organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-2-(4-methyl­phen­yl)-4-morpholinopyridazine-3,6(1H,2H)-dione

aDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and bOptics Division, Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 17 December 2007; accepted 2 January 2008; online 11 January 2008)

The structure analysis of the title compound, C16H19N3O3, has been undertaken in order to facilitate the inter­pretation of 1H and 13C NMR data and to determine the position of the morpholine residue in this nucleophilic substitution product. The main result is that the morpholine group, with a chair conformation, is connected at the 4-position of the pyridazine ring. The benzene and pyridazine rings make a dihedral angle of 62.17 (5)°. Mol­ecules are linked into a two-dimensional network by non-classical C—H⋯O hydrogen bonds, in which O atoms serve as double or triple acceptors.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bałoniak & Melzer (1979[Bałoniak, S. & Melzer, E. (1979). Acta Pol. Pharm. 36, 147-154.]); Katrusiak et al. (2002[Katrusiak, A. A., Katrusiak, A., Bałoniak, S. & Zielińska, K. (2002). Pol. J. Chem. 76, 45-56.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O3

  • Mr = 301.34

  • Monoclinic, P 21

  • a = 5.6246 (6) Å

  • b = 8.8923 (6) Å

  • c = 15.0842 (10) Å

  • β = 99.530 (7)°

  • V = 744.03 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 293 (2) K

  • 0.38 × 0.35 × 0.30 mm

Data collection
  • Kuma Diffraction KM-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.716, Tmax = 0.794

  • 2796 measured reflections

  • 2705 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.025

  • 2 standard reflections every 100 reflections intensity decay: <2%

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.06

  • 2705 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1249 Friedel pairs

  • Flack parameter: 0.07 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O15 0.97 2.21 2.8636 (18) 124
C10—H10⋯O15i 0.93 2.53 3.3508 (19) 148
C14—H14C⋯O15i 0.96 2.53 3.419 (2) 155
C5—H5⋯O19ii 0.93 2.49 3.4124 (19) 174
C21—H21B⋯O19ii 0.97 2.52 3.3036 (18) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 User's Guide. Version 8.0.1. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Treatment of 4-bromo-1-methyl-2-(4-methylphenyl)-3,6-pyridazinedione with morpholine in anhydrous ethanol gives a mixture of ipso and cine substitution products; one of them, labelled as (I), was found as a precipitate (Bałoniak & Melzer, 1979). The crystal structure determination of (I) was carried out in order to facilitate the interpretation of 1H and 13C NMR data, to determine the position of the morpholine residue on the pyridazinedione ring, and to study the nature of the hydrogen-bond formation in the crystalline state.

The X-ray analysis revealed the molecular structure of (I) and its conformation and distortions induced in the pyridazine ring by substituents.

The geometry of the molecule of (I) is illustrated in Fig. 1. The pyridazine ring is nearly planar with an r.m.s. deviation of 0.0211 Å. The methyl, p-methylphenyl and morpholine substituents are connected at N1, N2 and C4, respectively. The mean plane of the benzene ring is oriented at an angle of 62.17 (5)° to the mean plane of the pyridazine ring. The C4—C5 bond, 1.3500 (18) Å, belonging to the latter ring, is a double bond.

The ring bonds are conjugated, and the formally single bond C5—C6 is shorter by about 14 and the bond C3—C4 is longer by about 13σ than the normal (C?)Csp2—Csp2(?O) single bond [1.465 (1) Å; Allen et al., 1987]. The elongation of the latter is a result of the presence of the morpholine residue at C4. The last two observations are consistent with that reported for 2-methyl-4-morpholino-1-phenyl-3,6-pyridazinedione (Katrusiak et al., 2002).

The C3—N1 and C6—N1 distances are similar [1.3700 (18) and 1.3686 (17) Å, respectively] and are somewhat larger than a normal C—N tertiary amide distance [1.346 (5) Å; Allen et al., 1987]. The sums of valency angles around N1 and N2 atoms are 356.5 and 357.4°. Atom C7 of the methyl group has a mutual orientation of synperiplanar and synclinal with respect to the atom C8 of the benzene ring [torsion angle C7—N1—N2—C8 = -37.79 (18)°].

The molecules in the crystal structure of (I) are linked via non-classical C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bond network parallel to the (101) plane (Figs. 2 and 3).

Related literature top

For related literature, see: Allen et al. (1987); Bałoniak & Melzer (1979); Katrusiak et al. (2002).

Experimental top

Compound (I) was synthesized according to a literature procedure of Bałoniak & Melzer (1979). Crystals suitable for single-crystal X-ray diffraction analysis were grown from ethanol by slow evaporation.

Refinement top

All H atoms were placed in geometrically calculated positions and were refined with a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups, allowed to rotate. The crystal polarity of (I) was established by refinement of the Flack (1983) parameter. The relatively large s.u. of the Flack parameter is due to the small contribution of atoms with measurable anomalous dispersion effects.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: KM-4 Software (Kuma, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x, 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x, 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.
1-Methyl-2-(4-methylphenyl)-4-morpholinopyridazine-3,6(1H,2H)-dione top
Crystal data top
C16H19N3O3F(000) = 320
Mr = 301.34Dx = 1.345 Mg m3
Monoclinic, P21Melting point = 475–476 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 5.6246 (6) ÅCell parameters from 53 reflections
b = 8.8923 (6) Åθ = 14.8–30.5°
c = 15.0842 (10) ŵ = 0.78 mm1
β = 99.530 (7)°T = 293 K
V = 744.03 (11) Å3Block, colourless
Z = 20.38 × 0.35 × 0.30 mm
Data collection top
Kuma Diffraction KM-4
diffractometer
2646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 70.1°, θmin = 3.0°
ω–2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.716, Tmax = 0.794l = 018
2796 measured reflections2 standard reflections every 100 reflections
2705 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0723P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.15 e Å3
2705 reflectionsΔρmin = 0.13 e Å3
202 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0345 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 1249 Fiedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (16)
Crystal data top
C16H19N3O3V = 744.03 (11) Å3
Mr = 301.34Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.6246 (6) ŵ = 0.78 mm1
b = 8.8923 (6) ÅT = 293 K
c = 15.0842 (10) Å0.38 × 0.35 × 0.30 mm
β = 99.530 (7)°
Data collection top
Kuma Diffraction KM-4
diffractometer
2646 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.716, Tmax = 0.7942 standard reflections every 100 reflections
2796 measured reflections intensity decay: <2%
2705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.15 e Å3
S = 1.07Δρmin = 0.13 e Å3
2705 reflectionsAbsolute structure: Flack (1983); 1249 Fiedel pairs
202 parametersAbsolute structure parameter: 0.07 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4950 (2)0.30562 (12)0.24834 (8)0.0381 (3)
N20.4743 (2)0.15882 (12)0.28125 (7)0.0339 (3)
C30.5939 (3)0.03738 (15)0.25416 (8)0.0325 (3)
C40.7375 (2)0.06485 (14)0.18118 (8)0.0300 (3)
C50.7609 (3)0.20788 (15)0.15387 (9)0.0359 (3)
H50.86580.22640.11350.043*
C60.6334 (3)0.33293 (15)0.18353 (9)0.0369 (3)
C70.3067 (3)0.41229 (19)0.25978 (12)0.0516 (4)
H7A0.35040.46420.31590.077*
H7B0.15770.35950.25960.077*
H7C0.28760.48370.21140.077*
C80.3819 (2)0.14755 (15)0.36480 (8)0.0326 (3)
C90.4878 (3)0.22780 (18)0.43950 (9)0.0426 (3)
H90.62090.28860.43670.051*
C100.3942 (3)0.2170 (2)0.51839 (10)0.0450 (4)
H100.46450.27170.56840.054*
C110.1978 (3)0.12600 (18)0.52421 (9)0.0408 (3)
C120.0964 (3)0.04506 (18)0.44820 (10)0.0425 (3)
H120.03460.01750.45100.051*
C130.1868 (3)0.05591 (17)0.36881 (9)0.0381 (3)
H130.11650.00180.31850.046*
C140.0953 (4)0.1141 (2)0.61008 (11)0.0581 (5)
H14A0.15920.02630.64270.087*
H14B0.07710.10640.59610.087*
H14C0.13850.20200.64610.087*
O150.5897 (2)0.08309 (11)0.29241 (7)0.0475 (3)
N160.8655 (2)0.05448 (13)0.15642 (7)0.0339 (3)
C170.7617 (3)0.20541 (15)0.13920 (9)0.0369 (3)
H17A0.63240.21960.17370.044*
H17B0.88430.28070.15820.044*
C180.6651 (3)0.22466 (16)0.04052 (10)0.0407 (3)
H18A0.60470.32640.02990.049*
H18B0.53110.15610.02340.049*
O190.8440 (2)0.19668 (12)0.01424 (7)0.0444 (3)
C200.9381 (3)0.04743 (17)0.00089 (9)0.0404 (3)
H20A0.80980.02520.01570.049*
H20B1.06040.02980.03630.049*
C211.0461 (3)0.02754 (16)0.09851 (9)0.0386 (3)
H21A1.17920.09720.11420.046*
H21B1.10880.07380.10820.046*
O220.6396 (2)0.46036 (12)0.15195 (8)0.0522 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0510 (7)0.0290 (6)0.0389 (6)0.0038 (5)0.0206 (5)0.0022 (5)
N20.0453 (7)0.0291 (5)0.0311 (5)0.0018 (5)0.0176 (5)0.0000 (4)
C30.0425 (7)0.0313 (6)0.0260 (5)0.0011 (5)0.0122 (5)0.0013 (5)
C40.0367 (7)0.0308 (6)0.0236 (5)0.0012 (5)0.0083 (5)0.0018 (4)
C50.0458 (8)0.0327 (7)0.0332 (6)0.0023 (6)0.0181 (5)0.0008 (5)
C60.0489 (8)0.0287 (7)0.0362 (7)0.0036 (6)0.0157 (6)0.0004 (5)
C70.0578 (10)0.0419 (8)0.0617 (9)0.0102 (7)0.0289 (8)0.0014 (7)
C80.0383 (7)0.0353 (7)0.0268 (6)0.0004 (5)0.0131 (5)0.0021 (5)
C90.0449 (9)0.0472 (8)0.0393 (7)0.0128 (6)0.0174 (6)0.0094 (6)
C100.0507 (9)0.0540 (8)0.0324 (6)0.0070 (7)0.0131 (6)0.0121 (6)
C110.0462 (8)0.0462 (8)0.0332 (7)0.0025 (6)0.0163 (6)0.0023 (6)
C120.0399 (8)0.0488 (8)0.0418 (7)0.0085 (6)0.0153 (6)0.0005 (6)
C130.0385 (7)0.0445 (8)0.0319 (6)0.0063 (6)0.0082 (5)0.0042 (5)
C140.0687 (11)0.0728 (12)0.0394 (8)0.0065 (9)0.0278 (7)0.0017 (8)
O150.0746 (7)0.0334 (5)0.0418 (5)0.0051 (5)0.0307 (5)0.0098 (4)
N160.0431 (6)0.0301 (6)0.0311 (5)0.0007 (5)0.0140 (4)0.0022 (4)
C170.0511 (8)0.0264 (6)0.0363 (7)0.0004 (6)0.0165 (6)0.0002 (5)
C180.0489 (8)0.0350 (7)0.0415 (7)0.0048 (6)0.0173 (6)0.0072 (6)
O190.0602 (7)0.0384 (6)0.0397 (5)0.0032 (5)0.0237 (5)0.0100 (4)
C200.0514 (8)0.0364 (7)0.0389 (7)0.0003 (6)0.0234 (6)0.0009 (6)
C210.0373 (7)0.0382 (7)0.0435 (7)0.0015 (6)0.0163 (5)0.0039 (6)
O220.0788 (8)0.0287 (5)0.0565 (6)0.0005 (5)0.0326 (6)0.0058 (5)
Geometric parameters (Å, º) top
N1—C61.3686 (17)C11—C141.5062 (18)
N1—N21.4083 (15)C12—C131.3796 (18)
N1—C71.4530 (19)C12—H120.930
N2—C31.3700 (18)C13—H130.930
N2—C81.4440 (15)C14—H14A0.960
C3—O151.2188 (17)C14—H14B0.960
C3—C41.4897 (16)C14—H14C0.960
C4—C51.3500 (18)N16—C211.4648 (15)
C4—N161.3685 (17)N16—C171.4696 (17)
C5—C61.4344 (19)C17—C181.507 (2)
C5—H50.930C17—H17A0.970
C6—O221.2319 (18)C17—H17B0.970
C7—H7A0.960C18—O191.4256 (16)
C7—H7B0.960C18—H18A0.970
C7—H7C0.960C18—H18B0.970
C8—C131.376 (2)O19—C201.4330 (18)
C8—C91.3826 (19)C20—C211.507 (2)
C9—C101.3819 (18)C20—H20A0.970
C9—H90.930C20—H20B0.970
C10—C111.384 (2)C21—H21A0.970
C10—H100.930C21—H21B0.970
C11—C121.393 (2)
C6—N1—N2120.42 (11)C11—C12—H12119.4
C6—N1—C7118.75 (12)C8—C13—C12119.38 (12)
N2—N1—C7117.31 (11)C8—C13—H13120.3
C3—N2—N1123.52 (11)C12—C13—H13120.3
C3—N2—C8118.10 (11)C11—C14—H14A109.5
N1—N2—C8115.76 (10)C11—C14—H14B109.5
O15—C3—N2120.18 (11)H14A—C14—H14B109.5
O15—C3—C4123.32 (12)C11—C14—H14C109.5
N2—C3—C4116.39 (11)H14A—C14—H14C109.5
C5—C4—N16124.41 (12)H14B—C14—H14C109.5
C5—C4—C3118.17 (11)C4—N16—C21118.94 (11)
N16—C4—C3116.66 (11)C4—N16—C17123.00 (11)
C4—C5—C6123.79 (12)C21—N16—C17109.79 (10)
C4—C5—H5118.1N16—C17—C18110.23 (11)
C6—C5—H5118.1N16—C17—H17A109.6
O22—C6—N1119.68 (12)C18—C17—H17A109.6
O22—C6—C5123.02 (12)N16—C17—H17B109.6
N1—C6—C5117.28 (11)C18—C17—H17B109.6
N1—C7—H7A109.5H17A—C17—H17B108.1
N1—C7—H7B109.5O19—C18—C17112.26 (12)
H7A—C7—H7B109.5O19—C18—H18A109.2
N1—C7—H7C109.5C17—C18—H18A109.2
H7A—C7—H7C109.5O19—C18—H18B109.2
H7B—C7—H7C109.5C17—C18—H18B109.2
C13—C8—C9120.59 (12)H18A—C18—H18B107.9
C13—C8—N2118.96 (11)C18—O19—C20110.30 (10)
C9—C8—N2120.45 (12)O19—C20—C21110.04 (12)
C10—C9—C8119.45 (14)O19—C20—H20A109.7
C10—C9—H9120.3C21—C20—H20A109.7
C8—C9—H9120.3O19—C20—H20B109.7
C9—C10—C11121.15 (14)C21—C20—H20B109.7
C9—C10—H10119.4H20A—C20—H20B108.2
C11—C10—H10119.4N16—C21—C20110.87 (11)
C10—C11—C12118.17 (12)N16—C21—H21A109.5
C10—C11—C14121.26 (14)C20—C21—H21A109.5
C12—C11—C14120.57 (15)N16—C21—H21B109.5
C13—C12—C11121.25 (13)C20—C21—H21B109.5
C13—C12—H12119.4H21A—C21—H21B108.1
C6—N1—N2—C32.4 (2)N1—N2—C8—C953.57 (18)
C7—N1—N2—C3160.94 (14)C13—C8—C9—C100.8 (2)
C6—N1—N2—C8163.62 (12)N2—C8—C9—C10179.08 (14)
C7—N1—N2—C837.79 (18)C8—C9—C10—C110.7 (3)
N1—N2—C3—O15171.72 (13)C9—C10—C11—C120.1 (3)
C8—N2—C3—O1510.9 (2)C9—C10—C11—C14179.93 (16)
N1—N2—C3—C44.50 (19)C10—C11—C12—C130.7 (2)
C8—N2—C3—C4165.37 (11)C14—C11—C12—C13179.35 (15)
O15—C3—C4—C5169.22 (15)C9—C8—C13—C120.3 (2)
N2—C3—C4—C56.88 (19)N2—C8—C13—C12179.65 (13)
O15—C3—C4—N161.3 (2)C11—C12—C13—C80.5 (2)
N2—C3—C4—N16177.35 (12)C5—C4—N16—C211.9 (2)
N16—C4—C5—C6177.11 (13)C3—C4—N16—C21167.96 (11)
C3—C4—C5—C67.4 (2)C5—C4—N16—C17143.29 (14)
N2—N1—C6—O22176.13 (14)C3—C4—N16—C1746.90 (17)
C7—N1—C6—O2217.8 (2)C4—N16—C17—C1893.59 (14)
N2—N1—C6—C52.2 (2)C21—N16—C17—C1854.29 (15)
C7—N1—C6—C5160.51 (14)N16—C17—C18—O1955.96 (15)
C4—C5—C6—O22173.17 (15)C17—C18—O19—C2058.23 (16)
C4—C5—C6—N15.1 (2)C18—O19—C20—C2158.88 (15)
C3—N2—C8—C1371.32 (17)C4—N16—C21—C2092.81 (14)
N1—N2—C8—C13126.34 (14)C17—N16—C21—C2056.56 (15)
C3—N2—C8—C9108.77 (16)O19—C20—C21—N1658.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O150.972.212.8636 (18)124
C10—H10···O15i0.932.533.3508 (19)148
C14—H14C···O15i0.962.533.419 (2)155
C5—H5···O19ii0.932.493.4124 (19)174
C21—H21B···O19ii0.972.523.3036 (18)137
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H19N3O3
Mr301.34
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.6246 (6), 8.8923 (6), 15.0842 (10)
β (°) 99.530 (7)
V3)744.03 (11)
Z2
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.38 × 0.35 × 0.30
Data collection
DiffractometerKuma Diffraction KM-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.716, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
2796, 2705, 2646
Rint0.025
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.07
No. of reflections2705
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13
Absolute structureFlack (1983); 1249 Fiedel pairs
Absolute structure parameter0.07 (16)

Computer programs: KM-4 Software (Kuma, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O150.972.212.8636 (18)124
C10—H10···O15i0.932.533.3508 (19)148
C14—H14C···O15i0.962.533.419 (2)155
C5—H5···O19ii0.932.493.4124 (19)174
C21—H21B···O19ii0.972.523.3036 (18)137
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBałoniak, S. & Melzer, E. (1979). Acta Pol. Pharm. 36, 147–154.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatrusiak, A. A., Katrusiak, A., Bałoniak, S. & Zielińska, K. (2002). Pol. J. Chem. 76, 45–56.  CAS Google Scholar
First citationKuma (1996). KM-4 User's Guide. Version 8.0.1. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds