metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m309-m310

μ-Pyrazine-2,5-di­carboxyl­ato-bis­­[chlorido(η6-p-cymene)ruthenium(II)] tert-butanol disolvate

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 12 December 2007; accepted 3 January 2008; online 9 January 2008)

A new tert-butanol solvate of [{(iPrC6H4Me)RuCl}2{μ-2,5-pyz(COO)2}] (pyz = pyrazine) has been crystallized and structurally characterized. The solvate, [Ru2(C10H14)2(C6H2N2O4)Cl2]·2C4H10O, contains one half-mol­ecule of the ruthenium(II) complex and one mol­ecule of tert-butanol in the asymmetric unit. The complex mol­ecule lies on an inversion centre with the two chlorides trans. In contrast, the previously reported structure was solvent-free. Similar metric parameters are found between the butanol solvate and the solvent-free form and an inter­molecular O—H⋯O hydrogen bond exists between μ-pyrazine-2,5-dicarboxyl­ato-bis­[chlorido(η6-p-cymene)­ruthenium(II)] and the tert-butanol mol­ecule.

Related literature

The structure of the solvent-free complex has been reported previously (Govindaswamy et al., 2007[Govindaswamy, P., Therrien, B., Süss-Fink, G., Štěpnička, P. & Ludvík, J. (2007). J. Organomet. Chem. 692, 1661-1671.]). One mol­ecule adopts a trans configuration of the two chloro ligands while the second lies on a twofold axis giving the two chloro ligands a cis configuration. For other related literature, see: Cadierno et al. (2002[Cadierno, V., Díez, J., García-Garrido, S. E., García-Granda, S. & Gimeno, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1465-1472.]); Carter et al. (1993[Carter, L., Davies, D. L., Fawcett, J. & Russell, D. R. (1993). Polyhedron, 12, 1599-1602.]); Dann et al. (2006[Dann, S. E., Durran, S. E., Elsegood, M. R. J., Smith, M. B., Staniland, P. M., Talib, S. & Dale, S. H. (2006). J. Organomet. Chem. 691, 4829-4842.]); Dorcier et al. (2005[Dorcier, A., Dyson, P. J., Gossens, C., Rothlisberger, U., Scopelliti, R. & Tavernelli, I. (2005). Organometallics, 24, 2114-2123.]); Drommi et al. (1995[Drommi, D., Arena, C. G., Nicolò, F., Bruno, G. & Faraone, F. (1995). J. Organomet. Chem. 485, 115-121.]); Ganter (2003[Ganter, C. (2003). Chem. Soc. Rev. 32, 130-138.]); Gemel et al. (2000[Gemel, C., John, R., Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (2000). J. Chem. Soc. Dalton Trans. pp. 2607-2612.]); Grote et al. (2004[Grote, Z., Scopelliti, R. & Severin, K. (2004). J. Am. Chem. Soc. 126, 16959-16972.]); Ion et al. (2006[Ion, L., Morales, D., Pérez, J., Riera, L., Riera, V., Kowenicki, R. A. & McPartlin, M. (2006). Chem. Commun. pp. 91-93.]); Konar et al. (2004[Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593-1597.]); Lahuerta et al. (1988[Lahuerta, P., Latorre, J., Sanaú, M., Cotton, F. A. & Schwotzer, W. (1988). Polyhedron, 7, 1311-1316.]); Ma et al. (2004[Ma, C., Han, Y. & Zhang, R. (2004). J. Organomet. Chem. 689, 1675-1683.]); Pinto et al. (2004[Pinto, P., Marconi, G., Heinemann, F. W. & Zenneck, U. (2004). Organometallics, 23, 374-380.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C10H14)2(C6H2N2O4)Cl2]·2C4H10O

  • Mr = 855.80

  • Monoclinic, P 21 /c

  • a = 9.8483 (2) Å

  • b = 11.3968 (3) Å

  • c = 16.3448 (3) Å

  • β = 91.465 (2)°

  • V = 1833.93 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 120 (2) K

  • 0.18 × 0.04 × 0.03 mm

Data collection
  • Bruker–Nonius Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Version 2007/2. University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.970

  • 18492 measured reflections

  • 4195 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.115

  • S = 1.06

  • 4196 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 2.78 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.84 1.98 2.804 (5) 168

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

There has been considerable interest in the chemistry of areneruthenium(II) complexes for a variety of purposes. These range from their interesting and varied coordination chemistry (Cadierno et al., 2002; Drommi et al., 1995) including DNA binding studies (Dorcier et al., 2005) to applications in areas including supramolecular chemistry, as highly selective receptors and catalysis (Dann et al., 2006; Ganter, 2003; Grote et al., 2004; Ion et al., 2006). These organometallic ruthenium(II) fragments have also been used in the synthesis of chiral half-sandwich compounds (Ganter, 2003; Pinto et al., 2004). Pyrazine polycarboxylic acids are excellent ligands for metal coordination (Konar et al., 2004; Ma et al., 2004). Complexes of ruthenium(II) with pyrazine carboxylic acids are known and their redox behaviour has been studied by voltammetric methods (Govindaswamy et al., 2007). We report here the molecular structure of a new tert-butanol solvate of the ruthenium(II) complex [{(η6-p-iPrC6H4Me)RuCl}2{µ-2,5-pyz(COO)2}]\. tBuOH 1. The solvent free structure, 2, which contains one molecule with a trans configuration of the two chloro ligands and a second molecule with twofold symmetry that has two chloro ligands disposed in a cis configuration, has recently been reported (Govindaswamy et al., 2007).

The molecular structure of 1 is shown in Figure 1 and shows a typical piano-stool geometry at each ruthenium(II) centre with each metal bonded to an η6-p-iPrC6H4Me arene [Ru—Ccentroid 1.6689 (16) Å], a terminal chloride and a dianionic N,O-chelating pyrazine ligand. The Ru—Cl bond length in 1 [2.3975 (11) Å] is slightly shorter than that in the trans isomer [2.408 (5) Å] of 2 yet similar to the cis isomer [2.388 (3) Å, 2.399 (3) Å]. The Ru—O and Ru—N bond distances in 1 [2.099 (3) Å and 2.097 (3) Å respectively] are similar to those in the cis isomer of 2 [2.083 (10)/2.109 (9) Å and 2.102 (7)/2.074 (7) Å respectively] and with those of other related three-legged piano-stool ruthenium(II) complexes (Carter et al., 1993; Gemel et al., 2000; Lahuerta et al., 1988). The N(1)—Ru(1)—O(2) bite angle in 1 [77.29 (12)°] is broadly as expected for this type of five-membered chelating ligand. The η6-p-iPrC6H4Me arene ring is essentially planar with C—C bond lengths in the range 1.392 (6)–1.435 (6) Å. The Ru complex is hydrogen-bonded to a tBuOH molecule through a strong intermolecular O—H···O interaction.

In summary, we have reported the crystal structure of a new tert-butanol solvate form of [{(η6-p-iPrC6H4Me)RuCl}2{µ-2,5-pyz(COO)2}] 1 that displays very similar bond lengths and angles around the ruthenium(II) coordination sphere to complex 2 recently published (Govindaswamy et al., 2007).

Related literature top

The structure of the solvent-free complex has been reported previously (Govindaswamy et al., 2007) and shows two molecules in the asymmetric unit. One molecule adopts a trans configuration of the two chloro ligands while the second lies on a twofold axis giving the two chloro ligands a cis configuration.

For other related literature, see: Cadierno et al. (2002); Carter et al. (1993); Dann et al. (2006); Dorcier et al. (2005); Drommi et al. (1995); Ganter (2003); Gemel et al. (2000); Grote et al. (2004); Ion et al. (2006); Konar et al. (2004); Lahuerta et al. (1988); Ma et al. (2004); Pinto et al. (2004).

Experimental top

Crystals of compound 1 were obtained unexpectedly from the experimental procedure outlined here. Boronic acid (0.004 g, 0.007 mmol) in warm tBuOH (10 ml) was added dropwise to a solution of [{(η6-p-iPrC6H4Me)RuCl}2{µ-2,5-pyz(COO)2}] (0.023 g, 0.0325 mmol) in CH2Cl2 (10 ml) affording an orange-red solution. The solution was stirred at room temperature for 3 h and the volume was concentrated to 2–3 ml. Suitable X-ray quality crystals of 1 were obtained by slow vapour diffusion of diethyl ether into the concentrated CH2Cl2/tBuOH solution.

Refinement top

H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl H; 0.98 Å for methine, 1.00 Å for methyl H; and 0.84 Å for O—H) using a riding model. Uiso values were set to 1.2Ueq (C) (1.5Ueq (C/O)for methyl H and OH atoms respectively).

Computing details top

Data collection: COLLECT (Hooft, 1998) or APEX2 (Bruker, 2000)?; cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT or APEX2 (Bruker, 2000)?; data reduction: DENZO and COLLECT or APEX2 (Bruker, 2000)?; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001) and local programs.

Figures top
[Figure 1] Fig. 1. View of 1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms except on O(3) have been removed for clarity. Symmetry operator: A = -x, -y, -z.
µ-Pyrazine-2,5-dicarboxylato-bis[chlorido(η6-p-cymene)ruthenium(II)] tert-butanol disolvate top
Crystal data top
[Ru2(C10H14)2(C6H2N2O4)Cl2]·2(C4H10O)F(000) = 876
Mr = 855.80Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4336 reflections
a = 9.8483 (2) Åθ = 2.9–27.5°
b = 11.3968 (3) ŵ = 1.01 mm1
c = 16.3448 (3) ÅT = 120 K
β = 91.465 (2)°Rod, brown
V = 1833.93 (7) Å30.18 × 0.04 × 0.03 mm
Z = 2
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
4195 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 4090x4096pixels/62x62mm pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1414
Tmin = 0.839, Tmax = 0.970l = 2021
18492 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0329P)2 + 10.5824P]
where P = (Fo2 + 2Fc2)/3
4196 reflections(Δ/σ)max = 0.034
215 parametersΔρmax = 2.78 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Ru2(C10H14)2(C6H2N2O4)Cl2]·2(C4H10O)V = 1833.93 (7) Å3
Mr = 855.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.8483 (2) ŵ = 1.01 mm1
b = 11.3968 (3) ÅT = 120 K
c = 16.3448 (3) Å0.18 × 0.04 × 0.03 mm
β = 91.465 (2)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
4195 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3594 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.970Rint = 0.046
18492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0329P)2 + 10.5824P]
where P = (Fo2 + 2Fc2)/3
4196 reflectionsΔρmax = 2.78 e Å3
215 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.09960 (3)0.28799 (3)0.037062 (19)0.01586 (11)
Cl10.13823 (11)0.29072 (9)0.10715 (6)0.0245 (2)
C10.0607 (4)0.3713 (4)0.1547 (2)0.0199 (8)
C20.1442 (4)0.2730 (4)0.1682 (2)0.0206 (8)
H20.11900.21530.20690.025*
C30.2668 (4)0.2590 (4)0.1243 (3)0.0231 (9)
H3A0.32130.19120.13350.028*
C40.3085 (4)0.3447 (4)0.0673 (3)0.0236 (9)
C50.2248 (4)0.4460 (4)0.0561 (3)0.0217 (8)
H50.25160.50560.01930.026*
C60.1045 (4)0.4591 (4)0.0982 (3)0.0216 (8)
H60.05060.52720.08930.026*
C70.0741 (5)0.3876 (4)0.1953 (3)0.0281 (10)
H70.13650.42970.15600.034*
C80.0512 (6)0.4661 (5)0.2700 (3)0.0360 (11)
H8A0.00740.42560.31030.054*
H8B0.13870.48390.29440.054*
H8C0.00760.53930.25330.054*
C90.1430 (5)0.2730 (5)0.2199 (3)0.0382 (12)
H9A0.14940.22050.17250.057*
H9B0.23440.28990.23920.057*
H9C0.08940.23520.26380.057*
C100.4356 (5)0.3291 (5)0.0202 (3)0.0363 (12)
H10A0.51090.36940.04870.054*
H10B0.42250.36230.03470.054*
H10C0.45650.24530.01590.054*
N10.0476 (3)0.1115 (3)0.01791 (19)0.0155 (6)
C110.0800 (4)0.0943 (3)0.0104 (2)0.0161 (7)
C120.1276 (4)0.0178 (3)0.0281 (2)0.0177 (8)
H120.21850.02800.04780.021*
C130.1656 (4)0.2038 (3)0.0213 (2)0.0171 (8)
O10.2818 (3)0.1959 (3)0.0502 (2)0.0293 (7)
O20.1073 (3)0.2977 (2)0.00366 (18)0.0205 (6)
C140.5253 (5)0.0313 (5)0.1783 (3)0.0391 (12)
C160.5410 (7)0.1587 (6)0.2005 (5)0.0596 (18)
H16A0.49180.17490.25060.089*
H16B0.50410.20730.15580.089*
H16C0.63750.17680.20950.089*
C170.6231 (8)0.0080 (8)0.1086 (5)0.081 (2)
H17A0.71530.03100.12600.122*
H17B0.59480.05380.06040.122*
H17C0.62180.07570.09490.122*
C150.5355 (14)0.0404 (12)0.2492 (7)0.176 (8)
H15A0.46820.01510.28870.264*
H15B0.62680.03330.27390.264*
H15C0.51840.12240.23400.264*
O30.3929 (4)0.0100 (3)0.1422 (3)0.0438 (10)
H30.37110.06630.11140.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01907 (17)0.01018 (16)0.01823 (17)0.00040 (12)0.00136 (11)0.00046 (12)
Cl10.0329 (5)0.0211 (5)0.0194 (5)0.0014 (4)0.0014 (4)0.0001 (4)
C10.0221 (19)0.0154 (19)0.022 (2)0.0005 (15)0.0016 (16)0.0046 (16)
C20.028 (2)0.017 (2)0.0160 (19)0.0009 (16)0.0094 (16)0.0006 (15)
C30.023 (2)0.019 (2)0.027 (2)0.0026 (16)0.0100 (17)0.0034 (17)
C40.023 (2)0.023 (2)0.025 (2)0.0061 (17)0.0033 (16)0.0053 (17)
C50.029 (2)0.0116 (18)0.025 (2)0.0073 (16)0.0016 (17)0.0005 (16)
C60.031 (2)0.0112 (19)0.022 (2)0.0005 (16)0.0028 (17)0.0057 (16)
C70.030 (2)0.028 (2)0.027 (2)0.0027 (19)0.0020 (18)0.0011 (19)
C80.049 (3)0.031 (3)0.029 (2)0.003 (2)0.010 (2)0.006 (2)
C90.032 (3)0.039 (3)0.044 (3)0.004 (2)0.012 (2)0.005 (2)
C100.025 (2)0.040 (3)0.044 (3)0.005 (2)0.004 (2)0.012 (2)
N10.0189 (15)0.0120 (15)0.0155 (15)0.0026 (12)0.0002 (12)0.0012 (12)
C110.0156 (17)0.0163 (18)0.0163 (18)0.0013 (14)0.0009 (14)0.0015 (15)
C120.0193 (18)0.0127 (18)0.021 (2)0.0029 (14)0.0025 (15)0.0024 (15)
C130.0175 (18)0.0118 (18)0.022 (2)0.0012 (14)0.0015 (15)0.0016 (15)
O10.0230 (15)0.0192 (16)0.045 (2)0.0034 (12)0.0097 (14)0.0013 (14)
O20.0194 (14)0.0138 (14)0.0280 (16)0.0032 (11)0.0038 (11)0.0024 (12)
C140.033 (3)0.045 (3)0.039 (3)0.004 (2)0.014 (2)0.010 (2)
C160.048 (4)0.052 (4)0.077 (5)0.013 (3)0.018 (3)0.006 (3)
C170.073 (5)0.079 (6)0.092 (6)0.014 (4)0.014 (5)0.027 (5)
C150.225 (14)0.180 (13)0.117 (9)0.140 (12)0.123 (10)0.100 (9)
O30.0337 (19)0.0284 (19)0.068 (3)0.0077 (15)0.0194 (18)0.0112 (18)
Geometric parameters (Å, º) top
Ru1—N12.097 (3)C9—H9B0.9800
Ru1—O22.099 (3)C9—H9C0.9800
Ru1—C32.176 (4)C10—H10A0.9800
Ru1—C22.184 (4)C10—H10B0.9800
Ru1—C12.187 (4)C10—H10C0.9800
Ru1—C62.191 (4)N1—C121.335 (5)
Ru1—C52.200 (4)N1—C111.343 (5)
Ru1—C42.201 (4)C11—C12i1.389 (5)
Ru1—Cl12.3975 (11)C11—C131.514 (5)
C1—C21.404 (6)C12—C11i1.389 (5)
C1—C61.435 (6)C12—H120.9500
C1—C71.511 (6)C13—O11.231 (5)
C2—C31.429 (6)C13—O21.277 (5)
C2—H20.9500C14—C151.419 (10)
C3—C41.417 (6)C14—O31.438 (6)
C3—H3A0.9500C14—C161.503 (8)
C4—C51.428 (6)C14—C171.534 (9)
C4—C101.496 (7)C16—H16A0.9800
C5—C61.392 (6)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—H60.9500C17—H17A0.9800
C7—C81.525 (6)C17—H17B0.9800
C7—C91.530 (7)C17—H17C0.9800
C7—H71.0000C15—H15A0.9800
C8—H8A0.9800C15—H15B0.9800
C8—H8B0.9800C15—H15C0.9800
C8—H8C0.9800O3—H30.8400
C9—H9A0.9800
N1—Ru1—O277.29 (12)C5—C6—Ru171.9 (2)
N1—Ru1—C397.48 (14)C1—C6—Ru170.7 (2)
O2—Ru1—C3153.12 (15)C5—C6—H6119.5
N1—Ru1—C296.53 (14)C1—C6—H6119.5
O2—Ru1—C2115.40 (14)Ru1—C6—H6130.7
C3—Ru1—C238.27 (17)C1—C7—C8108.1 (4)
N1—Ru1—C1120.00 (14)C1—C7—C9114.3 (4)
O2—Ru1—C190.86 (13)C8—C7—C9110.4 (4)
C3—Ru1—C168.67 (16)C1—C7—H7108.0
C2—Ru1—C137.47 (15)C8—C7—H7108.0
N1—Ru1—C6157.55 (15)C9—C7—H7108.0
O2—Ru1—C694.69 (14)C7—C8—H8A109.5
C3—Ru1—C680.13 (16)C7—C8—H8B109.5
C2—Ru1—C667.69 (15)H8A—C8—H8B109.5
C1—Ru1—C638.28 (15)C7—C8—H8C109.5
N1—Ru1—C5160.06 (15)H8A—C8—H8C109.5
O2—Ru1—C5122.04 (14)H8B—C8—H8C109.5
C3—Ru1—C567.62 (16)C7—C9—H9A109.5
C2—Ru1—C580.04 (16)C7—C9—H9B109.5
C1—Ru1—C568.30 (16)H9A—C9—H9B109.5
C6—Ru1—C536.97 (16)C7—C9—H9C109.5
N1—Ru1—C4122.58 (15)H9A—C9—H9C109.5
O2—Ru1—C4159.86 (14)H9B—C9—H9C109.5
C3—Ru1—C437.78 (17)C4—C10—H10A109.5
C2—Ru1—C468.83 (16)C4—C10—H10B109.5
C1—Ru1—C481.87 (16)H10A—C10—H10B109.5
C6—Ru1—C468.07 (16)C4—C10—H10C109.5
C5—Ru1—C437.87 (16)H10A—C10—H10C109.5
N1—Ru1—Cl184.84 (9)H10B—C10—H10C109.5
O2—Ru1—Cl185.47 (9)C12—N1—C11118.1 (3)
C3—Ru1—Cl1120.66 (13)C12—N1—Ru1127.4 (3)
C2—Ru1—Cl1158.93 (12)C11—N1—Ru1114.5 (3)
C1—Ru1—Cl1153.45 (11)N1—C11—C12i121.0 (4)
C6—Ru1—Cl1115.75 (12)N1—C11—C13115.7 (3)
C5—Ru1—Cl191.50 (12)C12i—C11—C13123.3 (3)
C4—Ru1—Cl192.66 (12)N1—C12—C11i121.0 (4)
C2—C1—C6118.2 (4)N1—C12—H12119.5
C2—C1—C7123.1 (4)C11i—C12—H12119.5
C6—C1—C7118.6 (4)O1—C13—O2126.2 (4)
C2—C1—Ru171.2 (2)O1—C13—C11119.6 (3)
C6—C1—Ru171.0 (2)O2—C13—C11114.2 (3)
C7—C1—Ru1128.0 (3)C13—O2—Ru1117.7 (2)
C1—C2—C3120.6 (4)C15—C14—O3106.4 (6)
C1—C2—Ru171.4 (2)C15—C14—C16110.8 (7)
C3—C2—Ru170.6 (2)O3—C14—C16110.4 (5)
C1—C2—H2119.7C15—C14—C17118.3 (9)
C3—C2—H2119.7O3—C14—C17104.3 (5)
Ru1—C2—H2131.2C16—C14—C17106.4 (6)
C4—C3—C2121.1 (4)C14—C16—H16A109.5
C4—C3—Ru172.1 (2)C14—C16—H16B109.5
C2—C3—Ru171.2 (2)H16A—C16—H16B109.5
C4—C3—H3A119.5C14—C16—H16C109.5
C2—C3—H3A119.5H16A—C16—H16C109.5
Ru1—C3—H3A129.9H16B—C16—H16C109.5
C3—C4—C5117.7 (4)C14—C17—H17A109.5
C3—C4—C10121.1 (4)C14—C17—H17B109.5
C5—C4—C10121.2 (4)H17A—C17—H17B109.5
C3—C4—Ru170.2 (2)C14—C17—H17C109.5
C5—C4—Ru171.0 (2)H17A—C17—H17C109.5
C10—C4—Ru1129.7 (3)H17B—C17—H17C109.5
C6—C5—C4121.3 (4)C14—C15—H15A109.5
C6—C5—Ru171.2 (2)C14—C15—H15B109.5
C4—C5—Ru171.1 (2)H15A—C15—H15B109.5
C6—C5—H5119.4C14—C15—H15C109.5
C4—C5—H5119.4H15A—C15—H15C109.5
Ru1—C5—H5131.3H15B—C15—H15C109.5
C5—C6—C1121.1 (4)C14—O3—H3109.5
N1—Ru1—C1—C257.5 (3)Cl1—Ru1—C4—C1026.2 (4)
O2—Ru1—C1—C2133.3 (2)C3—C4—C5—C61.5 (6)
C3—Ru1—C1—C228.8 (2)C10—C4—C5—C6178.2 (4)
C6—Ru1—C1—C2130.2 (4)Ru1—C4—C5—C652.6 (4)
C5—Ru1—C1—C2102.3 (3)C3—C4—C5—Ru154.1 (3)
C4—Ru1—C1—C265.6 (3)C10—C4—C5—Ru1125.5 (4)
Cl1—Ru1—C1—C2145.2 (2)N1—Ru1—C5—C6147.6 (4)
N1—Ru1—C1—C6172.3 (2)O2—Ru1—C5—C647.9 (3)
O2—Ru1—C1—C696.5 (2)C3—Ru1—C5—C6103.8 (3)
C3—Ru1—C1—C6101.4 (3)C2—Ru1—C5—C666.0 (3)
C2—Ru1—C1—C6130.2 (4)C1—Ru1—C5—C628.8 (2)
C5—Ru1—C1—C627.9 (2)C4—Ru1—C5—C6134.2 (4)
C4—Ru1—C1—C664.7 (3)Cl1—Ru1—C5—C6133.5 (2)
Cl1—Ru1—C1—C614.9 (4)N1—Ru1—C5—C413.4 (6)
N1—Ru1—C1—C760.3 (4)O2—Ru1—C5—C4178.0 (2)
O2—Ru1—C1—C715.5 (4)C3—Ru1—C5—C430.3 (3)
C3—Ru1—C1—C7146.6 (4)C2—Ru1—C5—C468.2 (3)
C2—Ru1—C1—C7117.8 (5)C1—Ru1—C5—C4105.3 (3)
C6—Ru1—C1—C7112.0 (5)C6—Ru1—C5—C4134.2 (4)
C5—Ru1—C1—C7139.9 (4)Cl1—Ru1—C5—C492.4 (2)
C4—Ru1—C1—C7176.6 (4)C4—C5—C6—C10.3 (6)
Cl1—Ru1—C1—C797.1 (4)Ru1—C5—C6—C152.9 (3)
C6—C1—C2—C32.4 (6)C4—C5—C6—Ru152.6 (3)
C7—C1—C2—C3176.3 (4)C2—C1—C6—C51.7 (6)
Ru1—C1—C2—C352.6 (3)C7—C1—C6—C5177.0 (4)
C6—C1—C2—Ru155.0 (3)Ru1—C1—C6—C553.4 (3)
C7—C1—C2—Ru1123.6 (4)C2—C1—C6—Ru155.1 (3)
N1—Ru1—C2—C1132.7 (2)C7—C1—C6—Ru1123.6 (4)
O2—Ru1—C2—C153.7 (3)N1—Ru1—C6—C5151.4 (3)
C3—Ru1—C2—C1133.5 (4)O2—Ru1—C6—C5140.9 (2)
C6—Ru1—C2—C130.7 (2)C3—Ru1—C6—C565.7 (3)
C5—Ru1—C2—C167.2 (3)C2—Ru1—C6—C5103.5 (3)
C4—Ru1—C2—C1104.8 (3)C1—Ru1—C6—C5133.7 (4)
Cl1—Ru1—C2—C1134.7 (3)C4—Ru1—C6—C528.3 (2)
N1—Ru1—C2—C393.8 (2)Cl1—Ru1—C6—C553.7 (3)
O2—Ru1—C2—C3172.8 (2)N1—Ru1—C6—C117.7 (5)
C1—Ru1—C2—C3133.5 (4)O2—Ru1—C6—C185.4 (2)
C6—Ru1—C2—C3102.8 (3)C3—Ru1—C6—C168.0 (2)
C5—Ru1—C2—C366.3 (3)C2—Ru1—C6—C130.1 (2)
C4—Ru1—C2—C328.7 (2)C5—Ru1—C6—C1133.7 (4)
Cl1—Ru1—C2—C31.2 (5)C4—Ru1—C6—C1105.3 (3)
C1—C2—C3—C41.2 (6)Cl1—Ru1—C6—C1172.66 (19)
Ru1—C2—C3—C454.2 (3)C2—C1—C7—C897.1 (5)
C1—C2—C3—Ru153.0 (3)C6—C1—C7—C884.3 (5)
N1—Ru1—C3—C4135.8 (3)Ru1—C1—C7—C8171.7 (3)
O2—Ru1—C3—C4147.6 (3)C2—C1—C7—C926.2 (6)
C2—Ru1—C3—C4133.1 (4)C6—C1—C7—C9152.5 (4)
C1—Ru1—C3—C4104.8 (3)Ru1—C1—C7—C965.0 (5)
C6—Ru1—C3—C466.8 (3)O2—Ru1—N1—C12177.7 (4)
C5—Ru1—C3—C430.4 (3)C3—Ru1—N1—C1224.5 (4)
Cl1—Ru1—C3—C447.4 (3)C2—Ru1—N1—C1263.0 (3)
N1—Ru1—C3—C291.1 (2)C1—Ru1—N1—C1294.1 (4)
O2—Ru1—C3—C214.5 (4)C6—Ru1—N1—C12106.7 (5)
C1—Ru1—C3—C228.3 (2)C5—Ru1—N1—C1215.7 (6)
C6—Ru1—C3—C266.3 (3)C4—Ru1—N1—C126.0 (4)
C5—Ru1—C3—C2102.7 (3)Cl1—Ru1—N1—C1295.8 (3)
C4—Ru1—C3—C2133.1 (4)O2—Ru1—N1—C114.7 (3)
Cl1—Ru1—C3—C2179.5 (2)C3—Ru1—N1—C11157.9 (3)
C2—C3—C4—C50.8 (6)C2—Ru1—N1—C11119.3 (3)
Ru1—C3—C4—C554.6 (3)C1—Ru1—N1—C1188.2 (3)
C2—C3—C4—C10178.9 (4)C6—Ru1—N1—C1175.6 (5)
Ru1—C3—C4—C10125.1 (4)C5—Ru1—N1—C11161.9 (4)
C2—C3—C4—Ru153.8 (3)C4—Ru1—N1—C11171.7 (3)
N1—Ru1—C4—C355.1 (3)Cl1—Ru1—N1—C1181.8 (3)
O2—Ru1—C4—C3135.3 (4)C12—N1—C11—C12i0.3 (6)
C2—Ru1—C4—C329.0 (3)Ru1—N1—C11—C12i178.2 (3)
C1—Ru1—C4—C365.4 (3)C12—N1—C11—C13179.6 (3)
C6—Ru1—C4—C3102.6 (3)Ru1—N1—C11—C131.8 (4)
C5—Ru1—C4—C3130.3 (4)C11—N1—C12—C11i0.3 (6)
Cl1—Ru1—C4—C3140.7 (2)Ru1—N1—C12—C11i177.9 (3)
N1—Ru1—C4—C5174.6 (2)N1—C11—C13—O1176.9 (4)
O2—Ru1—C4—C55.0 (6)C12i—C11—C13—O13.0 (6)
C3—Ru1—C4—C5130.3 (4)N1—C11—C13—O24.7 (5)
C2—Ru1—C4—C5101.3 (3)C12i—C11—C13—O2175.3 (4)
C1—Ru1—C4—C564.9 (3)O1—C13—O2—Ru1172.8 (4)
C6—Ru1—C4—C527.7 (2)C11—C13—O2—Ru19.0 (4)
Cl1—Ru1—C4—C589.0 (2)N1—Ru1—O2—C137.8 (3)
N1—Ru1—C4—C1059.4 (5)C3—Ru1—O2—C1389.2 (4)
O2—Ru1—C4—C10110.3 (5)C2—Ru1—O2—C1399.1 (3)
C3—Ru1—C4—C10114.5 (5)C1—Ru1—O2—C13128.4 (3)
C2—Ru1—C4—C10143.5 (5)C6—Ru1—O2—C13166.6 (3)
C1—Ru1—C4—C10179.9 (5)C5—Ru1—O2—C13166.9 (3)
C6—Ru1—C4—C10143.0 (5)C4—Ru1—O2—C13163.3 (4)
C5—Ru1—C4—C10115.2 (5)Cl1—Ru1—O2—C1377.9 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.982.804 (5)168

Experimental details

Crystal data
Chemical formula[Ru2(C10H14)2(C6H2N2O4)Cl2]·2(C4H10O)
Mr855.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.8483 (2), 11.3968 (3), 16.3448 (3)
β (°) 91.465 (2)
V3)1833.93 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.18 × 0.04 × 0.03
Data collection
DiffractometerBruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.839, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
18492, 4195, 3594
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.06
No. of reflections4196
No. of parameters215
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0329P)2 + 10.5824P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.78, 1.04

Computer programs: COLLECT (Hooft, 1998) or APEX2 (Bruker, 2000)?, DENZO (Otwinowski & Minor, 1997) and COLLECT or APEX2 (Bruker, 2000)?, DENZO and COLLECT or APEX2 (Bruker, 2000)?, SHELXTL (Sheldrick, 2001) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.982.804 (5)167.8
 

Acknowledgements

The authors acknowledge the Loughborough University Development Fund for the provision of a studentship (to NMSB). The authors are also grateful to the EPSRC National Crystallography Service at the University of Southampton for the data collection.

References

First citationCadierno, V., Díez, J., García-Garrido, S. E., García-Granda, S. & Gimeno, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1465–1472.  Web of Science CSD CrossRef Google Scholar
First citationCarter, L., Davies, D. L., Fawcett, J. & Russell, D. R. (1993). Polyhedron, 12, 1599–1602.  CSD CrossRef CAS Web of Science Google Scholar
First citationDann, S. E., Durran, S. E., Elsegood, M. R. J., Smith, M. B., Staniland, P. M., Talib, S. & Dale, S. H. (2006). J. Organomet. Chem. 691, 4829–4842.  Web of Science CSD CrossRef CAS Google Scholar
First citationDorcier, A., Dyson, P. J., Gossens, C., Rothlisberger, U., Scopelliti, R. & Tavernelli, I. (2005). Organometallics, 24, 2114–2123.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrommi, D., Arena, C. G., Nicolò, F., Bruno, G. & Faraone, F. (1995). J. Organomet. Chem. 485, 115–121.  CSD CrossRef CAS Web of Science Google Scholar
First citationGanter, C. (2003). Chem. Soc. Rev. 32, 130–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGemel, C., John, R., Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (2000). J. Chem. Soc. Dalton Trans. pp. 2607–2612.  Web of Science CSD CrossRef Google Scholar
First citationGovindaswamy, P., Therrien, B., Süss-Fink, G., Štěpnička, P. & Ludvík, J. (2007). J. Organomet. Chem. 692, 1661–1671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrote, Z., Scopelliti, R. & Severin, K. (2004). J. Am. Chem. Soc. 126, 16959–16972.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIon, L., Morales, D., Pérez, J., Riera, L., Riera, V., Kowenicki, R. A. & McPartlin, M. (2006). Chem. Commun. pp. 91–93.  Web of Science CSD CrossRef Google Scholar
First citationKonar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.  Web of Science CSD CrossRef CAS Google Scholar
First citationLahuerta, P., Latorre, J., Sanaú, M., Cotton, F. A. & Schwotzer, W. (1988). Polyhedron, 7, 1311–1316.  CAS Google Scholar
First citationMa, C., Han, Y. & Zhang, R. (2004). J. Organomet. Chem. 689, 1675–1683.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinto, P., Marconi, G., Heinemann, F. W. & Zenneck, U. (2004). Organometallics, 23, 374–380.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Version 2007/2. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m309-m310
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds