metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis[N-(8-quinol­yl)pyridine-2-carbox­amidato-κ3N,N′,N′′]manganese(III) perchlorate monohydrate

aCollege of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: qgmeng_weifang@yahoo.cn

(Received 6 November 2007; accepted 4 January 2008; online 11 January 2008)

The MnIII ion in the title complex, [Mn(C15H10N3O)2]ClO4·H2O, is coordinated meridionally by six N atoms from two tridentate N-(8-quinol­yl)pyridine-2-carboxamidate ligands, yielding a distorted octa­hedral coordination geometry. The two ligands are nearly planar and their mean planes are almost perpendicular, with a dihedral angle of 86.7 (2)°.

Related literature

For related literature, see: Dutta et al. (2000[Dutta, S. K., Beckmann, U., Bill, E., Weyhermuller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 3355-3364.]); Ni et al. (2006[Ni, Z. H., Kou, H. Z., Zhang, L. F., Ge, C., Wang, R. J. & Cui, A. L. (2006). J. Chem. Crystallogr. 36, 465-472.]); Ni (2007[Ni, Z.-H. (2007). Acta Cryst. E63, m2531-m2532.]); Zhang et al. (2001[Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109-110.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C15H10N3O)2]ClO4·H2O

  • Mr = 668.93

  • Triclinic, [P \overline 1]

  • a = 9.2314 (5) Å

  • b = 12.9987 (10) Å

  • c = 12.0126 (5) Å

  • α = 95.786 (1)°

  • β = 91.592 (2)°

  • γ = 90.486 (1)°

  • V = 1433.48 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.898

  • 5004 measured reflections

  • 4920 independent reflections

  • 3731 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.189

  • S = 1.00

  • 4920 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To date, many symmetrical pyridinecarboxamide ligands and their coordination complexes have been synthesized (Ni et al., 2006). However, unsymetrical pyridinecarboxamide ligands are limited (Zhang et al., 2001). Here we report a new MnIII complex, [Mn(C15H10N3O)2]ClO4.H2O, (I), containing two unsymmetrical pyridinecarboxamide tridentate ligands, 8-(pyridine-2-carboxamido)quinoline.

The structure and labeling scheme for the title complex are shown in Figure 1. The title compound comprises a [MnIII(pcq)2]+ (Hpcq = 8-(pyridine-2-carboxamido)quinoline) cation and a ClO4- anion as well as an uncoordinated water molecule. The MnIII ion in the cation is coordinated by six nitrogen atoms from two mer pcq- ligands, giving a distorted octahedral coordination environment. The C—O, Cpyridine—N, and Ccarboxy—N bond distances in the title complex agree well with those reported for other complexes containing pyridinecarboxamide ligands (Dutta et al., 2000; Ni, 2007) and with the ligand precursor Hpcq (Zhang et al., 2001). The average Mn—Npyridine bond distance is 1.914 Å and the average Mn—Namide bond length is 2.028 Å. The two pcq- ligands in (I) are both nearly planar, and the two mean planes are almost perpendicular, with a dihedral angle of 86.7 (2)°. There is probably a hydrogen bond between water and perchlorate, but the H atoms of the water molecule could not be located.

Related literature top

For related literature, see: Dutta et al. (2000); Ni et al. (2006); Ni (2007); Zhang et al. (2001).

Experimental top

The material Hpcq was synthesized according to the literature (Zhang et al., 2001). Solid Hpcq (500 mg, 2 mmol) was added to a methanol/water solution (20 ml, MeOH/H2O = 4:1 v/v) of MnIII acetate (326 mg, 1 mmol) containing 0.5 ml pyridine The mixture was stirred for about 0.5 h. The mixture was then filtered and the resulting solution was kept at room temperature for about one week, giving rise to pink block crystals. Yield: 50%. Elemental analysis [found (calculated)] for C30H22ClMnN6O7: C 53.65 (53.79), H 3.35 (3.31), N 12.39% (12.55%).

Refinement top

The H atoms of the water molecule were not located. H atoms bound to C atoms were positioned geometrically, with C—H = 0.93 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis[N-(8-quinolyl)pyridine-2-carboxamidato-κ3N,N',N'']manganate(III) perchlorate monohydrate top
Crystal data top
[Mn(C15H10N3O)2]ClO4·H2OZ = 2
Mr = 668.93F(000) = 684
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2314 (5) ÅCell parameters from 4924 reflections
b = 12.9987 (10) Åθ = 3.1–25.0°
c = 12.0126 (5) ŵ = 0.61 mm1
α = 95.786 (1)°T = 293 K
β = 91.592 (2)°Block, pink
γ = 90.486 (1)°0.28 × 0.22 × 0.18 mm
V = 1433.48 (15) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4920 independent reflections
Radiation source: fine-focus sealed tube3731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.847, Tmax = 0.898k = 1515
5004 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1288P)2 + 0.5125P]
where P = (Fo2 + 2Fc2)/3
4920 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Mn(C15H10N3O)2]ClO4·H2Oγ = 90.486 (1)°
Mr = 668.93V = 1433.48 (15) Å3
Triclinic, P1Z = 2
a = 9.2314 (5) ÅMo Kα radiation
b = 12.9987 (10) ŵ = 0.61 mm1
c = 12.0126 (5) ÅT = 293 K
α = 95.786 (1)°0.28 × 0.22 × 0.18 mm
β = 91.592 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3731 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.898Rint = 0.029
5004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
4920 reflectionsΔρmin = 0.67 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.01973 (6)0.24180 (4)0.24794 (4)0.0384 (2)
Cl10.51979 (17)0.11333 (15)0.74568 (15)0.0909 (5)
N20.9935 (4)0.3931 (3)0.3109 (3)0.0518 (9)
N60.9288 (4)0.1667 (3)0.3589 (3)0.0475 (8)
N51.0500 (4)0.0939 (3)0.1904 (3)0.0495 (8)
N41.1108 (4)0.2804 (3)0.1203 (3)0.0527 (9)
N10.8270 (4)0.2620 (3)0.1907 (3)0.0531 (9)
C211.1198 (5)0.0783 (4)0.0992 (4)0.0574 (12)
C80.8606 (5)0.4385 (4)0.2926 (4)0.0551 (11)
C300.9270 (5)0.0526 (3)0.3384 (3)0.0490 (10)
C220.9966 (5)0.0084 (3)0.2476 (3)0.0493 (10)
O11.1111 (5)0.5442 (3)0.4079 (4)0.0856 (12)
O21.1503 (5)0.0117 (3)0.0524 (3)0.0824 (11)
N31.2070 (4)0.2650 (3)0.3217 (3)0.0475 (8)
C201.1555 (5)0.1885 (4)0.0605 (3)0.0564 (12)
C290.8639 (5)0.2116 (4)0.4435 (3)0.0538 (11)
H29A0.86550.28310.45980.065*
C101.1042 (5)0.4462 (4)0.3671 (4)0.0581 (11)
C260.8586 (5)0.0202 (4)0.4046 (4)0.0599 (12)
C90.7712 (5)0.3641 (4)0.2238 (4)0.0542 (11)
C191.2233 (6)0.1982 (6)0.0317 (4)0.0755 (16)
H19A1.25550.14080.07630.091*
C161.1330 (6)0.3830 (5)0.0897 (4)0.0669 (14)
H16A1.09920.43980.13460.080*
C30.5529 (7)0.3131 (6)0.1275 (5)0.0885 (19)
H3A0.45790.32600.10540.106*
C40.6317 (6)0.3950 (5)0.1946 (4)0.0683 (14)
C270.7876 (5)0.0330 (5)0.4904 (4)0.0675 (14)
H27A0.73530.00390.53850.081*
C250.8682 (6)0.1357 (4)0.3793 (5)0.0711 (15)
H25A0.82320.17870.42550.085*
C10.7488 (6)0.1890 (5)0.1282 (4)0.0686 (14)
H1A0.78610.12350.10910.082*
C70.8077 (6)0.5402 (4)0.3300 (4)0.0646 (13)
H7A0.86760.58610.37480.078*
C151.3127 (5)0.1909 (4)0.3235 (4)0.0577 (11)
H15A1.29690.12480.28780.069*
C280.7912 (6)0.1470 (5)0.5094 (4)0.0690 (14)
H28A0.74110.17800.56980.083*
C240.9389 (7)0.1761 (4)0.2934 (6)0.0758 (16)
H24A0.94660.24730.27730.091*
C111.2259 (5)0.3692 (4)0.3732 (4)0.0572 (11)
C121.3534 (6)0.3970 (5)0.4287 (5)0.0775 (16)
H12A1.36950.46350.46360.093*
C171.2026 (7)0.3964 (6)0.0036 (5)0.0810 (17)
H17A1.22040.46100.02770.097*
C231.0035 (6)0.1057 (4)0.2258 (4)0.0623 (12)
H23A1.05340.13310.16360.075*
C20.6104 (7)0.2143 (6)0.0929 (5)0.094 (2)
H2A0.55520.16660.04650.112*
C181.2466 (7)0.3029 (7)0.0623 (5)0.091 (2)
H18A1.29600.30860.12780.109*
C141.4402 (6)0.2164 (5)0.3784 (5)0.0732 (15)
H14A1.51380.16840.38240.088*
C131.4573 (7)0.3211 (6)0.4304 (6)0.0904 (19)
H13A1.54490.33880.46790.108*
C50.5839 (7)0.5006 (6)0.2351 (5)0.0828 (18)
H5A0.49080.51980.21490.099*
C60.6675 (7)0.5712 (5)0.3000 (5)0.0816 (17)
H6A0.63360.63680.32330.098*
O30.4151 (9)0.0401 (7)0.7756 (7)0.182 (3)
O60.6578 (6)0.0767 (6)0.7331 (6)0.142 (2)
O50.4784 (9)0.1497 (12)0.6457 (8)0.258 (7)
O40.5174 (12)0.2145 (7)0.8072 (9)0.220 (4)
O1W0.7670 (12)0.3638 (8)0.8063 (11)0.254 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0473 (4)0.0421 (4)0.0250 (3)0.0047 (2)0.0057 (2)0.0016 (2)
Cl10.0727 (9)0.1085 (13)0.0909 (11)0.0234 (9)0.0159 (8)0.0013 (9)
N20.067 (2)0.0450 (19)0.0427 (19)0.0049 (17)0.0095 (17)0.0011 (16)
N60.052 (2)0.056 (2)0.0325 (17)0.0015 (16)0.0008 (14)0.0011 (15)
N50.052 (2)0.062 (2)0.0333 (17)0.0084 (17)0.0005 (14)0.0034 (16)
N40.053 (2)0.076 (3)0.0299 (17)0.0037 (18)0.0016 (14)0.0087 (17)
N10.058 (2)0.069 (2)0.0309 (17)0.0032 (18)0.0042 (15)0.0008 (16)
C210.062 (3)0.068 (3)0.038 (2)0.019 (2)0.0008 (19)0.013 (2)
C80.068 (3)0.058 (3)0.041 (2)0.008 (2)0.011 (2)0.011 (2)
C300.049 (2)0.058 (3)0.040 (2)0.0046 (19)0.0094 (17)0.0057 (19)
C220.050 (2)0.051 (2)0.044 (2)0.0004 (19)0.0096 (18)0.0038 (19)
O10.106 (3)0.055 (2)0.090 (3)0.000 (2)0.003 (2)0.0202 (19)
O20.107 (3)0.089 (3)0.0469 (19)0.027 (2)0.0061 (19)0.0160 (18)
N30.050 (2)0.059 (2)0.0334 (17)0.0011 (16)0.0063 (14)0.0023 (15)
C200.048 (2)0.091 (4)0.029 (2)0.007 (2)0.0020 (16)0.004 (2)
C290.058 (3)0.068 (3)0.035 (2)0.006 (2)0.0039 (18)0.003 (2)
C100.068 (3)0.054 (3)0.051 (3)0.003 (2)0.007 (2)0.006 (2)
C260.057 (3)0.074 (3)0.050 (3)0.015 (2)0.012 (2)0.018 (2)
C90.064 (3)0.063 (3)0.037 (2)0.013 (2)0.0147 (19)0.0106 (19)
C190.067 (3)0.127 (5)0.031 (2)0.003 (3)0.010 (2)0.000 (3)
C160.068 (3)0.093 (4)0.042 (3)0.005 (3)0.003 (2)0.020 (3)
C30.065 (4)0.130 (6)0.071 (4)0.024 (4)0.006 (3)0.015 (4)
C40.066 (3)0.093 (4)0.051 (3)0.023 (3)0.009 (2)0.023 (3)
C270.056 (3)0.101 (4)0.049 (3)0.011 (3)0.001 (2)0.026 (3)
C250.075 (4)0.068 (3)0.073 (4)0.014 (3)0.007 (3)0.026 (3)
C10.065 (3)0.083 (4)0.054 (3)0.014 (3)0.008 (2)0.009 (3)
C70.087 (4)0.053 (3)0.056 (3)0.014 (2)0.017 (2)0.010 (2)
C150.068 (3)0.063 (3)0.043 (2)0.008 (2)0.003 (2)0.008 (2)
C280.063 (3)0.106 (4)0.041 (2)0.004 (3)0.012 (2)0.014 (3)
C240.087 (4)0.051 (3)0.089 (4)0.005 (3)0.013 (3)0.009 (3)
C110.067 (3)0.058 (3)0.045 (2)0.009 (2)0.006 (2)0.002 (2)
C120.073 (4)0.083 (4)0.071 (3)0.018 (3)0.006 (3)0.015 (3)
C170.082 (4)0.114 (5)0.051 (3)0.006 (3)0.003 (3)0.027 (3)
C230.073 (3)0.055 (3)0.056 (3)0.005 (2)0.006 (2)0.005 (2)
C20.078 (4)0.133 (6)0.064 (4)0.009 (4)0.021 (3)0.013 (4)
C180.077 (4)0.154 (7)0.042 (3)0.002 (4)0.014 (3)0.014 (4)
C140.052 (3)0.099 (4)0.067 (3)0.008 (3)0.011 (2)0.005 (3)
C130.069 (4)0.108 (5)0.091 (4)0.000 (3)0.015 (3)0.003 (4)
C50.077 (4)0.109 (5)0.068 (4)0.032 (4)0.011 (3)0.030 (3)
C60.096 (4)0.082 (4)0.072 (4)0.026 (3)0.026 (3)0.021 (3)
O30.164 (7)0.217 (8)0.172 (7)0.050 (6)0.047 (5)0.050 (6)
O60.109 (4)0.176 (6)0.146 (5)0.063 (4)0.029 (4)0.034 (5)
O50.138 (7)0.51 (2)0.150 (7)0.019 (9)0.001 (5)0.155 (10)
O40.280 (11)0.141 (6)0.231 (10)0.035 (7)0.097 (8)0.047 (6)
O1W0.240 (11)0.150 (7)0.350 (16)0.003 (7)0.052 (10)0.088 (9)
Geometric parameters (Å, º) top
Mn1—N41.878 (3)C9—C41.398 (7)
Mn1—N11.919 (4)C19—C181.461 (10)
Mn1—N31.928 (4)C19—H19A0.930
Mn1—N61.935 (4)C16—C171.334 (7)
Mn1—N52.000 (4)C16—H16A0.930
Mn1—N22.054 (4)C3—C21.421 (10)
Cl1—O61.371 (5)C3—C41.447 (9)
Cl1—O51.380 (8)C3—H3A0.930
Cl1—O31.429 (7)C4—C51.485 (9)
Cl1—O41.442 (8)C27—C281.477 (8)
N2—C101.353 (6)C27—H27A0.930
N2—C81.388 (6)C25—C241.303 (9)
N6—C291.286 (6)C25—H25A0.930
N6—C301.478 (6)C1—C21.388 (8)
N5—C211.286 (6)C1—H1A0.930
N5—C221.454 (6)C7—C61.406 (9)
N4—C201.402 (6)C7—H7A0.930
N4—C161.433 (7)C15—C141.355 (7)
N1—C11.342 (6)C15—H15A0.930
N1—C91.450 (6)C28—H28A0.930
C21—O21.283 (6)C24—C231.422 (8)
C21—C201.585 (8)C24—H24A0.930
C8—C91.445 (7)C11—C121.364 (7)
C8—C71.446 (7)C12—C131.384 (9)
C30—C221.360 (6)C12—H12A0.930
C30—C261.449 (6)C17—C181.411 (10)
C22—C231.481 (6)C17—H17A0.930
O1—C101.318 (6)C23—H23A0.930
N3—C151.378 (6)C2—H2A0.930
N3—C111.438 (6)C18—H18A0.930
C20—C191.304 (6)C14—C131.444 (9)
C29—C281.391 (7)C14—H14A0.930
C29—H29A0.930C13—H13A0.930
C10—C111.516 (7)C5—C61.362 (9)
C26—C271.369 (8)C5—H5A0.930
C26—C251.505 (8)C6—H6A0.930
N4—Mn1—N194.61 (15)C8—C9—N1119.6 (4)
N4—Mn1—N385.35 (14)C20—C19—C18117.4 (6)
N1—Mn1—N3162.60 (16)C20—C19—H19A121.3
N4—Mn1—N6165.15 (17)C18—C19—H19A121.3
N1—Mn1—N686.06 (15)C17—C16—N4119.4 (6)
N3—Mn1—N698.42 (14)C17—C16—H16A120.3
N4—Mn1—N588.36 (16)N4—C16—H16A120.3
N1—Mn1—N5100.50 (16)C2—C3—C4124.5 (5)
N3—Mn1—N596.89 (15)C2—C3—H3A117.7
N6—Mn1—N576.95 (15)C4—C3—H3A117.7
N4—Mn1—N292.24 (16)C9—C4—C3111.5 (5)
N1—Mn1—N281.17 (16)C9—C4—C5119.0 (6)
N3—Mn1—N281.45 (16)C3—C4—C5129.4 (5)
N6—Mn1—N2102.51 (15)C26—C27—C28122.3 (5)
N5—Mn1—N2178.18 (15)C26—C27—H27A118.8
O6—Cl1—O5106.8 (5)C28—C27—H27A118.9
O6—Cl1—O3115.4 (5)C24—C25—C26120.8 (5)
O5—Cl1—O3110.0 (6)C24—C25—H25A119.6
O6—Cl1—O4112.3 (6)C26—C25—H25A119.6
O5—Cl1—O493.5 (8)N1—C1—C2117.8 (6)
O3—Cl1—O4116.3 (5)N1—C1—H1A121.1
C10—N2—C8121.8 (4)C2—C1—H1A121.1
C10—N2—Mn1120.3 (3)C6—C7—C8121.4 (5)
C8—N2—Mn1117.9 (3)C6—C7—H7A119.3
C29—N6—C30120.0 (4)C8—C7—H7A119.3
C29—N6—Mn1123.0 (3)C14—C15—N3118.6 (5)
C30—N6—Mn1116.8 (3)C14—C15—H15A120.7
C21—N5—C22121.4 (4)N3—C15—H15A120.7
C21—N5—Mn1116.1 (3)C29—C28—C27124.8 (5)
C22—N5—Mn1122.5 (3)C29—C28—H28A117.6
C20—N4—C16126.2 (4)C27—C28—H28A117.6
C20—N4—Mn1106.4 (3)C25—C24—C23116.6 (5)
C16—N4—Mn1127.4 (3)C25—C24—H24A121.7
C1—N1—C9122.6 (4)C23—C24—H24A121.7
C1—N1—Mn1124.1 (4)C12—C11—N3119.2 (5)
C9—N1—Mn1113.4 (3)C12—C11—C10120.7 (5)
O2—C21—N5123.9 (5)N3—C11—C10120.1 (4)
O2—C21—C20129.2 (4)C11—C12—C13116.4 (5)
N5—C21—C20106.9 (4)C11—C12—H12A121.8
N2—C8—C9107.8 (4)C13—C12—H12A121.8
N2—C8—C7130.8 (5)C16—C17—C18113.3 (6)
C9—C8—C7121.4 (5)C16—C17—H17A123.3
C22—C30—C26114.5 (4)C18—C17—H17A123.3
C22—C30—N6118.1 (4)C24—C23—C22124.4 (5)
C26—C30—N6127.4 (4)C24—C23—H23A117.8
C30—C22—N5105.6 (4)C22—C23—H23A117.8
C30—C22—C23120.3 (4)C1—C2—C3120.2 (6)
N5—C22—C23134.1 (4)C1—C2—H2A119.9
C15—N3—C11123.4 (4)C3—C2—H2A119.9
C15—N3—Mn1124.0 (3)C17—C18—C19127.4 (5)
C11—N3—Mn1112.6 (3)C17—C18—H18A116.3
C19—C20—N4116.3 (5)C19—C18—H18A116.3
C19—C20—C21121.5 (5)C15—C14—C13117.4 (5)
N4—C20—C21122.1 (4)C15—C14—H14A121.3
N6—C29—C28116.1 (5)C13—C14—H14A121.3
N6—C29—H29A121.9C12—C13—C14125.0 (5)
C28—C29—H29A121.9C12—C13—H13A117.5
O1—C10—N2129.2 (5)C14—C13—H13A117.5
O1—C10—C11125.3 (4)C6—C5—C4124.3 (6)
N2—C10—C11105.5 (4)C6—C5—H5A117.9
C27—C26—C30109.2 (5)C4—C5—H5A117.8
C27—C26—C25127.4 (5)C5—C6—C7116.8 (6)
C30—C26—C25123.4 (5)C5—C6—H6A121.6
C4—C9—C8117.0 (5)C7—C6—H6A121.6
C4—C9—N1123.3 (5)

Experimental details

Crystal data
Chemical formula[Mn(C15H10N3O)2]ClO4·H2O
Mr668.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2314 (5), 12.9987 (10), 12.0126 (5)
α, β, γ (°)95.786 (1), 91.592 (2), 90.486 (1)
V3)1433.48 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.847, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
5004, 4920, 3731
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.189, 1.00
No. of reflections4920
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.67

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2001).

 

Acknowledgements

The authors thank the Education Department of Shandong Province for research and development projects (J06A55).

References

First citationBruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, S. K., Beckmann, U., Bill, E., Weyhermuller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 3355–3364.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNi, Z.-H. (2007). Acta Cryst. E63, m2531–m2532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, Z. H., Kou, H. Z., Zhang, L. F., Ge, C., Wang, R. J. & Cui, A. L. (2006). J. Chem. Crystallogr. 36, 465–472.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109–110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds