organic compounds
4-(4-Fluorophenyl)-2-methyl-3-(1-oxy-4-pyridyl)isoxazol-5(2H)-one
aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de
The 15H11FN2O3, was determined as part of a study on the biological activity of isoxazolone derivatives as p38 mitogen-activated protein kinase (MAPK) inhibitors. The dihedral angles between rings are isoxazole/benzene = 55.0 (3)°, isoxazole/pyridine = 33.8 (2)° and benzene/pyridine = 58.1 (2)°.
of the title compound, CRelated literature
Isoxazolones as potent inhibitors of p38 MAP kinases were first described by Laughlin et al. (2005). For related literature, see: Adams et al. (1998); Clark et al. (2002); De Laszlo et al. (1998); Foster et al. (2000); Laufer & Wagner (2002); Laufer et al. (2006); Ohkawa et al. (2001); Revesz et al. (2000); Wang et al. (1998).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807066500/cf2171sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807066500/cf2171Isup2.hkl
For the synthesis of 2-(4-fluorophenyl)-3-oxo-3-pyridin-4-yl-N-oxide-propionic acid ethyl ester (see Fig. 3), to a suspension of 10 g (72 mmol) of isonicotinic acid N-oxide in 15 ml of DMF, 19.7 g (121 mmol) of CDI were added. The reaction mixture was stirred at 298 K for 1 h. The limpid solution was then cooled at 273 K and 13.3 g (72 mmol) of (4-fluorophenyl)acetic acid ethyl ester and 4.1 g (168 mmol) of NaH were added. The reaction mixture was stirred at 273 K for 15 min, then the temperature was raised to 298 K and kept under vigorous stirring for 4 h. The reaction mixture was then poured into water/ice, the pH adjusted to 6, and the solution extracted with ethyl acetate. The combined organic layers were then collected, dried over Na2SO4 and concentrated under vacuum, affording an oil that was chromatographed over SiO2 using acetone as
yielding 80% of 2-(4-fluorophenyl)-3-oxo-3-pyridin-4-yl-N-oxide-propionic acid ethyl ester.For the synthesis of (I), a suspension of 1.0 g (3.3 mmol) of 2-(4-fluorophenyl)-3-oxo-3-pyridin-4-yl-N-oxide-propionic acid ethyl ester and 0.3 g (4.0 mmol) of hydroxylamine hydrochloride in 0.5 ml of H2O was warmed to 353 K. 3 ml of MeOH were added and the resulting solution refluxed for 4 h. The reaction mixture was then cooled to 298 K and stored at 277 K overnight, whereupon a yellow solid precipitated, yielding 83% of (I).
For the synthesis of (II), a suspension of 0.71 g (2.6 mmol) of (I) in 1 ml of DMF was added to 0.620 ml (4.5 mmol) of Et3N and refluxed for 2 h. The reaction mixture was then cooled to 298 K, added to 0.231 ml (3.75 mmol) of iodomethane and stirred at 298 K for 2 h. Ethyl acetate was then added and the resulting precipitate separated by filtration and then crystalized from MeOH, yielding 40% of (II).
Hydrogen atoms attached to carbon were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.99–1.00 Å (sp3 C). All H atoms were refined with Ueq = 1.2 or 1.5 times Ueq of the parent atom).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C15H11FN2O3 | Dx = 1.481 Mg m−3 |
Mr = 286.26 | Cu Kα radiation, λ = 1.54178 Å |
Tetragonal, P43212 | Cell parameters from 25 reflections |
Hall symbol: P 4nw 2abw | θ = 20–32° |
a = 10.0828 (6) Å | µ = 0.97 mm−1 |
c = 25.257 (5) Å | T = 193 K |
V = 2567.6 (6) Å3 | Block, yellow |
Z = 8 | 0.40 × 0.20 × 0.10 mm |
F(000) = 1184 |
Enraf–Nonius CAD-4 diffractometer | 1129 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.081 |
Graphite monochromator | θmax = 69.8°, θmin = 4.7° |
θ/2ω scans | h = −12→12 |
Absorption correction: multi-scan (MULABS; Blessing, 1995) | k = −12→12 |
Tmin = 0.60, Tmax = 0.88 | l = −23→30 |
5114 measured reflections | 3 standard reflections every 60 min |
1488 independent reflections | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.192 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.149P)2] where P = (Fo2 + 2Fc2)/3 |
1488 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C15H11FN2O3 | Z = 8 |
Mr = 286.26 | Cu Kα radiation |
Tetragonal, P43212 | µ = 0.97 mm−1 |
a = 10.0828 (6) Å | T = 193 K |
c = 25.257 (5) Å | 0.40 × 0.20 × 0.10 mm |
V = 2567.6 (6) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1129 reflections with I > 2σ(I) |
Absorption correction: multi-scan (MULABS; Blessing, 1995) | Rint = 0.081 |
Tmin = 0.60, Tmax = 0.88 | 3 standard reflections every 60 min |
5114 measured reflections | intensity decay: 5% |
1488 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.192 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.45 e Å−3 |
1488 reflections | Δρmin = −0.34 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. Friedel Pairs merged (MERG 3 instruction). The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4167 (4) | 0.0719 (4) | 0.3006 (2) | 0.0248 (11) | |
C2 | 0.3537 (4) | 0.1885 (4) | 0.2905 (2) | 0.0231 (10) | |
N3 | 0.2782 (4) | 0.1781 (4) | 0.24613 (17) | 0.0272 (10) | |
O4 | 0.2804 (4) | 0.0427 (3) | 0.23076 (16) | 0.0346 (9) | |
C5 | 0.3701 (5) | −0.0233 (5) | 0.2641 (2) | 0.0302 (11) | |
C6 | 0.1515 (5) | 0.2379 (6) | 0.2342 (2) | 0.0366 (13) | |
H6A | 0.0806 | 0.1855 | 0.2505 | 0.055* | |
H6B | 0.1387 | 0.2403 | 0.1958 | 0.055* | |
H6C | 0.1493 | 0.3284 | 0.2483 | 0.055* | |
O7 | 0.3926 (4) | −0.1402 (4) | 0.25595 (18) | 0.0409 (10) | |
C8 | 0.5231 (4) | 0.0446 (4) | 0.3400 (2) | 0.0262 (11) | |
C9 | 0.6393 (5) | 0.1185 (5) | 0.3410 (2) | 0.0290 (11) | |
H9 | 0.6499 | 0.1896 | 0.3167 | 0.035* | |
C10 | 0.7405 (5) | 0.0908 (5) | 0.3767 (3) | 0.0348 (13) | |
H10 | 0.8198 | 0.1415 | 0.3774 | 0.042* | |
C11 | 0.7207 (5) | −0.0138 (5) | 0.4112 (2) | 0.0300 (12) | |
C12 | 0.6096 (5) | −0.0891 (5) | 0.4118 (2) | 0.0315 (12) | |
H12 | 0.6000 | −0.1598 | 0.4364 | 0.038* | |
C13 | 0.5100 (5) | −0.0603 (5) | 0.3757 (3) | 0.0313 (12) | |
H13 | 0.4318 | −0.1128 | 0.3752 | 0.038* | |
F14 | 0.8198 (3) | −0.0417 (3) | 0.44649 (16) | 0.0477 (10) | |
C15 | 0.3631 (4) | 0.3142 (4) | 0.31988 (19) | 0.0198 (10) | |
C16 | 0.3580 (4) | 0.4384 (4) | 0.2958 (2) | 0.0253 (11) | |
H16 | 0.3448 | 0.4438 | 0.2586 | 0.030* | |
C17 | 0.3714 (5) | 0.5514 (5) | 0.3240 (2) | 0.0265 (11) | |
H17 | 0.3655 | 0.6347 | 0.3066 | 0.032* | |
N18 | 0.3934 (4) | 0.5467 (4) | 0.37729 (18) | 0.0253 (9) | |
C19 | 0.3954 (5) | 0.4264 (5) | 0.4021 (2) | 0.0270 (11) | |
H19 | 0.4076 | 0.4228 | 0.4394 | 0.032* | |
C20 | 0.3804 (4) | 0.3122 (4) | 0.3746 (2) | 0.0254 (10) | |
H20 | 0.3817 | 0.2298 | 0.3929 | 0.030* | |
O21 | 0.4120 (4) | 0.6544 (3) | 0.40417 (17) | 0.0395 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0148 (19) | 0.020 (2) | 0.039 (3) | 0.0011 (17) | 0.0004 (19) | 0.000 (2) |
C2 | 0.022 (2) | 0.021 (2) | 0.027 (3) | 0.0009 (17) | 0.0007 (19) | −0.0004 (19) |
N3 | 0.033 (2) | 0.0243 (18) | 0.025 (2) | 0.0040 (17) | −0.0053 (18) | −0.0087 (17) |
O4 | 0.0338 (19) | 0.0286 (17) | 0.041 (2) | 0.0032 (15) | −0.0063 (17) | −0.0105 (16) |
C5 | 0.025 (2) | 0.022 (2) | 0.043 (3) | 0.0028 (19) | 0.004 (2) | −0.004 (2) |
C6 | 0.036 (3) | 0.041 (3) | 0.033 (3) | 0.010 (2) | −0.011 (2) | 0.002 (2) |
O7 | 0.040 (2) | 0.0289 (18) | 0.053 (3) | 0.0000 (15) | −0.002 (2) | −0.0161 (18) |
C8 | 0.019 (2) | 0.017 (2) | 0.042 (3) | 0.0062 (17) | −0.002 (2) | −0.005 (2) |
C9 | 0.026 (2) | 0.018 (2) | 0.042 (3) | 0.0040 (17) | −0.002 (2) | −0.002 (2) |
C10 | 0.024 (2) | 0.028 (2) | 0.053 (4) | 0.002 (2) | −0.004 (2) | −0.013 (2) |
C11 | 0.025 (2) | 0.024 (2) | 0.041 (3) | 0.0109 (19) | −0.010 (2) | −0.012 (2) |
C12 | 0.035 (3) | 0.023 (2) | 0.037 (3) | 0.007 (2) | −0.002 (2) | 0.001 (2) |
C13 | 0.022 (2) | 0.023 (2) | 0.048 (3) | 0.001 (2) | −0.001 (2) | 0.000 (2) |
F14 | 0.0400 (17) | 0.0448 (18) | 0.058 (2) | 0.0099 (15) | −0.0234 (17) | −0.0034 (17) |
C15 | 0.0172 (19) | 0.0174 (19) | 0.025 (3) | 0.0021 (15) | −0.0003 (18) | −0.0017 (18) |
C16 | 0.025 (2) | 0.022 (2) | 0.028 (3) | 0.0062 (18) | 0.000 (2) | 0.003 (2) |
C17 | 0.029 (2) | 0.020 (2) | 0.030 (3) | 0.0014 (18) | 0.003 (2) | 0.006 (2) |
N18 | 0.0232 (19) | 0.0212 (19) | 0.031 (3) | 0.0019 (15) | 0.0016 (17) | −0.0046 (18) |
C19 | 0.030 (2) | 0.025 (2) | 0.026 (3) | 0.0051 (19) | −0.002 (2) | 0.000 (2) |
C20 | 0.025 (2) | 0.018 (2) | 0.033 (3) | 0.0015 (18) | −0.002 (2) | 0.0027 (19) |
O21 | 0.049 (2) | 0.0213 (17) | 0.048 (3) | −0.0046 (15) | −0.0001 (19) | −0.0107 (17) |
C1—C2 | 1.360 (6) | C10—H10 | 0.950 |
C1—C5 | 1.412 (7) | C11—C12 | 1.354 (7) |
C1—C8 | 1.489 (7) | C11—F14 | 1.368 (6) |
C2—N3 | 1.359 (6) | C12—C13 | 1.388 (7) |
C2—C15 | 1.472 (6) | C12—H12 | 0.950 |
N3—O4 | 1.419 (5) | C13—H13 | 0.950 |
N3—C6 | 1.444 (6) | C15—C16 | 1.393 (6) |
O4—C5 | 1.403 (6) | C15—C20 | 1.394 (7) |
C5—O7 | 1.218 (6) | C16—C17 | 1.350 (7) |
C6—H6A | 0.980 | C16—H16 | 0.950 |
C6—H6B | 0.980 | C17—N18 | 1.364 (7) |
C6—H6C | 0.980 | C17—H17 | 0.950 |
C8—C9 | 1.389 (6) | N18—O21 | 1.293 (5) |
C8—C13 | 1.395 (7) | N18—C19 | 1.366 (6) |
C9—C10 | 1.391 (8) | C19—C20 | 1.352 (7) |
C9—H9 | 0.950 | C19—H19 | 0.950 |
C10—C11 | 1.382 (8) | C20—H20 | 0.950 |
C2—C1—C5 | 108.0 (4) | C12—C11—F14 | 118.8 (5) |
C2—C1—C8 | 128.4 (4) | C12—C11—C10 | 123.7 (5) |
C5—C1—C8 | 123.5 (4) | F14—C11—C10 | 117.5 (5) |
N3—C2—C1 | 110.5 (4) | C11—C12—C13 | 118.3 (5) |
N3—C2—C15 | 121.2 (4) | C11—C12—H12 | 120.9 |
C1—C2—C15 | 128.3 (5) | C13—C12—H12 | 120.9 |
C2—N3—O4 | 106.9 (4) | C12—C13—C8 | 121.0 (5) |
C2—N3—C6 | 129.5 (4) | C12—C13—H13 | 119.5 |
O4—N3—C6 | 111.0 (4) | C8—C13—H13 | 119.5 |
C5—O4—N3 | 107.6 (4) | C16—C15—C20 | 116.8 (4) |
O7—C5—O4 | 118.6 (5) | C16—C15—C2 | 123.5 (4) |
O7—C5—C1 | 134.9 (5) | C20—C15—C2 | 119.7 (4) |
O4—C5—C1 | 106.5 (4) | C17—C16—C15 | 121.6 (5) |
N3—C6—H6A | 109.5 | C17—C16—H16 | 119.2 |
N3—C6—H6B | 109.5 | C15—C16—H16 | 119.2 |
H6A—C6—H6B | 109.5 | C16—C17—N18 | 120.5 (4) |
N3—C6—H6C | 109.5 | C16—C17—H17 | 119.7 |
H6A—C6—H6C | 109.5 | N18—C17—H17 | 119.7 |
H6B—C6—H6C | 109.5 | O21—N18—C17 | 120.8 (4) |
C9—C8—C13 | 118.4 (5) | O21—N18—C19 | 120.2 (4) |
C9—C8—C1 | 121.4 (5) | C17—N18—C19 | 119.0 (4) |
C13—C8—C1 | 120.2 (4) | C20—C19—N18 | 121.3 (5) |
C8—C9—C10 | 121.5 (5) | C20—C19—H19 | 119.4 |
C8—C9—H9 | 119.2 | N18—C19—H19 | 119.4 |
C10—C9—H9 | 119.2 | C19—C20—C15 | 120.7 (4) |
C11—C10—C9 | 117.2 (5) | C19—C20—H20 | 119.6 |
C11—C10—H10 | 121.4 | C15—C20—H20 | 119.6 |
C9—C10—H10 | 121.4 | ||
C5—C1—C2—N3 | −5.8 (6) | C8—C9—C10—C11 | 0.2 (8) |
C8—C1—C2—N3 | 170.2 (5) | C9—C10—C11—C12 | 0.0 (8) |
C5—C1—C2—C15 | 176.1 (4) | C9—C10—C11—F14 | 180.0 (4) |
C8—C1—C2—C15 | −7.9 (8) | F14—C11—C12—C13 | −179.7 (5) |
C1—C2—N3—O4 | 7.4 (5) | C10—C11—C12—C13 | 0.3 (8) |
C15—C2—N3—O4 | −174.4 (4) | C11—C12—C13—C8 | −0.9 (8) |
C1—C2—N3—C6 | 144.7 (5) | C9—C8—C13—C12 | 1.1 (8) |
C15—C2—N3—C6 | −37.1 (7) | C1—C8—C13—C12 | 178.5 (5) |
C2—N3—O4—C5 | −6.0 (5) | N3—C2—C15—C16 | −33.2 (7) |
C6—N3—O4—C5 | −151.9 (4) | C1—C2—C15—C16 | 144.7 (5) |
N3—O4—C5—O7 | −176.3 (5) | N3—C2—C15—C20 | 148.1 (5) |
N3—O4—C5—C1 | 2.5 (5) | C1—C2—C15—C20 | −34.1 (7) |
C2—C1—C5—O7 | −179.6 (6) | C20—C15—C16—C17 | 1.0 (6) |
C8—C1—C5—O7 | 4.1 (10) | C2—C15—C16—C17 | −177.8 (5) |
C2—C1—C5—O4 | 1.9 (6) | C15—C16—C17—N18 | 1.5 (7) |
C8—C1—C5—O4 | −174.4 (4) | C16—C17—N18—O21 | 177.0 (4) |
C2—C1—C8—C9 | −54.3 (8) | C16—C17—N18—C19 | −3.1 (7) |
C5—C1—C8—C9 | 121.2 (5) | O21—N18—C19—C20 | −177.9 (4) |
C2—C1—C8—C13 | 128.4 (6) | C17—N18—C19—C20 | 2.2 (7) |
C5—C1—C8—C13 | −56.1 (7) | N18—C19—C20—C15 | 0.3 (7) |
C13—C8—C9—C10 | −0.7 (8) | C16—C15—C20—C19 | −1.9 (7) |
C1—C8—C9—C10 | −178.1 (5) | C2—C15—C20—C19 | 176.9 (4) |
Experimental details
Crystal data | |
Chemical formula | C15H11FN2O3 |
Mr | 286.26 |
Crystal system, space group | Tetragonal, P43212 |
Temperature (K) | 193 |
a, c (Å) | 10.0828 (6), 25.257 (5) |
V (Å3) | 2567.6 (6) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.97 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Multi-scan (MULABS; Blessing, 1995) |
Tmin, Tmax | 0.60, 0.88 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5114, 1488, 1129 |
Rint | 0.081 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.192, 1.00 |
No. of reflections | 1488 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.34 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).
Acknowledgements
The authors thank the EU–Craft Program, Project Macrocept (FP6) for funding.
References
Adams, J. L., Boehm, J. C., Kassis, S., Gorycki, P. D., Webb, E. F., Hall, R., Sorenson, M., Lee, J. C., Ayrton, A., Griswold, D. E. & Gallagher, T. F. (1998). Bioorg. Med. Chem. Lett. 8, 3111–3116. Web of Science CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clark, M. P., Djung, J. F., Laughlin, S. K. & Tullis, J. (2002). WO 02/094 266 A1. Is this a patent?. Google Scholar
De Laszlo, S. E., Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., et al. (1998). Bioorg. Med. Chem. Lett. 8, 2689–2694. Web of Science CrossRef CAS PubMed Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Foster, M. L., Halley, F. & Souness, J. E. (2000). Drug News Perspect. 13, 488–497. Web of Science PubMed CAS Google Scholar
Laufer, S., Margutti, S. & Fritz, M. D. (2006). J. Med. Chem. 1, 197–207. CAS Google Scholar
Laufer, S. & Wagner, G. K. (2002). J. Med. Chem. 45, 2733–2740. Web of Science CrossRef PubMed CAS Google Scholar
Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403. CrossRef PubMed CAS Google Scholar
Ohkawa, S., Naruo, K., Miwatashi, S. & Kimura, H. (2001). Patent No. WO 2 001 074 811. Google Scholar
Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett. 10, 1261–1264. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Canagarajah, B. J., Boehm, J. C., Kassisa, S., Cobb, M. H., Young, P. R., Abdel-Meguid, S., Adams, J. L. & Goldsmith, E. J. (1998). Structure, 6, 1117–1128. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compound (II) (Fig. 2) was prepared in the course of our study on isoxazolones derivatives bearing the typical vicinal 4-pyridyl and 4-fluorophenyl pharmacophores of MAP Kinase inhibitors. Isoxazolones are described in the literature as inhibitors for p38 MAP Kinase (Laughlin et al., 2005; Clark et al., 2002).
The prototypical pyridinylimidazole SB 203580 is one of the best studied p38 inhibitors reported until now. Figure 1 shows the most important interactions between the ATP binding sites of p38 kinase and the imidazole inhibitor SB203580 (Wang et al., 1998). The 4-fluorophenyl ring of SB203580 occupies a hydrophobic back pocket, enhancing selectivity. Vicinal to this interaction site, the 4-pyridinyl ring forms a hydrogen bond from the backbone NH group of Met 109 of p38 MAP Kinase (Fig. 1).
However, certain liver toxicities, such as increased liver size and increased cytochrome P450 induction, have been reported (Foster et al., 2000; Adams et al., 1998). In light of this potential toxicity and the risks associated with developing human drugs, a continuing need exists for potent new small-molecule inhibitors of cytokine production with improved pharmacokinetic and safety profiles.
Several research groups have undertaken studies in which the imidazole ring was replaced by other 5- or 6- membered heterocycles (Laufer & Wagner, 2002; De Laszlo et al., 1998; Laufer et al., 2006; Revesz et al., 2000; Ohkawa et al., 2001). Replacement of the core heterocycle represents a strategy to dissect inhibition of p38 from interferences with cytochrome P450 (CYP450).
Accordingly, and based on the research published by Laughlin et al. (2005), we plan to prepare derivatives of isoxazolones in order to obtain more accurate and comparable information about this class of compounds as p38 MAP Kinase inhibitors in terms of biological activity.
The data presented here show the isoxazolone system is almost planar (Fig. 2). It is oriented at a dihedral angle of 55.0 (3)° to the fluorophenyl ring and 33.8 (2)° to the oxy-pyridine system. There are no significant intermolecular interactions.