700C20—C211.394 (3)
C7—O11.217 (2)C21—C221.378 (3)
C7—N21.349 (2)C21—H210.9300
C8—C91.381 (3)C22—C231.370 (4)
C8—C131.388 (3)C22—H220.9300
C8—N21.400 (3)C23—C241.375 (4)
C9—C101.382 (3)C23—H230.9300
C9—H90.9300C24—C251.385 (3)
C10—C111.377 (4)C24—H240.9300
C10—H100.9300C25—H250.9300
C11—C121.386 (3)N2—H20.8600
C11—H110.9300
N1—C1—C13120.41 (15)O2—C14—C2121.75 (17)
N1—C1—C7106.89 (14)C15—C14—C2118.00 (17)
C13—C1—C7100.64 (14)C14—C15—C16109.25 (18)
N1—C1—C2102.68 (14)C14—C15—H15A109.8
C13—C1—C2111.37 (14)C16—C15—H15A109.8
C7—C1—C2115.44 (14)C14—C15—H15B109.8
C14—C2—C19108.15 (15)C16—C15—H15B109.8
C14—C2—C3111.12 (14)H15A—C15—H15B108.3
C19—C2—C3113.41 (15)C17—C16—C15113.6 (2)
C14—C2—C1110.81 (14)C17—C16—H16A108.8
C19—C2—C1113.62 (14)C15—C16—H16A108.8
C3—C2—C199.60 (13)C17—C16—H16B108.8
C20—C3—C4114.20 (15)C15—C16—H16B108.8
C20—C3—C2118.60 (15)H16A—C16—H16B107.7
C4—C3—C2103.40 (14)C16—C17—C18115.7 (2)
C20—C3—H3106.6C16—C17—H17A108.4
C4—C3—H3106.6C18—C17—H17A108.4
C2—C3—H3106.6C16—C17—H17B108.4
N1—C4—C3104.86 (14)C18—C17—H17B108.4
N1—C4—C5109.38 (17)H17A—C17—H17B107.4
C3—C4—C5114.85 (16)C17—C18—C19114.69 (19)
N1—C4—H4109.2C17—C18—H18A108.6
C3—C4—H4109.2C19—C18—H18A108.6
C5—C4—H4109.2C17—C18—H18B108.6
C4—C5—S1107.24 (15)C19—C18—H18B108.6
C4—C5—H5A110.3H18A—C18—H18B107.6
S1—C5—H5A110.3C18—C19—C2116.35 (16)
C4—C5—H5B110.3C18—C19—H19A108.2
S1—C5—H5B110.3C2—C19—H19A108.2
H5A—C5—H5B108.5C18—C19—H19B108.2
N1—C6—S1107.08 (15)C2—C19—H19B108.2
N1—C6—H6A110.3H19A—C19—H19B107.4
S1—C6—H6A110.3C25—C20—C21117.67 (18)
N1—C6—H6B110.3C25—C20—C3123.12 (17)
S1—C6—H6B110.3C21—C20—C3119.15 (18)
H6A—C6—H6B108.6C22—C21—C20121.1 (2)
O1—C7—N2125.70 (17)C22—C21—H21119.5
O1—C7—C1125.71 (17)C20—C21—H21119.5
N2—C7—C1108.54 (16)C23—C22—C21120.4 (2)
C9—C8—C13123.1 (2)C23—C22—H22119.8
C9—C8—N2126.65 (19)C21—C22—H22119.8
C13—C8—N2110.23 (17)C22—C23—C24119.5 (2)
C8—C9—C10117.0 (2)C22—C23—H23120.2
C8—C9—H9121.5C24—C23—H23120.2
C10—C9—H9121.5C23—C24—C25120.4 (2)
C11—C10—C9121.1 (2)C23—C24—H24119.8
C11—C10—H10119.5C25—C24—H24119.8
C9—C10—H10119.5C24—C25—C20120.8 (2)
C10—C11—C12121.4 (2)C24—C25—H25119.6
C10—C11—H11119.3C20—C25—H25119.6
C12—C11—H11119.3C6—N1—C1117.96 (17)
C11—C12—C13118.6 (2)C6—N1—C4112.11 (16)
C11—C12—H12120.7C1—N1—C4111.66 (14)
C13—C12—H12120.7C7—N2—C8111.73 (16)
C8—C13—C12118.80 (19)C7—N2—H2124.1
C8—C13—C1108.37 (16)C8—N2—H2124.1
C12—C13—C1132.51 (18)C5—S1—C688.36 (11)
O2—C14—C15120.06 (18)
N1—C1—C2—C14154.06 (15)C3—C2—C14—O20.4 (3)
C13—C1—C2—C1423.9 (2)C1—C2—C14—O2110.2 (2)
C7—C1—C2—C1490.04 (18)C19—C2—C14—C1550.3 (2)
N1—C1—C2—C1983.94 (17)C3—C2—C14—C15175.42 (17)
C13—C1—C2—C19145.89 (16)C1—C2—C14—C1574.8 (2)
C7—C1—C2—C1932.0 (2)O2—C14—C15—C1675.9 (3)
N1—C1—C2—C336.98 (16)C2—C14—C15—C1699.2 (2)
C13—C1—C2—C393.19 (16)C14—C15—C16—C1770.3 (3)
C7—C1—C2—C3152.88 (15)C15—C16—C17—C1852.0 (3)
C14—C2—C3—C2074.5 (2)C16—C17—C18—C1971.4 (3)
C19—C2—C3—C2047.6 (2)C17—C18—C19—C287.6 (2)
C1—C2—C3—C20168.64 (15)C14—C2—C19—C1834.2 (2)
C14—C2—C3—C4157.92 (15)C3—C2—C19—C1889.6 (2)
C19—C2—C3—C480.01 (17)C1—C2—C19—C18157.62 (16)
C1—C2—C3—C441.06 (17)C4—C3—C20—C2542.5 (3)
C20—C3—C4—N1160.57 (15)C2—C3—C20—C2579.8 (2)
C2—C3—C4—N130.29 (18)C4—C3—C20—C21134.67 (19)
C20—C3—C4—C579.4 (2)C2—C3—C20—C21103.0 (2)
C2—C3—C4—C5150.37 (17)C25—C20—C21—C222.2 (3)
N1—C4—C5—S122.4 (2)C3—C20—C21—C22179.53 (19)
C3—C4—C5—S195.20 (18)C20—C21—C22—C230.2 (4)
N1—C1—C7—O145.1 (2)C21—C22—C23—C242.1 (4)
C13—C1—C7—O1171.63 (18)C22—C23—C24—C251.5 (4)
C2—C1—C7—O168.4 (2)C23—C24—C25—C201.0 (3)
N1—C1—C7—N2132.43 (16)C21—C20—C25—C242.8 (3)
C13—C1—C7—N25.90 (18)C3—C20—C25—C24179.97 (19)
C2—C1—C7—N2114.09 (17)S1—C6—N1—C1101.84 (17)
C13—C8—C9—C100.9 (3)S1—C6—N1—C430.0 (2)
N2—C8—C9—C10177.8 (2)C13—C1—N1—C627.7 (2)
C8—C9—C10—C111.4 (4)C7—C1—N1—C686.0 (2)
C9—C10—C11—C121.9 (4)C2—C1—N1—C6152.11 (16)
C10—C11—C12—C130.1 (4)C13—C1—N1—C4104.30 (18)
C9—C8—C13—C122.7 (3)C7—C1—N1—C4142.00 (16)
N2—C8—C13—C12179.99 (17)C2—C1—N1—C420.10 (19)
C9—C8—C13—C1171.59 (19)C3—C4—N1—C6128.85 (18)
N2—C8—C13—C15.7 (2)C5—C4—N1—C65.2 (2)
C11—C12—C13—C82.1 (3)C3—C4—N1—C16.0 (2)
C11—C12—C13—C1170.5 (2)C5—C4—N1—C1129.71 (17)
N1—C1—C13—C8123.82 (18)O1—C7—N2—C8174.57 (18)
C7—C1—C13—C86.88 (19)C1—C7—N2—C83.0 (2)
C2—C1—C13—C8116.00 (16)C9—C8—N2—C7175.5 (2)
N1—C1—C13—C1263.0 (3)C13—C8—N2—C71.8 (2)
C7—C1—C13—C12179.9 (2)C4—C5—S1—C633.23 (16)
C2—C1—C13—C1257.2 (3)N1—C6—S1—C536.70 (17)
C19—C2—C14—O2124.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.042.859 (2)160
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H26N2O2S
Mr418.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9846 (10), 10.3564 (11), 12.8124 (14)
α, β, γ (°)80.147 (2), 71.012 (2), 67.497 (2)
V3)1040.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.26 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11582, 4697, 3880
Rint0.023
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.157, 1.08
No. of reflections4697
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS90 (Sheldrick, 1990), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.0372.859 (2)159.7
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science and Technology (DST–FIST), Government of India, is acknowledged by DV for providing facilities to the department.

References

First citationAmal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. G., Gayathri, D., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o4821–o4823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, X., McManus, B. M., Zhang, J., Yuan, J., Cheung, C., Esfandiarei, M., Suarez, A., Morgan, A. & Luo, H. (2005). J. Virol. 79, 8014–8023.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds