metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[{μ3-1,2-bis­­[(3-cyano­benzyl­­idene)­hydrazono]-1,2-di­phenyl­ethane}silver(I)] hexa­fluorido­antimonate]

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: liandongliu1968@yahoo.com.cn

(Received 22 November 2007; accepted 26 December 2007; online 16 January 2008)

In the title compound, {[Ag(C30H20N6)][SbF6]}n, the Ag+ cation has a three-coordinate environment completed by three N atoms of the 1,2-bis­[(3-cyano­benzyl­idene)hydrazono]-1,2-diphenyl­ethane ligand. The Ag+ cation coordination geometry is best described as distorted T-shaped. The crystal structure forms a three-dimensional structural polymer.

Related literature

For a related structure, see: Wei et al. (2007[Wei, K.-J., Ni, J., Gao, J., Liu, Y.-Z. & Liu, Q.-L. (2007). Eur. J. Inorg. Chem. pp. 3868-3880.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C30H20N6)][SbF6]

  • Mr = 808.14

  • Monoclinic, P 21 /c

  • a = 15.1652 (9) Å

  • b = 14.6022 (9) Å

  • c = 14.0711 (9) Å

  • β = 94.2570 (10)°

  • V = 3107.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 298 (2) K

  • 0.35 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.610, Tmax = 0.885

  • 15863 measured reflections

  • 5885 independent reflections

  • 4340 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.223

  • S = 1.05

  • 5885 reflections

  • 367 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N5 2.287 (6)
Ag1—N3 2.334 (5)
Ag1—N1i 2.354 (9)
N5—Ag1—N3 145.2 (2)
N5—Ag1—N1i 107.5 (3)
N3—Ag1—N1i 97.9 (3)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A), Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Silver complexes play a pivotal role in the area of self-assembly coordination chemistry (Wei et al., 2007). Here I report a new Ag(I) coordination polymer, (I) using 1,2-bis(benzene)-1,2-bis((3-cyanobenzylidene)hydrazone)ethane as bridge ligand.

The asymmetric unit of (I) is shown in Fig. 1. It reveals that Ag1 atom is coordinated by three N atoms which come from three ligands, respectively. The Ag1 atom is in a distorted T shape coordination environment (Table 1). In the crystal structure each 1,2-bis(benzene)-1,2-bis((3-cyanobenzylidene)hydrazone)ethane molecule function as tridentate bridge ligand with its two N atoms from two hydrazone groups, respectively, and a N atom from one of two cyanato groups, which resulted in the connections of three Ag(I) ions with separations of 7.0839 (5) Å (between the two Ag+ ions which are coordinated by two hydrazone groups) and 10.7616 (9) Å (between the two Ag+ ions which are coordinated by a hydrazone group and a cyanato group, respectively). In the crystal structure exist a weak π-π stacking intereaction, [Cg1···Cg1i = 3.788 (5) Å and Cg1···Cg1iperp = 3.479 Å, symmetry codes: (i) 1 - x, 2 - y, 2 - z, Cg1 is the centroid of the the C1—C6 ring; Cg1···Cg1iperp is the perpendicular distance from ring Cg1 to ring Cg1i]. In addition to the weak π-π stacking interaction there also exists the weak interaction between C15—H15 bond and the conjugated π bond, and the relevant distances are H15···Cg2 = 2.86 Å and H15···Cg2perp = 2.826 Å [Cg2 is the centroid of the C9—C14 ring; H15···Cg2perp is the perpendicular distance from H15 to ring Cg2]. The counter hexafluoroantimonate anions are inserted in the micropores of the polymer by electrostatic force.

Related literature top

For a related structure, see: Wei et al. (2007).

Experimental top

8 ml benzene solution of AgSbF6 (0.0171 g, 0.05 mmol) was added very slowly on the 8 ml tetrahydrofuran solution of 1,2-bis(benzene)-1,2-bis((3-cyanobenzylidene)hydrazone)ethane (0.0093 g, 0.02 mmol). The colorless single crystals were obtained after the solution had been allowed to stand at room temperature for one week.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The disordered F atoms were all refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure and the atom-numbering scheme of the title compound. Displacement ellipsoids are shown at the 30% probability level and H atoms and SbF-6 anion have been omitted for clarity. [Symmetry code: (i) -x + 1, y - 1/2, -z + 3/2]
Poly[[{µ3-1,2-bis[(3-cyanobenzylidene)hydrazono]-1,2- diphenylethane}silver(I)] hexafluoridoantimonate] top
Crystal data top
[Ag(C30H20N6)][SbF6]F(000) = 1576
Mr = 808.14Dx = 1.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3506 reflections
a = 15.1652 (9) Åθ = 2.4–21.8°
b = 14.6022 (9) ŵ = 1.57 mm1
c = 14.0711 (9) ÅT = 298 K
β = 94.257 (1)°Block, colorless
V = 3107.4 (3) Å30.35 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5885 independent reflections
Radiation source: fine-focus sealed tube4340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.7°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1813
Tmin = 0.610, Tmax = 0.885k = 1717
15863 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1282P)2 + 7.595P]
where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 1.48 e Å3
6 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Ag(C30H20N6)][SbF6]V = 3107.4 (3) Å3
Mr = 808.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1652 (9) ŵ = 1.57 mm1
b = 14.6022 (9) ÅT = 298 K
c = 14.0711 (9) Å0.35 × 0.14 × 0.08 mm
β = 94.257 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5885 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4340 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.885Rint = 0.032
15863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0716 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.05Δρmax = 1.48 e Å3
5885 reflectionsΔρmin = 0.94 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.26219 (4)0.77830 (5)0.61460 (4)0.0554 (3)
C10.5013 (5)0.9755 (6)0.8609 (6)0.0471 (17)
H10.47741.02230.82220.056*
C20.5826 (5)0.9864 (6)0.9087 (6)0.0521 (19)
C30.6190 (6)0.9176 (8)0.9667 (7)0.068 (2)
H30.67420.92530.99900.082*
C40.5731 (6)0.8387 (7)0.9760 (7)0.069 (2)
H40.59700.79241.01520.082*
C50.4926 (5)0.8267 (6)0.9286 (6)0.0534 (19)
H50.46220.77200.93530.064*
C60.4551 (5)0.8952 (5)0.8701 (5)0.0447 (17)
C70.3681 (5)0.8834 (6)0.8173 (5)0.0483 (18)
H70.34860.92790.77330.058*
C80.1698 (4)0.8068 (4)0.8094 (5)0.0350 (14)
C90.0853 (4)0.8073 (5)0.7522 (5)0.0400 (15)
C100.0724 (6)0.8656 (6)0.6764 (6)0.056 (2)
H100.11730.90520.66130.067*
C110.0095 (7)0.8658 (8)0.6211 (7)0.081 (3)
H110.01830.90590.57000.098*
C120.0742 (7)0.8087 (9)0.6415 (8)0.089 (3)
H120.12780.80920.60480.107*
C130.0613 (6)0.7492 (9)0.7174 (8)0.083 (3)
H130.10560.70760.72940.100*
C140.0160 (5)0.7501 (7)0.7760 (6)0.061 (2)
H140.02200.71360.83030.073*
C150.1073 (5)0.6282 (6)0.5563 (5)0.0505 (18)
H150.09790.68630.58060.061*
C160.0836 (6)0.5516 (7)0.6067 (6)0.065 (3)
H160.05820.55860.66450.078*
C170.0973 (6)0.4656 (7)0.5719 (7)0.068 (3)
H170.08230.41410.60600.082*
C180.1329 (6)0.4568 (6)0.4874 (9)0.071 (3)
H180.14180.39830.46390.085*
C190.1569 (5)0.5322 (5)0.4337 (6)0.0485 (18)
H190.18050.52440.37510.058*
C200.1444 (4)0.6192 (5)0.4706 (5)0.0383 (15)
C210.1707 (4)0.7000 (5)0.4178 (4)0.0348 (14)
C220.2843 (5)0.8878 (5)0.4167 (5)0.0446 (17)
H220.32360.86360.46400.054*
C230.2510 (5)1.0143 (6)0.3026 (6)0.0524 (19)
H230.19580.98870.28660.063*
C240.3115 (5)0.9698 (5)0.3671 (5)0.0447 (17)
C250.3932 (5)1.0076 (5)0.3876 (6)0.0499 (18)
H250.43380.97740.42940.060*
C260.2742 (6)1.0966 (6)0.2630 (7)0.062 (2)
H260.23371.12690.22110.074*
C270.3561 (5)1.1342 (5)0.2845 (6)0.0513 (18)
H270.37111.18940.25700.062*
C280.4167 (5)1.0895 (5)0.3478 (5)0.0442 (16)
C290.5013 (5)1.1297 (6)0.3716 (6)0.0519 (19)
C440.6304 (6)1.0721 (7)0.8957 (7)0.062 (2)
F10.7216 (7)0.8582 (8)0.4958 (8)0.166 (4)*
F20.6267 (14)0.8795 (14)0.3382 (15)0.287 (8)*
F30.8623 (11)0.9046 (13)0.3989 (13)0.249 (7)*
F40.7568 (6)0.7731 (7)0.3528 (7)0.146 (3)*
F50.7664 (9)0.9245 (9)0.2583 (10)0.200 (5)*
F60.7215 (7)1.0152 (8)0.3911 (7)0.150 (3)*
N10.6676 (5)1.1345 (6)0.8850 (7)0.076 (2)
N20.5688 (5)1.1629 (5)0.3896 (6)0.068 (2)
N30.1969 (4)0.7738 (4)0.4591 (4)0.0381 (13)
N40.2127 (4)0.8481 (4)0.4001 (4)0.0415 (13)
N50.2418 (4)0.8153 (4)0.7693 (4)0.0381 (13)
N60.3198 (4)0.8160 (4)0.8293 (4)0.0425 (14)
Sb10.73809 (5)0.89221 (4)0.37378 (4)0.0695 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0756 (5)0.0607 (4)0.0291 (3)0.0012 (3)0.0009 (3)0.0029 (2)
C10.035 (4)0.058 (4)0.049 (4)0.004 (3)0.008 (3)0.004 (4)
C20.046 (4)0.054 (5)0.057 (5)0.003 (4)0.006 (4)0.012 (4)
C30.040 (5)0.095 (7)0.068 (6)0.002 (5)0.007 (4)0.006 (5)
C40.048 (5)0.076 (6)0.080 (7)0.003 (5)0.009 (4)0.009 (5)
C50.045 (4)0.056 (5)0.058 (5)0.004 (4)0.001 (4)0.005 (4)
C60.039 (4)0.059 (5)0.036 (4)0.001 (3)0.005 (3)0.005 (3)
C70.039 (4)0.066 (5)0.040 (4)0.003 (4)0.004 (3)0.002 (4)
C80.035 (4)0.037 (3)0.032 (3)0.001 (3)0.001 (3)0.001 (3)
C90.039 (4)0.047 (4)0.033 (3)0.000 (3)0.002 (3)0.007 (3)
C100.057 (5)0.063 (5)0.047 (4)0.001 (4)0.015 (4)0.011 (4)
C110.070 (7)0.101 (8)0.069 (6)0.019 (6)0.024 (5)0.017 (6)
C120.047 (6)0.131 (10)0.087 (8)0.014 (6)0.017 (5)0.000 (7)
C130.035 (5)0.129 (9)0.085 (7)0.025 (5)0.002 (5)0.010 (7)
C140.048 (5)0.084 (6)0.049 (5)0.009 (4)0.002 (4)0.008 (4)
C150.049 (4)0.063 (5)0.039 (4)0.009 (4)0.002 (3)0.003 (3)
C160.055 (5)0.091 (8)0.048 (5)0.012 (5)0.002 (4)0.025 (5)
C170.054 (5)0.079 (7)0.068 (6)0.025 (5)0.016 (5)0.037 (5)
C180.055 (5)0.044 (5)0.108 (9)0.003 (4)0.029 (6)0.010 (5)
C190.046 (4)0.043 (4)0.055 (5)0.006 (3)0.007 (3)0.001 (3)
C200.031 (3)0.049 (4)0.034 (3)0.006 (3)0.004 (3)0.002 (3)
C210.028 (3)0.046 (4)0.030 (3)0.001 (3)0.001 (2)0.002 (3)
C220.042 (4)0.057 (5)0.034 (4)0.000 (3)0.008 (3)0.006 (3)
C230.055 (5)0.053 (4)0.047 (4)0.008 (4)0.010 (4)0.002 (4)
C240.056 (5)0.042 (4)0.036 (4)0.001 (3)0.001 (3)0.001 (3)
C250.050 (5)0.048 (4)0.050 (4)0.002 (4)0.011 (3)0.001 (3)
C260.063 (5)0.053 (5)0.069 (6)0.006 (4)0.001 (4)0.022 (4)
C270.061 (5)0.041 (4)0.052 (5)0.004 (4)0.006 (4)0.010 (3)
C280.041 (4)0.049 (4)0.044 (4)0.002 (3)0.004 (3)0.002 (3)
C290.051 (5)0.056 (5)0.047 (4)0.006 (4)0.003 (3)0.001 (4)
C440.041 (5)0.075 (6)0.071 (6)0.011 (4)0.002 (4)0.015 (5)
N10.049 (4)0.072 (5)0.105 (7)0.013 (4)0.006 (4)0.006 (5)
N20.059 (5)0.074 (5)0.068 (5)0.014 (4)0.010 (4)0.006 (4)
N30.038 (3)0.041 (3)0.035 (3)0.000 (2)0.000 (2)0.001 (2)
N40.050 (4)0.044 (3)0.030 (3)0.001 (3)0.002 (2)0.002 (2)
N50.035 (3)0.048 (3)0.031 (3)0.000 (2)0.002 (2)0.001 (2)
N60.031 (3)0.063 (4)0.033 (3)0.004 (3)0.001 (2)0.001 (3)
Sb10.1014 (6)0.0518 (4)0.0563 (4)0.0034 (3)0.0135 (3)0.0063 (3)
Geometric parameters (Å, º) top
Ag1—N52.287 (6)C16—H160.9300
Ag1—N32.334 (5)C17—C181.347 (15)
Ag1—N1i2.354 (9)C17—H170.9300
C1—C21.369 (11)C18—C191.399 (12)
C1—C61.377 (11)C18—H180.9300
C1—H10.9300C19—C201.391 (10)
C2—C31.384 (13)C19—H190.9300
C2—C441.465 (13)C20—C211.465 (9)
C3—C41.357 (13)C21—N31.273 (8)
C3—H30.9300C21—C8iii1.527 (9)
C4—C51.359 (12)C22—N41.238 (9)
C4—H40.9300C22—C241.460 (10)
C5—C61.390 (11)C22—H220.9300
C5—H50.9300C23—C261.380 (12)
C6—C71.476 (10)C23—C241.402 (10)
C7—N61.246 (10)C23—H230.9300
C7—H70.9300C24—C251.367 (11)
C8—N51.270 (8)C25—C281.379 (11)
C8—C91.463 (9)C25—H250.9300
C8—C21ii1.527 (9)C26—C271.371 (12)
C9—C101.367 (10)C26—H260.9300
C9—C141.403 (11)C27—C281.394 (11)
C10—C111.416 (12)C27—H270.9300
C10—H100.9300C28—C291.428 (11)
C11—C121.335 (16)C29—N21.144 (10)
C11—H110.9300C44—N11.088 (11)
C12—C131.379 (16)F1—Sb11.822 (11)
C12—H120.9300F2—Sb11.74 (2)
C13—C141.383 (12)F3—Sb11.899 (17)
C13—H130.9300F4—Sb11.791 (10)
C14—H140.9300F5—Sb11.775 (14)
C15—C201.374 (10)F6—Sb11.833 (12)
C15—C161.387 (11)N1—Ag1iv2.354 (9)
C15—H150.9300N3—N41.398 (8)
C16—C171.369 (14)N5—N61.402 (8)
N5—Ag1—N3145.2 (2)C20—C19—C18118.0 (8)
N5—Ag1—N1i107.5 (3)C20—C19—H19121.0
N3—Ag1—N1i97.9 (3)C18—C19—H19121.0
C2—C1—C6119.9 (8)C15—C20—C19119.4 (7)
C2—C1—H1120.0C15—C20—C21120.8 (7)
C6—C1—H1120.0C19—C20—C21119.8 (7)
C1—C2—C3120.6 (8)N3—C21—C20122.5 (6)
C1—C2—C44118.3 (8)N3—C21—C8iii119.4 (6)
C3—C2—C44121.0 (8)C20—C21—C8iii118.1 (6)
C4—C3—C2119.3 (8)N4—C22—C24124.7 (6)
C4—C3—H3120.4N4—C22—H22117.7
C2—C3—H3120.4C24—C22—H22117.7
C5—C4—C3120.7 (9)C26—C23—C24119.5 (7)
C5—C4—H4119.6C26—C23—H23120.3
C3—C4—H4119.6C24—C23—H23120.3
C4—C5—C6120.7 (8)C25—C24—C23119.2 (7)
C4—C5—H5119.7C25—C24—C22120.9 (7)
C6—C5—H5119.7C23—C24—C22119.7 (7)
C1—C6—C5118.7 (7)C24—C25—C28121.5 (7)
C1—C6—C7119.6 (7)C24—C25—H25119.3
C5—C6—C7121.7 (7)C28—C25—H25119.3
N6—C7—C6122.4 (7)C27—C26—C23120.8 (8)
N6—C7—H7118.8C27—C26—H26119.6
C6—C7—H7118.8C23—C26—H26119.6
N5—C8—C9120.1 (6)C26—C27—C28119.8 (7)
N5—C8—C21ii120.4 (6)C26—C27—H27120.1
C9—C8—C21ii119.5 (6)C28—C27—H27120.1
C10—C9—C14119.4 (7)C25—C28—C27119.2 (7)
C10—C9—C8120.1 (7)C25—C28—C29121.1 (7)
C14—C9—C8120.4 (7)C27—C28—C29119.7 (7)
C9—C10—C11119.9 (9)N2—C29—C28179.0 (9)
C9—C10—H10120.0N1—C44—C2178.1 (11)
C11—C10—H10120.0C44—N1—Ag1iv170.3 (9)
C12—C11—C10120.6 (10)C21—N3—N4116.5 (5)
C12—C11—H11119.7C21—N3—Ag1123.2 (4)
C10—C11—H11119.7N4—N3—Ag1117.1 (4)
C11—C12—C13119.7 (9)C22—N4—N3116.0 (6)
C11—C12—H12120.1C8—N5—N6116.6 (5)
C13—C12—H12120.1C8—N5—Ag1125.5 (4)
C12—C13—C14121.4 (10)N6—N5—Ag1114.0 (4)
C12—C13—H13119.3C7—N6—N5113.7 (6)
C14—C13—H13119.3F2—Sb1—F593.5 (8)
C13—C14—C9118.7 (8)F2—Sb1—F490.6 (7)
C13—C14—H14120.6F5—Sb1—F493.1 (6)
C9—C14—H14120.6F2—Sb1—F192.5 (8)
C20—C15—C16120.7 (8)F5—Sb1—F1173.9 (6)
C20—C15—H15119.6F4—Sb1—F185.7 (5)
C16—C15—H15119.6F2—Sb1—F690.2 (7)
C17—C16—C15120.3 (9)F5—Sb1—F684.6 (5)
C17—C16—H16119.9F4—Sb1—F6177.7 (5)
C15—C16—H16119.9F1—Sb1—F696.4 (5)
C18—C17—C16119.0 (8)F2—Sb1—F3173.9 (8)
C18—C17—H17120.5F5—Sb1—F380.9 (7)
C16—C17—H17120.5F4—Sb1—F387.5 (6)
C17—C18—C19122.6 (9)F1—Sb1—F393.1 (6)
C17—C18—H18118.7F6—Sb1—F391.5 (6)
C19—C18—H18118.7
C6—C1—C2—C30.3 (12)N4—C22—C24—C25177.8 (8)
C6—C1—C2—C44178.9 (7)N4—C22—C24—C236.8 (12)
C1—C2—C3—C40.0 (14)C23—C24—C25—C281.4 (12)
C44—C2—C3—C4179.2 (9)C22—C24—C25—C28174.0 (7)
C2—C3—C4—C50.4 (15)C24—C23—C26—C271.3 (14)
C3—C4—C5—C60.5 (15)C23—C26—C27—C280.6 (14)
C2—C1—C6—C50.2 (11)C24—C25—C28—C270.6 (12)
C2—C1—C6—C7179.1 (7)C24—C25—C28—C29178.3 (7)
C4—C5—C6—C10.2 (12)C26—C27—C28—C250.2 (12)
C4—C5—C6—C7179.5 (8)C26—C27—C28—C29178.8 (8)
C1—C6—C7—N6173.4 (7)C25—C28—C29—N2178 (100)
C5—C6—C7—N67.4 (12)C27—C28—C29—N23 (59)
N5—C8—C9—C1039.2 (10)C1—C2—C44—N1114 (34)
C21ii—C8—C9—C10138.3 (7)C3—C2—C44—N165 (35)
N5—C8—C9—C14142.7 (8)C2—C44—N1—Ag1iv150 (31)
C21ii—C8—C9—C1439.8 (10)C20—C21—N3—N4174.7 (6)
C14—C9—C10—C112.0 (13)C8iii—C21—N3—N47.9 (9)
C8—C9—C10—C11179.9 (8)C20—C21—N3—Ag126.0 (9)
C9—C10—C11—C120.6 (16)C8iii—C21—N3—Ag1151.5 (5)
C10—C11—C12—C130.1 (18)N5—Ag1—N3—C21105.2 (6)
C11—C12—C13—C143.2 (18)N1i—Ag1—N3—C2131.9 (6)
C12—C13—C14—C95.8 (16)N5—Ag1—N3—N495.6 (5)
C10—C9—C14—C135.1 (13)N1i—Ag1—N3—N4127.2 (5)
C8—C9—C14—C13176.8 (8)C24—C22—N4—N3176.3 (7)
C20—C15—C16—C170.3 (13)C21—N3—N4—C22130.8 (7)
C15—C16—C17—C181.0 (13)Ag1—N3—N4—C2229.8 (8)
C16—C17—C18—C190.4 (13)C9—C8—N5—N6178.7 (6)
C17—C18—C19—C201.0 (12)C21ii—C8—N5—N61.2 (9)
C16—C15—C20—C191.1 (11)C9—C8—N5—Ag124.7 (9)
C16—C15—C20—C21179.1 (7)C21ii—C8—N5—Ag1157.7 (5)
C18—C19—C20—C151.7 (10)N3—Ag1—N5—C834.6 (7)
C18—C19—C20—C21178.5 (6)N1i—Ag1—N5—C8100.4 (6)
C15—C20—C21—N330.8 (10)N3—Ag1—N5—N6168.3 (4)
C19—C20—C21—N3149.4 (7)N1i—Ag1—N5—N656.6 (5)
C15—C20—C21—C8iii151.7 (6)C6—C7—N6—N5177.2 (6)
C19—C20—C21—C8iii28.1 (9)C8—N5—N6—C7126.7 (7)
C26—C23—C24—C251.7 (12)Ag1—N5—N6—C774.1 (7)
C26—C23—C24—C22173.8 (8)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(C30H20N6)][SbF6]
Mr808.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.1652 (9), 14.6022 (9), 14.0711 (9)
β (°) 94.257 (1)
V3)3107.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.35 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
15863, 5885, 4340
Rint0.032
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.223, 1.05
No. of reflections5885
No. of parameters367
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 0.94

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Ag1—N52.287 (6)Ag1—N1i2.354 (9)
Ag1—N32.334 (5)
N5—Ag1—N3145.2 (2)N3—Ag1—N1i97.9 (3)
N5—Ag1—N1i107.5 (3)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationBruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationWei, K.-J., Ni, J., Gao, J., Liu, Y.-Z. & Liu, Q.-L. (2007). Eur. J. Inorg. Chem. pp. 3868–3880.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds