metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­hydrogen norfloxacinium) tri-μ2-chlorido-bis­­[tri­chloridobismuthate(III)] chloride dihydrate

aInstitute of Chemistry, FEB RAS, Prospekt 100-letiya Vladivostoka 159, Vladivostok 690022, Russian Federation
*Correspondence e-mail: gerasimenko@ich.dvo.ru

(Received 25 December 2007; accepted 12 January 2008; online 23 January 2008)

The title compound, {systematic name: (3-carb­oxy-1-ethyl-6-fluoro-7-piperazin-4-ium-1-yl-1H-quinolin-4-yl­idene)oxonium tri-μ2-chlorido-bis­[trichloridobismuthate(III)] chloride dihydrate], (C16H20FN3O3)2[Bi2Cl9]Cl·2H2O, is composed of [Bi2Cl9]3− anions lying on crystallographic twofold rotation axes, Cl anions also on twofold axes, C16H20FN3O32+ cations, and water mol­ecules. The BiIII coordination polyhedron is a distorted octa­hedron and two such octa­hedra share a triangular face to form the complex anion. There are three short terminal Bi—Cl bonds [2.5471 (6)–2.5781(5 Å] and three longer bridging bonds [2.8599 (5)–2.9984 (6) Å] in each octa­hedron. Anions, cations and water mol­ecules are linked by hydrogen bonds to form a three-dimensional network. There are also ππ stacking inter­actions between quinoline ring systems, with an inter­planar distance of 3.27 (1) Å.

Related literature

For the Cambridge Structural Database (Version 5.28) used to identify related structures, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H20FN3O3)2[Bi2Cl9]Cl·2H2O

  • Mr = 1451.19

  • Monoclinic, C 2/c

  • a = 13.9109 (12) Å

  • b = 22.7104 (19) Å

  • c = 14.5964 (12) Å

  • β = 92.798 (2)°

  • V = 4605.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.27 mm−1

  • T = 203 (2) K

  • 0.27 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: Gaussian (SADABS; Bruker, 2003[Bruker (2003). SAINT (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.180, Tmax = 0.334

  • 16736 measured reflections

  • 6987 independent reflections

  • 6081 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.06

  • 6987 reflections

  • 282 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Bi1⋯Bi1i 3.7851 (3)
Bi1—Cl4 2.5471 (6)
Bi1—Cl3 2.5497 (5)
Bi1—Cl5 2.5781 (5)
Bi1—Cl1 2.8599 (5)
Bi1—Cl2 2.9194 (6)
Bi1—Cl2i 2.9984 (6)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.83 1.85 2.583 (2) 146
O2—H2⋯Cl6ii 0.83 2.19 3.0150 (15) 173
O4—H4A⋯Cl5 0.715 (18) 2.563 (18) 3.270 (2) 170 (4)
O4—H4B⋯Cl6 0.717 (19) 2.47 (2) 3.146 (2) 157 (4)
N3—H3A⋯Cl2iii 0.91 2.51 3.3961 (19) 165
N3—H3B⋯O4iv 0.91 1.82 2.693 (3) 160
Symmetry codes: (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Version 1.9.0; Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Norfloxacin (nfH) belongs to the second-generation quinolone antimicrobial agents. According to a search of the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), well determined relevant structures are those where norfloxacin acts as an anion, a singly protonated cation or a zwitterion. The present research deals with the synthesis and structure of a chlorido-bismuth complex with the doubly protonated cation of norfloxacin (nfH3)2+.

The asymmetric unit of the title compound, (I), contains one Bi atom, five chlorine atoms, one nfH3 cation and one H2O molecule. The Bi atoms are coordinated by six Cl atoms in a distorted octahedral geometry. Two Bi-centred octahedra are linked by triple Cl bridges to form a dinuclear [Bi2Cl9]3- complex (Fig. 1), which lies on a twofold rotation axis, with a Bi···Bi distance of 3.7851 (3) Å. In the Bi-centred octahedra there are three short terminal Bi—Cl bonds [2.5471 (6)–2.5781 (5) Å] and three longer bridging bonds [2.8599 (5)–2.9984(6] Å). These anions pack in columns parallel to the [101] direction.

The protonation of nfH32+ is realised on the carbonyl atom O3 and N3 of the piperazine ring (Fig. 2). The hydrogen atom H3 is linked by an intramolecular hydrogen bond with O1 of the carboxyl group. O2 and N3 in the cation act as hydrogen-bond donors, via H2, H3A and H3B.

Water molecules, uncoordinated chloride anions (Cl6) and nfH32+ cations are linked in zigzag chains by hydrogen bonds parallel to the [102] direction (Fig. 3). In the chain, the nfH32+ cations are pairwise parallel (as a result of inversion symmetry), and there exist also ππ interactions between quinoline ring systems, with an interplanar distance of 3.27 (1) Å.

The combination of the hydrogen bonds and ππ stacking generates a three-dimensional network (Fig. 4).

Related literature top

For the Cambridge Structural Database (Version 5.28) used to identify related structures, see: Allen (2002).

Experimental top

Bi(OH)3 (0.052 g, 0.2 mmol) was reacted with nfH (0.066 g, 0.2 mmol) in an aqueous solution of HCl (21%, 20 ml). Yellow crystals were obtained after evaporation for 72 h at room temperature.

Refinement top

H atoms (for H2O) were located in a difference map and refined with Uiso(H) = 1.5Ueq(O) and the O—H distances were restrained to be similar. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.94, 0.97 and 0.98 Å; N—H = 0.91 Å and O—H = 0.83 Å. All H atoms were refined with Uiso set to 1.2 or 1.5 times Ueq of the parent atom. The maximum peak and the deepest hole are located 0.77 Å and 1.33 Å from Bi, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Version 1.9.0; Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the dinuclear [Bi2Cl9]3- complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. A view of the nfH32+ canion, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 3] Fig. 3. Fragment of the zigzag chain formed from water molecules, chloride anions and nfH32+ canions, with hydrogen bonds shown as dashed lines.
[Figure 4] Fig. 4. The crystal structure of the title compound viewed along the c axis. Dashed lines represent hydrogen bonds.
(3-carboxy-1-ethyl-6-fluoro-7-piperazin-4-ium-1-yl-1H-quinolin-4- ylidene)oxonium tri-µ2-chlorido-bis[trichloridobismuthate(III)] chloride dihydrate] top
Crystal data top
(C16H20FN3O3)2[Bi2Cl9]Cl·2H2OF(000) = 2784
Mr = 1451.19Dx = 2.093 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.9109 (12) ÅCell parameters from 951 reflections
b = 22.7104 (19) Åθ = 3.9–30.6°
c = 14.5964 (12) ŵ = 8.27 mm1
β = 92.798 (2)°T = 203 K
V = 4605.8 (7) Å3Prism, yellow
Z = 40.27 × 0.22 × 0.17 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6987 independent reflections
Radiation source: fine-focus sealed tube6081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.33 pixels mm-1θmax = 31.5°, θmin = 3.6°
ϕ and ω scansh = 2015
Absorption correction: gaussian
(SADABS; Bruker, 2003)
k = 3132
Tmin = 0.180, Tmax = 0.334l = 2014
16736 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.9407P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.012
6987 reflectionsΔρmax = 1.58 e Å3
282 parametersΔρmin = 0.84 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000362 (17)
Crystal data top
(C16H20FN3O3)2[Bi2Cl9]Cl·2H2OV = 4605.8 (7) Å3
Mr = 1451.19Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.9109 (12) ŵ = 8.27 mm1
b = 22.7104 (19) ÅT = 203 K
c = 14.5964 (12) Å0.27 × 0.22 × 0.17 mm
β = 92.798 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6987 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2003)
6081 reflections with I > 2σ(I)
Tmin = 0.180, Tmax = 0.334Rint = 0.031
16736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.58 e Å3
6987 reflectionsΔρmin = 0.84 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.125399 (5)0.231497 (3)0.205209 (5)0.01711 (2)
Cl10.00000.13708 (3)0.25000.02433 (15)
Cl20.06458 (4)0.26380 (2)0.38711 (4)0.02637 (11)
Cl30.16112 (4)0.18802 (2)0.04945 (3)0.02670 (11)
Cl40.27484 (4)0.18468 (3)0.28222 (4)0.03193 (13)
Cl50.20122 (4)0.33350 (2)0.18044 (4)0.03441 (13)
Cl60.50000.48180 (3)0.25000.0356 (2)
F10.75259 (8)0.46603 (5)0.43340 (9)0.0275 (3)
O11.25735 (10)0.45323 (6)0.28600 (10)0.0262 (3)
O21.32428 (11)0.54074 (6)0.32107 (12)0.0317 (4)
H21.37140.52590.29700.048*
O31.08058 (10)0.43447 (6)0.32403 (10)0.0225 (3)
H31.13480.42590.30670.034*
O40.42564 (14)0.36716 (10)0.14845 (15)0.0632 (6)
H4A0.3777 (12)0.3561 (14)0.152 (3)0.076*
H4B0.429 (3)0.3968 (8)0.165 (2)0.076*
N11.07419 (11)0.60588 (7)0.41452 (11)0.0167 (3)
N20.73624 (11)0.58287 (7)0.48464 (11)0.0200 (4)
N30.56019 (12)0.64241 (8)0.52271 (13)0.0275 (4)
H3A0.55580.67020.47780.033*
H3B0.50840.64640.55790.033*
C11.15439 (13)0.58404 (8)0.38258 (13)0.0184 (4)
H11.20910.60830.38200.022*
C21.16090 (13)0.52665 (8)0.34983 (13)0.0179 (4)
C31.08010 (13)0.48980 (8)0.35148 (13)0.0172 (4)
C40.99316 (13)0.51308 (8)0.38424 (13)0.0167 (4)
C50.91002 (14)0.47809 (8)0.38934 (13)0.0192 (4)
H50.91050.43860.37000.023*
C60.82924 (13)0.50185 (8)0.42245 (13)0.0193 (4)
C70.82172 (13)0.56183 (8)0.45095 (13)0.0180 (4)
C80.90503 (13)0.59551 (8)0.44819 (13)0.0176 (4)
H80.90430.63480.46840.021*
C90.99058 (13)0.57178 (8)0.41560 (13)0.0170 (4)
C101.07597 (14)0.66786 (8)0.44871 (14)0.0211 (4)
H10A1.14270.67940.46390.025*
H10B1.04060.67010.50500.025*
C111.03232 (16)0.71041 (9)0.37950 (16)0.0282 (5)
H11A1.06420.70650.32220.042*
H11B1.04030.75030.40230.042*
H11C0.96430.70190.36940.042*
C121.25206 (14)0.50349 (9)0.31606 (14)0.0213 (4)
C130.73860 (14)0.64186 (9)0.52505 (14)0.0228 (4)
H13A0.74050.67140.47630.027*
H13B0.79690.64630.56500.027*
C140.65017 (15)0.65186 (10)0.58046 (16)0.0270 (5)
H14A0.65160.62470.63270.032*
H14B0.65110.69210.60450.032*
C150.55900 (15)0.58264 (10)0.48029 (16)0.0284 (5)
H15A0.50120.57820.43970.034*
H15B0.55720.55260.52840.034*
C160.64805 (14)0.57405 (10)0.42577 (14)0.0254 (5)
H16A0.64800.53420.40010.031*
H16B0.64710.60210.37480.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01352 (3)0.01870 (3)0.01912 (3)0.00108 (2)0.00093 (2)0.00093 (2)
Cl10.0228 (3)0.0167 (3)0.0330 (4)0.0000.0039 (3)0.000
Cl20.0241 (2)0.0284 (2)0.0269 (2)0.00434 (18)0.00425 (19)0.00849 (19)
Cl30.0214 (2)0.0372 (2)0.0214 (2)0.00634 (19)0.00045 (18)0.0049 (2)
Cl40.0214 (2)0.0466 (3)0.0275 (3)0.0063 (2)0.00225 (19)0.0042 (2)
Cl50.0332 (3)0.0226 (2)0.0480 (3)0.0083 (2)0.0071 (2)0.0018 (2)
Cl60.0209 (3)0.0200 (3)0.0671 (5)0.0000.0154 (3)0.000
F10.0198 (5)0.0281 (6)0.0351 (7)0.0095 (5)0.0049 (5)0.0042 (5)
O10.0213 (7)0.0252 (7)0.0324 (8)0.0038 (6)0.0036 (6)0.0085 (6)
O20.0182 (7)0.0258 (7)0.0523 (10)0.0008 (6)0.0126 (6)0.0086 (7)
O30.0206 (6)0.0201 (6)0.0267 (7)0.0011 (5)0.0017 (6)0.0056 (5)
O40.0324 (9)0.0866 (13)0.0726 (13)0.0253 (9)0.0216 (9)0.0498 (11)
N10.0134 (6)0.0167 (6)0.0199 (7)0.0018 (5)0.0008 (6)0.0012 (6)
N20.0109 (7)0.0268 (7)0.0223 (8)0.0003 (6)0.0003 (6)0.0025 (7)
N30.0158 (7)0.0310 (8)0.0360 (10)0.0057 (7)0.0045 (7)0.0098 (8)
C10.0142 (8)0.0213 (8)0.0196 (9)0.0020 (6)0.0008 (7)0.0016 (7)
C20.0151 (8)0.0208 (8)0.0178 (8)0.0006 (7)0.0013 (7)0.0004 (7)
C30.0183 (8)0.0163 (7)0.0167 (8)0.0006 (6)0.0004 (7)0.0005 (7)
C40.0157 (8)0.0186 (8)0.0159 (8)0.0006 (6)0.0002 (6)0.0002 (7)
C50.0194 (8)0.0209 (8)0.0171 (8)0.0032 (7)0.0002 (7)0.0016 (7)
C60.0148 (8)0.0240 (8)0.0189 (9)0.0045 (7)0.0002 (7)0.0007 (7)
C70.0159 (8)0.0211 (8)0.0168 (8)0.0015 (7)0.0016 (7)0.0003 (7)
C80.0165 (8)0.0183 (8)0.0180 (8)0.0006 (6)0.0001 (7)0.0016 (7)
C90.0141 (8)0.0200 (8)0.0168 (8)0.0002 (6)0.0004 (6)0.0006 (7)
C100.0171 (8)0.0192 (8)0.0273 (10)0.0027 (7)0.0027 (7)0.0087 (7)
C110.0277 (10)0.0224 (9)0.0348 (12)0.0019 (8)0.0045 (9)0.0004 (9)
C120.0200 (9)0.0248 (9)0.0191 (9)0.0019 (7)0.0008 (7)0.0007 (7)
C130.0175 (8)0.0232 (9)0.0277 (10)0.0006 (7)0.0029 (7)0.0024 (8)
C140.0199 (9)0.0276 (9)0.0338 (11)0.0043 (8)0.0048 (8)0.0006 (9)
C150.0157 (9)0.0325 (10)0.0367 (12)0.0009 (8)0.0014 (8)0.0053 (9)
C160.0169 (9)0.0361 (10)0.0229 (10)0.0016 (8)0.0028 (7)0.0020 (8)
Geometric parameters (Å, º) top
Bi1—Bi1i3.7851 (3)C1—H10.940
Bi1—Cl42.5471 (6)C2—C31.402 (3)
Bi1—Cl32.5497 (5)C2—C121.479 (3)
Bi1—Cl52.5781 (5)C3—C41.424 (3)
Bi1—Cl12.8599 (5)C4—C51.408 (3)
Bi1—Cl22.9194 (6)C4—C91.411 (3)
Bi1—Cl2i2.9984 (6)C5—C61.357 (3)
Cl1—Bi1i2.8599 (5)C5—H50.940
Cl2—Bi1i2.9984 (6)C6—C71.430 (3)
F1—C61.357 (2)C7—C81.391 (3)
O1—C121.226 (2)C8—C91.410 (3)
O2—C121.313 (2)C8—H80.940
O2—H20.830C10—C111.504 (3)
O3—C31.319 (2)C10—H10A0.980
O3—H30.830C10—H10B0.980
O4—H4A0.715 (18)C11—H11A0.970
O4—H4B0.717 (19)C11—H11B0.970
N1—C11.326 (2)C11—H11C0.970
N1—C91.398 (2)C13—C141.522 (3)
N1—C101.493 (2)C13—H13A0.980
N2—C71.393 (2)C13—H13B0.980
N2—C131.464 (3)C14—H14A0.980
N2—C161.477 (3)C14—H14B0.980
N3—C141.490 (3)C15—C161.517 (3)
N3—C151.492 (3)C15—H15A0.980
N3—H3A0.910C15—H15B0.980
N3—H3B0.910C16—H16A0.980
C1—C21.393 (3)C16—H16B0.980
Cl4—Bi1—Cl392.375 (18)F1—C6—C7117.90 (16)
Cl4—Bi1—Cl596.10 (2)C8—C7—N2123.26 (17)
Cl3—Bi1—Cl597.124 (19)C8—C7—C6116.27 (17)
Cl4—Bi1—Cl194.585 (16)N2—C7—C6120.35 (16)
Cl3—Bi1—Cl193.506 (14)C7—C8—C9121.19 (17)
Cl5—Bi1—Cl1164.578 (16)C7—C8—H8119.4
Cl4—Bi1—Cl288.285 (17)C9—C8—H8119.4
Cl3—Bi1—Cl2170.408 (16)N1—C9—C8120.56 (16)
Cl5—Bi1—Cl292.318 (17)N1—C9—C4119.04 (16)
Cl1—Bi1—Cl276.903 (12)C8—C9—C4120.39 (16)
Cl4—Bi1—Cl2i169.401 (17)N1—C10—C11112.43 (16)
Cl3—Bi1—Cl2i84.255 (16)N1—C10—H10A109.1
Cl5—Bi1—Cl2i94.291 (17)C11—C10—H10A109.1
Cl1—Bi1—Cl2i75.647 (12)N1—C10—H10B109.1
Cl2—Bi1—Cl2i93.385 (16)C11—C10—H10B109.1
Bi1—Cl1—Bi1i82.867 (18)H10A—C10—H10B107.9
Bi1—Cl2—Bi1i79.513 (14)C10—C11—H11A109.5
C12—O2—H2109.5C10—C11—H11B109.5
C3—O3—H3109.5H11A—C11—H11B109.5
H4A—O4—H4B110 (4)C10—C11—H11C109.5
C1—N1—C9120.76 (15)H11A—C11—H11C109.5
C1—N1—C10118.00 (15)H11B—C11—H11C109.5
C9—N1—C10121.24 (15)O1—C12—O2124.09 (19)
C7—N2—C13116.96 (15)O1—C12—C2121.17 (18)
C7—N2—C16116.57 (16)O2—C12—C2114.74 (17)
C13—N2—C16111.13 (16)N2—C13—C14110.36 (16)
C14—N3—C15110.96 (16)N2—C13—H13A109.6
C14—N3—H3A109.4C14—C13—H13A109.6
C15—N3—H3A109.4N2—C13—H13B109.6
C14—N3—H3B109.4C14—C13—H13B109.6
C15—N3—H3B109.4H13A—C13—H13B108.1
H3A—N3—H3B108.0N3—C14—C13110.88 (18)
N1—C1—C2122.72 (17)N3—C14—H14A109.5
N1—C1—H1118.6C13—C14—H14A109.5
C2—C1—H1118.6N3—C14—H14B109.5
C1—C2—C3119.14 (17)C13—C14—H14B109.5
C1—C2—C12121.21 (17)H14A—C14—H14B108.1
C3—C2—C12119.62 (16)N3—C15—C16110.00 (17)
O3—C3—C2123.19 (17)N3—C15—H15A109.7
O3—C3—C4118.21 (16)C16—C15—H15A109.7
C2—C3—C4118.61 (16)N3—C15—H15B109.7
C5—C4—C9118.83 (17)C16—C15—H15B109.7
C5—C4—C3121.43 (17)H15A—C15—H15B108.2
C9—C4—C3119.70 (16)N2—C16—C15110.71 (17)
C6—C5—C4119.41 (17)N2—C16—H16A109.5
C6—C5—H5120.3C15—C16—H16A109.5
C4—C5—H5120.3N2—C16—H16B109.5
C5—C6—F1118.21 (17)C15—C16—H16B109.5
C5—C6—C7123.80 (17)H16A—C16—H16B108.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.831.852.583 (2)146
O2—H2···Cl6ii0.832.193.0150 (15)173
O4—H4A···Cl50.72 (2)2.56 (2)3.270 (2)170 (4)
O4—H4B···Cl60.72 (2)2.47 (2)3.146 (2)157 (4)
N3—H3A···Cl2iii0.912.513.3961 (19)165
N3—H3B···O4iv0.911.822.693 (3)160
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C16H20FN3O3)2[Bi2Cl9]Cl·2H2O
Mr1451.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)203
a, b, c (Å)13.9109 (12), 22.7104 (19), 14.5964 (12)
β (°) 92.798 (2)
V3)4605.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)8.27
Crystal size (mm)0.27 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionGaussian
(SADABS; Bruker, 2003)
Tmin, Tmax0.180, 0.334
No. of measured, independent and
observed [I > 2σ(I)] reflections
16736, 6987, 6081
Rint0.031
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.06
No. of reflections6987
No. of parameters282
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.58, 0.84

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), XP in SHELXTL (Sheldrick, 2008), publCIF (Version 1.9.0; Westrip, 2008).

Selected bond lengths (Å) top
Bi1—Bi1i3.7851 (3)Bi1—Cl12.8599 (5)
Bi1—Cl42.5471 (6)Bi1—Cl22.9194 (6)
Bi1—Cl32.5497 (5)Bi1—Cl2i2.9984 (6)
Bi1—Cl52.5781 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.831.852.583 (2)146
O2—H2···Cl6ii0.832.193.0150 (15)173
O4—H4A···Cl50.715 (18)2.563 (18)3.270 (2)170 (4)
O4—H4B···Cl60.717 (19)2.47 (2)3.146 (2)157 (4)
N3—H3A···Cl2iii0.912.513.3961 (19)165
N3—H3B···O4iv0.911.822.693 (3)160
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds