organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Bi­cyclo­[4.2.0]octa-1(6),2,4-trien-3-yl]-3-(but-3-en­yl)imidazolium bromide

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, bSchool of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China, and cChina Academy of Engineering Physics, Mianyang 621900, People's Republic of China
*Correspondence e-mail: orgxie@scu.edu.cn

(Received 8 November 2007; accepted 12 November 2007; online 11 January 2008)

In the title compound, C15H17N2+·Br, the cyclo­butene and benzene rings are coplanar. The dihedral angle between the benzene and imidazolium rings is 21.2 (3)°. In the crystal structure, the C15H17N2+ and Br ions are linked into a zigzag chain along the b axis by C—H⋯Br hydrogen bonds, and weak C—H⋯π inter­actions involving the benzene ring of a screw-related cation.

Related literature

For related literature, see: Farona (1996[Farona, M. F. (1996). Prog. Polym. Sci. 21, 505-555.]); Tan & Arnold (1988[Tan, L. S. & Arnold, F. E. (1988). J. Polym. Sci. A Polym. Chem. 26, 1819-1834.]); Zhang et al. (2005[Zhang, Y., Shen, X. & Huang, F. (2005). Thermochim. Acta, 430, 15-22.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N2+·Br

  • Mr = 305.22

  • Monoclinic, P 21 /c

  • a = 9.342 (3) Å

  • b = 11.775 (3) Å

  • c = 13.695 (7) Å

  • β = 107.76 (3)°

  • V = 1434.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 291 (2) K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2811 measured reflections

  • 2665 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.005

  • 3 standard reflections every 300 reflections intensity decay: 5.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 0.94

  • 2665 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the C1–C4/C7/C9 ring centroid.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Br 0.93 2.66 3.561 (5) 165
C11—H11⋯Bri 0.93 2.87 3.697 (6) 149
C13—H13ACg1i 0.97 2.91 3.735 (7) 143
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Benzocyclobutene (BCB) based polymeric materials have attracted considerable attention and research interest in the area of electronic applications because of their excellent properties such as low dielectric constant, low dissipation factor, low moisture picking-up, film planarization and high thermal-stability (Farona, 1996; Tan & Arnold, 1988). A number of BCB derivatives, such as BCB-alkyne imide, bis-BCB imide, organosiloxane bridged bis-BCB have been synthesized (Zhang et al., 2005). We report here the crystal structure of the title imidazolium BCB compound, (I), which was synthesized by alkylation of N-imidazolybenzocyclobutene and 4-bromo-1-butene.

The cyclobutene and benzene rings coplanar, with a dihedral angle of 0.7 (4)°. The dihedral angle between the benzene and imidazolium rings is 21.2 (3)°. In the crystal structure of (I), the cations and the bromide ions are linked via C—H···Br hydrogen bonds, and weak C—H···π interactions involving the C13—H13A group and the benzene of a screw-related molecule (Table 1), forming a zigzag chain along the b axis.

Related literature top

For related literature, see: Farona (1996); Tan & Arnold (1988); Zhang et al. (2005).

Experimental top

4-(N-imidazolyl)benzocyclobutene (5 mmol, 850 mg) and 4-bromo-1-butene (6 mmol, 810 mg,) were placed in a two-necked round-bottomed flask under a nitrogen atmosphere and the mixture was heated at 353 K for 5 h. A light-yellow solid was obtained after the surplus 4-bromo-1-butene was removed under vacuum. Colourless crystals of compound (I) were obtained by recrystallization of the solid from methanol-ethyl ether (1:4 v/v) solution (yield: 1.278 g). 1 H NMR (400 MHz, CDCl3): δ 10.80 (s, 1H), 7.74 (s, 1H), 7.61 (s, 1H), 7.49 (2 d, J = 7.6 Hz, 1H), 7.42 (s, 1H), 7.21 (d, J = 7.6 Hz, 1H), 5.86–5.95 (m, 1H), 5.11 (d, J = 14.4 Hz, 2H), 4.75 (t, 2H), 3.23 (s, 4H,), 2.76 (q, 2H); 13C NMR (100 MHz, CDCl3): δ 148.22, 147.96, 135.57, 133.50, 132.65, 124.46, 123.48, 121.12, 120.97, 119.49, 116.80, 49.30, 34.60, 29.54, 29.46 p.p.m..

Refinement top

H atoms were positioned geometrically and refined in the riding-model approximation with C—H = 0.93 or 0.97 Å. A common free variable for Uiso was refined for the aromatic H atoms, and similarly for the methylene and methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-(but-3-enyl)imidazolium bromide top
Crystal data top
C15H17N2+·BrF(000) = 624
Mr = 305.22Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24 reflections
a = 9.342 (3) Åθ = 4.8–9.6°
b = 11.775 (3) ŵ = 2.85 mm1
c = 13.695 (7) ÅT = 291 K
β = 107.76 (3)°Block, colourless
V = 1434.7 (10) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.3°
Graphite monochromatorh = 1110
ω/2θ scansk = 014
2811 measured reflectionsl = 616
2665 independent reflections3 standard reflections every 300 reflections
1479 reflections with I > 2σ(I) intensity decay: 5.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0861P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
2665 reflectionsΔρmax = 0.43 e Å3
166 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
C15H17N2+·BrV = 1434.7 (10) Å3
Mr = 305.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.342 (3) ŵ = 2.85 mm1
b = 11.775 (3) ÅT = 291 K
c = 13.695 (7) Å0.30 × 0.25 × 0.25 mm
β = 107.76 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
2811 measured reflections3 standard reflections every 300 reflections
2665 independent reflections intensity decay: 5.6%
1479 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.94Δρmax = 0.43 e Å3
2665 reflectionsΔρmin = 0.54 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.66118 (7)0.64239 (5)0.09316 (5)0.0607 (3)
N10.2215 (4)0.5236 (3)0.1168 (3)0.0378 (9)
N20.3774 (5)0.3946 (4)0.1964 (3)0.0480 (11)
C10.1596 (5)0.6215 (4)0.0546 (4)0.0367 (11)
C20.0346 (6)0.6742 (5)0.0674 (4)0.0457 (13)
H20.01010.64440.11380.068 (7)*
C30.0254 (6)0.7700 (5)0.0128 (4)0.0502 (14)
H30.10960.80560.02150.068 (7)*
C40.0439 (6)0.8108 (5)0.0547 (4)0.0476 (13)
C50.0411 (7)0.9018 (5)0.1342 (5)0.0641 (16)
H5A0.06020.97810.10650.104 (8)*
H5B0.04700.89950.19420.104 (8)*
C60.1832 (7)0.8406 (5)0.1486 (5)0.0650 (17)
H6A0.16690.80720.21590.104 (8)*
H6B0.27420.88600.12840.104 (8)*
C70.1696 (6)0.7568 (5)0.0671 (4)0.0462 (13)
C80.2313 (6)0.6611 (4)0.0145 (4)0.0449 (13)
H80.31470.62510.02400.068 (7)*
C90.3604 (5)0.4861 (4)0.1372 (4)0.0429 (12)
H90.43470.51850.11400.068 (7)*
C100.1468 (6)0.4519 (5)0.1661 (4)0.0498 (14)
H100.04700.45800.16490.068 (7)*
C110.2442 (6)0.3735 (5)0.2151 (4)0.0516 (14)
H110.22530.31480.25500.068 (7)*
C120.5169 (7)0.3289 (5)0.2334 (5)0.0627 (17)
H12A0.54210.29800.17510.104 (8)*
H12B0.50090.26570.27430.104 (8)*
C130.6461 (7)0.3988 (6)0.2966 (5)0.0742 (19)
H13A0.73260.34970.32290.104 (8)*
H13B0.67150.45470.25250.104 (8)*
C140.6175 (8)0.4578 (8)0.3828 (6)0.089 (2)
H140.58560.41220.42760.068 (7)*
C150.6302 (9)0.5617 (9)0.4043 (7)0.107 (3)
H15A0.66160.61190.36250.104 (8)*
H15B0.60820.58840.46200.104 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0601 (4)0.0638 (4)0.0677 (4)0.0167 (3)0.0337 (3)0.0169 (3)
N10.040 (2)0.041 (2)0.033 (2)0.0065 (19)0.0113 (18)0.0035 (19)
N20.057 (3)0.042 (3)0.045 (2)0.003 (2)0.016 (2)0.005 (2)
C10.036 (3)0.043 (3)0.029 (2)0.007 (2)0.006 (2)0.006 (2)
C20.040 (3)0.064 (4)0.033 (3)0.001 (3)0.010 (2)0.002 (3)
C30.041 (3)0.063 (4)0.047 (3)0.011 (3)0.015 (3)0.003 (3)
C40.046 (3)0.046 (3)0.044 (3)0.004 (3)0.004 (3)0.004 (3)
C50.069 (4)0.059 (4)0.061 (4)0.015 (3)0.014 (3)0.011 (3)
C60.070 (4)0.069 (4)0.056 (4)0.008 (3)0.020 (3)0.017 (3)
C70.047 (3)0.052 (3)0.037 (3)0.001 (3)0.010 (3)0.002 (3)
C80.040 (3)0.053 (3)0.044 (3)0.003 (2)0.017 (2)0.001 (3)
C90.039 (3)0.047 (3)0.041 (3)0.001 (2)0.012 (2)0.004 (2)
C100.052 (3)0.057 (3)0.045 (3)0.017 (3)0.021 (3)0.001 (3)
C110.058 (4)0.048 (3)0.050 (3)0.009 (3)0.017 (3)0.007 (3)
C120.069 (4)0.050 (4)0.072 (4)0.014 (3)0.024 (3)0.010 (3)
C130.062 (4)0.076 (5)0.075 (5)0.023 (4)0.008 (4)0.013 (4)
C140.075 (5)0.110 (7)0.067 (5)0.015 (5)0.002 (4)0.001 (5)
C150.078 (6)0.118 (8)0.104 (7)0.006 (5)0.003 (5)0.025 (6)
Geometric parameters (Å, º) top
N1—C91.317 (6)C6—H6A0.97
N1—C101.394 (6)C6—H6B0.97
N1—C11.444 (6)C7—C81.368 (7)
N2—C91.329 (6)C8—H80.93
N2—C111.367 (7)C9—H90.93
N2—C121.466 (7)C10—C111.327 (7)
C1—C21.380 (7)C10—H100.93
C1—C81.396 (7)C11—H110.93
C2—C31.374 (7)C12—C131.499 (9)
C2—H20.93C12—H12A0.97
C3—C41.368 (7)C12—H12B0.97
C3—H30.93C13—C141.463 (10)
C4—C71.390 (7)C13—H13A0.97
C4—C51.523 (8)C13—H13B0.97
C5—C61.576 (8)C14—C151.255 (11)
C5—H5A0.97C14—H140.93
C5—H5B0.97C15—H15A0.93
C6—C71.523 (7)C15—H15B0.93
C9—N1—C10107.4 (4)C4—C7—C693.2 (4)
C9—N1—C1125.8 (4)C7—C8—C1114.9 (5)
C10—N1—C1126.8 (4)C7—C8—H8122.6
C9—N2—C11108.4 (5)C1—C8—H8122.6
C9—N2—C12124.5 (5)N1—C9—N2109.2 (4)
C11—N2—C12127.1 (5)N1—C9—H9125.4
C2—C1—C8122.3 (5)N2—C9—H9125.4
C2—C1—N1119.1 (4)C11—C10—N1107.4 (5)
C8—C1—N1118.5 (4)C11—C10—H10126.3
C3—C2—C1121.4 (5)N1—C10—H10126.3
C3—C2—H2119.3C10—C11—N2107.6 (5)
C1—C2—H2119.3C10—C11—H11126.2
C4—C3—C2117.2 (5)N2—C11—H11126.2
C4—C3—H3121.4N2—C12—C13112.6 (5)
C2—C3—H3121.4N2—C12—H12A109.1
C3—C4—C7121.0 (5)C13—C12—H12A109.1
C3—C4—C5145.3 (5)N2—C12—H12B109.1
C7—C4—C593.7 (4)C13—C12—H12B109.1
C4—C5—C686.3 (4)H12A—C12—H12B107.8
C4—C5—H5A114.3C14—C13—C12114.4 (6)
C6—C5—H5A114.3C14—C13—H13A108.7
C4—C5—H5B114.3C12—C13—H13A108.7
C6—C5—H5B114.3C14—C13—H13B108.7
H5A—C5—H5B111.4C12—C13—H13B108.7
C7—C6—C586.7 (4)H13A—C13—H13B107.6
C7—C6—H6A114.2C15—C14—C13128.6 (9)
C5—C6—H6A114.2C15—C14—H14115.7
C7—C6—H6B114.2C13—C14—H14115.7
C5—C6—H6B114.2C14—C15—H15A120.0
H6A—C6—H6B111.4C14—C15—H15B120.0
C8—C7—C4123.2 (5)H15A—C15—H15B120.0
C8—C7—C6143.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Br0.932.663.561 (5)165
C11—H11···Bri0.932.873.697 (6)149
C13—H13A···Cg1i0.972.913.735 (7)143
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N2+·Br
Mr305.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.342 (3), 11.775 (3), 13.695 (7)
β (°) 107.76 (3)
V3)1434.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2811, 2665, 1479
Rint0.005
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 0.94
No. of reflections2665
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Br0.932.663.561 (5)165
C11—H11···Bri0.932.873.697 (6)149
C13—H13A···Cg1i0.972.913.735 (7)143
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20574046) for financial support.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarona, M. F. (1996). Prog. Polym. Sci. 21, 505–555.  CrossRef CAS Web of Science Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, L. S. & Arnold, F. E. (1988). J. Polym. Sci. A Polym. Chem. 26, 1819–1834.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Y., Shen, X. & Huang, F. (2005). Thermochim. Acta, 430, 15–22.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds