organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(Di­meth­oxy­meth­yl)anthracene

aState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and bCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn

(Received 15 January 2008; accepted 16 January 2008; online 23 January 2008)

In the title compound, C17H16O2, a dimethyl acetal of 9-anthraldehyde, the anthracene skeleton is planar and the two meth­oxy groups attached to the C atom at position 9 of the aromatic ring system are located above and below the ring system.

Related literature

For 9-chloro-10-(dimethoxy­meth­yl)anthracene, see: Yuan et al. (2004[Yuan, W.-B., Yan, L. & Yang, R.-D. (2004). Acta Cryst. E60, o2447-o2448.]). For anologous compounds, see: Akiba et al. (1999[Akiba, K., Yamashita, M., Yamamoto, Y. & Nagase, S. (1999). J. Am. Chem. Soc. 121, 10644-10645.]); Yamashita et al. (2005[Yamashita, M., Yamamoto, Y., Akiba, K., Hashizume, D., Iwasaki, F., Takagi, N. & Nagase, S. (2005). J. Am. Chem. Soc. 127, 4354-4371.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O2

  • Mr = 252.30

  • Orthorhombic, P b c a

  • a = 8.2310 (16) Å

  • b = 17.446 (4) Å

  • c = 19.261 (4) Å

  • V = 2766.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.990

  • 12827 measured reflections

  • 2433 independent reflections

  • 1215 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.166

  • S = 0.90

  • 2433 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anthracene is a very useful compound for supramolecular photochemistry. Several crystal structures of anthracene derivatives have been reported previously (Akiba et al., 1999; Yuan et al., 2004; Yamashita et al., 2005;).

The atom-numbering scheme of the title compound is shown in Fig. 1. The bond lengths and angles are in the normal ranges compared with related compounds. The dihedral angles between the anthracene plane and the C15—O1—C16 and C15—O2—C17 groups are 71.6 (3) and 75.8 (4)°, respectively, and that between the latter two groups is 85.6 (2)°. These dihedral angles are silghtly different from 9-chloro-10-(dimethoxymethyl)anthracene (Yuan et al., 2004)

Related literature top

For 9-chloro-10-(dimethoxymethyl)anthracene, see: Yuan et al. (2004). For other anologous compounds, see: Akiba et al. (1999); Yamashita et al. (2005).

Experimental top

The treatment of 9-anthraldehyde (0.5 mmol, 0.010 g) and 4-aminopyridine (0.5 mmol, 0.041 g) in 20 cm3 me thanol with a few drops of HOAc as catalyst under reflux condition for 2 h produces the yellow compound 9-(dimethoxymethyl)anthracene as a by-product. Single crystals suitable for X-ray diffraction measurement formed after 1 week by slow evaporation at room temperature in air. Anal. Calcd. for C17H16O2: C, 80.93; H, 6.39; O, 12.68%. Found: C, 81.00; H, 6.33; O, 12.74%. FT—IR (KBr pellets, cm-1): 2932, 1448, 1186, 1105, 1066, 891, 740. 1H NMR (500 MHz, CDCl3): d = 3.57 (s, 6H), 6.59 (s, 1H), 7.29–7.56 (m, 4H), 8.01(d, 2H, J = 8.4 Hz), 8.49 (s, 1H), 8.74 (d, 2H, J = 8.9 Hz).

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and refined as riding atoms, with Uiso(H) = 1.5Ueq(for methyl C) or Uiso(H) = 1.2Ueq(C) for the other C atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
9-(dimethoxymethyl)anthracene top
Crystal data top
C17H16O2F(000) = 1072
Mr = 252.30Dx = 1.212 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1781 reflections
a = 8.2310 (16) Åθ = 2.4–19.5°
b = 17.446 (4) ŵ = 0.08 mm1
c = 19.261 (4) ÅT = 291 K
V = 2766.0 (10) Å3Block, yellow
Z = 80.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 94
Tmin = 0.987, Tmax = 0.990k = 2020
12827 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0954P)2]
where P = (Fo2 + 2Fc2)/3
2433 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H16O2V = 2766.0 (10) Å3
Mr = 252.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2310 (16) ŵ = 0.08 mm1
b = 17.446 (4) ÅT = 291 K
c = 19.261 (4) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1215 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.045
12827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 0.90Δρmax = 0.14 e Å3
2433 reflectionsΔρmin = 0.16 e Å3
174 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9017 (2)0.20745 (12)0.59464 (10)0.0592 (6)
C21.0164 (3)0.15624 (15)0.62298 (12)0.0719 (7)
C31.0584 (3)0.08576 (16)0.59060 (17)0.0944 (9)
H31.00520.07090.55020.113*
C41.1755 (4)0.03974 (19)0.6180 (2)0.1378 (15)
H41.20300.00560.59560.165*
C51.2563 (5)0.0603 (4)0.6806 (3)0.170 (3)
H51.33560.02820.69910.204*
C61.2182 (5)0.1251 (3)0.7122 (2)0.1453 (19)
H61.27040.13760.75350.174*
C71.0996 (3)0.1764 (2)0.68494 (16)0.0975 (9)
C81.0683 (4)0.2472 (3)0.71548 (15)0.1118 (13)
H81.11930.25910.75720.134*
C90.9649 (4)0.3003 (2)0.68643 (14)0.0918 (9)
C100.9437 (5)0.3758 (3)0.71550 (19)0.1275 (14)
H100.99670.38900.75640.153*
C110.8487 (6)0.4268 (3)0.6839 (3)0.1449 (18)
H110.83790.47550.70290.174*
C120.7655 (4)0.40904 (18)0.6236 (2)0.1184 (11)
H120.70010.44580.60270.142*
C130.7787 (3)0.33873 (15)0.59484 (15)0.0859 (8)
H130.72080.32790.55450.103*
C140.8787 (3)0.28072 (14)0.62451 (11)0.0683 (6)
C150.8077 (3)0.18624 (13)0.53064 (11)0.0665 (6)
H150.72240.22440.52280.080*
C160.8383 (4)0.19124 (18)0.40849 (13)0.1082 (10)
H16A0.77510.14570.40130.162*
H16B0.91890.19540.37270.162*
H16C0.76830.23520.40710.162*
C170.5853 (4)0.11064 (19)0.5615 (2)0.1447 (14)
H17A0.59030.11940.61060.217*
H17B0.53880.06110.55280.217*
H17C0.51910.14940.54020.217*
O10.91609 (19)0.18736 (10)0.47445 (8)0.0856 (6)
O20.7373 (2)0.11349 (10)0.53439 (10)0.1011 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (12)0.0712 (14)0.0550 (12)0.0066 (10)0.0002 (10)0.0067 (11)
C20.0531 (13)0.0901 (18)0.0726 (15)0.0153 (12)0.0023 (12)0.0273 (13)
C30.0662 (16)0.0813 (18)0.136 (2)0.0036 (14)0.0014 (15)0.0344 (18)
C40.085 (2)0.116 (3)0.212 (4)0.0196 (19)0.016 (3)0.085 (3)
C50.076 (3)0.217 (6)0.217 (6)0.015 (3)0.002 (3)0.159 (5)
C60.075 (2)0.228 (5)0.133 (3)0.030 (3)0.028 (2)0.112 (4)
C70.0644 (17)0.152 (3)0.0764 (19)0.0268 (18)0.0093 (15)0.047 (2)
C80.088 (2)0.197 (4)0.0512 (17)0.063 (2)0.0075 (16)0.017 (2)
C90.0807 (18)0.134 (3)0.0610 (16)0.0455 (18)0.0157 (15)0.0198 (17)
C100.122 (3)0.168 (4)0.093 (2)0.070 (3)0.036 (2)0.057 (3)
C110.133 (4)0.138 (4)0.164 (4)0.051 (3)0.069 (3)0.078 (3)
C120.109 (2)0.084 (2)0.162 (3)0.0046 (17)0.035 (2)0.034 (2)
C130.0760 (17)0.0774 (18)0.104 (2)0.0029 (13)0.0122 (15)0.0166 (15)
C140.0594 (13)0.0861 (17)0.0592 (14)0.0165 (12)0.0092 (11)0.0070 (13)
C150.0599 (13)0.0661 (15)0.0734 (15)0.0031 (11)0.0072 (12)0.0050 (11)
C160.116 (2)0.140 (3)0.0684 (17)0.0100 (19)0.0208 (17)0.0019 (16)
C170.090 (2)0.130 (3)0.214 (4)0.0208 (19)0.020 (2)0.042 (3)
O10.0743 (11)0.1222 (15)0.0603 (10)0.0161 (9)0.0063 (9)0.0078 (8)
O20.0775 (12)0.0773 (12)0.1486 (18)0.0096 (9)0.0174 (11)0.0122 (10)
Geometric parameters (Å, º) top
C1—C21.410 (3)C10—H100.9300
C1—C141.415 (3)C11—C121.384 (6)
C1—C151.501 (3)C11—H110.9300
C2—C71.420 (4)C12—C131.350 (4)
C2—C31.421 (4)C12—H120.9300
C3—C41.361 (4)C13—C141.424 (3)
C3—H30.9300C13—H130.9300
C4—C51.422 (7)C15—O21.397 (3)
C4—H40.9300C15—O11.403 (2)
C5—C61.324 (6)C15—H150.9800
C5—H50.9300C16—O11.424 (3)
C6—C71.425 (5)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.392 (4)C16—H16C0.9600
C8—C91.377 (4)C17—O21.357 (3)
C8—H80.9300C17—H17A0.9600
C9—C141.429 (3)C17—H17B0.9600
C9—C101.443 (5)C17—H17C0.9600
C10—C111.331 (5)
C2—C1—C14120.3 (2)C10—C11—H11119.2
C2—C1—C15120.4 (2)C12—C11—H11119.2
C14—C1—C15119.20 (19)C13—C12—C11120.5 (4)
C1—C2—C7119.4 (3)C13—C12—H12119.7
C1—C2—C3122.8 (2)C11—C12—H12119.7
C7—C2—C3117.8 (3)C12—C13—C14121.8 (3)
C4—C3—C2120.8 (3)C12—C13—H13119.1
C4—C3—H3119.6C14—C13—H13119.1
C2—C3—H3119.6C1—C14—C13123.8 (2)
C3—C4—C5120.8 (4)C1—C14—C9119.3 (2)
C3—C4—H4119.6C13—C14—C9116.9 (2)
C5—C4—H4119.6O2—C15—O1108.44 (18)
C6—C5—C4119.7 (4)O2—C15—C1113.28 (18)
C6—C5—H5120.2O1—C15—C1107.61 (17)
C4—C5—H5120.2O2—C15—H15109.1
C5—C6—C7122.0 (5)O1—C15—H15109.1
C5—C6—H6119.0C1—C15—H15109.1
C7—C6—H6119.0O1—C16—H16A109.5
C8—C7—C2119.1 (3)O1—C16—H16B109.5
C8—C7—C6121.9 (4)H16A—C16—H16B109.5
C2—C7—C6119.0 (4)O1—C16—H16C109.5
C9—C8—C7122.7 (3)H16A—C16—H16C109.5
C9—C8—H8118.7H16B—C16—H16C109.5
C7—C8—H8118.7O2—C17—H17A109.5
C8—C9—C14119.0 (3)O2—C17—H17B109.5
C8—C9—C10122.1 (4)H17A—C17—H17B109.5
C14—C9—C10118.8 (3)O2—C17—H17C109.5
C11—C10—C9120.2 (4)H17A—C17—H17C109.5
C11—C10—H10119.9H17B—C17—H17C109.5
C9—C10—H10119.9C15—O1—C16113.76 (19)
C10—C11—C12121.7 (4)C17—O2—C15115.8 (2)

Experimental details

Crystal data
Chemical formulaC17H16O2
Mr252.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)8.2310 (16), 17.446 (4), 19.261 (4)
V3)2766.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12827, 2433, 1215
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.166, 0.90
No. of reflections2433
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

WH acknowledges the Major State Basic Research Development Programs (Nos. 2006CB806104 and 2007CB925101), the National Natural Science Foundation of China (No. 20301009) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

References

First citationAkiba, K., Yamashita, M., Yamamoto, Y. & Nagase, S. (1999). J. Am. Chem. Soc. 121, 10644–10645.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART (Version 5.622), SAINT (Version 6.02a) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamashita, M., Yamamoto, Y., Akiba, K., Hashizume, D., Iwasaki, F., Takagi, N. & Nagase, S. (2005). J. Am. Chem. Soc. 127, 4354–4371.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, W.-B., Yan, L. & Yang, R.-D. (2004). Acta Cryst. E60, o2447–o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds