metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m300-m301

Di­chlorido(di­methyl­glyoximato-κ2N,N′)(di­methyl­glyoxime-κ2N,N′)cobalt(III)

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 10 November 2007; accepted 25 December 2007; online 4 January 2008)

In the title compound, [Co(C4H7N2O2)Cl2(C4H8N2O2)], the CoIII ion has a distorted octa­hedral coordination environment. The equatorial plane consists of four N atoms, two each from the dimethyl­glyoxime and dimethyl­glyoximate ligands, while the two axial positions are occupied by two chloride ions. Strong intra­molecular O—H⋯O hydrogen bonds are observed between the dimethyl­glyoxime and dimethyl­glyoximate ligands. Mol­ecules are linked into a chain running along the [101] direction by O—H⋯O and C—H⋯Cl hydrogen bonds. The chains are cross-linked through inter­molecular C—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Dayalan & Vijayaraghavan (2001[Dayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A 40, 959-964.]); Lee et al. (2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]); Gupta et al. (2000[Gupta, B. D., Singh, V., Quanango, K., Vijay Kanth, V., Yamuna, R., Barclay, T. & Cordes, W. (2000). J. Organomet. Chem. 602, 1-4.], 2001[Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83-92.], 2004[Gupta, B. D., Vijaykanth, V. & Singh, V. (2004). Organometallics, 23, 2067-2079.]); Ohkubo & Fukuzumi (2005[Ohkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105-1113.]); Raza­velt et al. (2005[Razavelt, M., Artero, V. & Fentcave, M. (2005). Inorg. Chem. 44, 4786-4795.]). Trommel et al. (2001[Trommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358-3366.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H7N2O2)Cl2(C4H8N2O2)]

  • Mr = 361.07

  • Monoclinic, P n

  • a = 8.1901 (2) Å

  • b = 8.1261 (2) Å

  • c = 10.4463 (3) Å

  • β = 102.007 (1)°

  • V = 680.03 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Bruker–Nonius Kappa-APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.819

  • 10990 measured reflections

  • 5284 independent reflections

  • 4711 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 0.99

  • 5284 reflections

  • 179 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2067 Friedel pairs

  • Flack parameter: 0.008 (7)

Table 1
Selected bond lengths (Å)

Cl1—Co 2.2292 (4)
Cl2—Co 2.2261 (4)
Co—N2 1.8870 (12)
Co—N3 1.9048 (13)
Co—N1 1.9051 (12)
Co—N4 1.9181 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 1.81 2.5875 (16) 158
O4—H4⋯O2 0.82 1.89 2.6604 (18) 156
O2—H2⋯O1i 0.82 1.73 2.5297 (17) 163
C4—H4C⋯Cl1i 0.96 2.73 3.6473 (19) 160
C5—H5A⋯Cl1ii 0.96 2.67 3.6317 (18) 175
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Dimethylglyoximatocobalt(III) complexes, generally known as cobaloximes, have been studied extensively as model compounds for vitamine-B12 (Trommel et al., 2001; Ohkubo & Fukuzumi, 2005). Most of the work on cobaloximes include electron-transfer reactions (Dayalan & Vijayaraghavan, 2001) and catalytic activity (Razavelt et al., 2005) in solution. There are few literature evidences relating the structural aspects of cobaloximes (Gupta et al., 2000; Gupta et al., 2001; Gupta et al., 2004). We report here the synthesis and X-ray crystal structure of the title compoud.

The coordination geometry around the CoIII ion can be described as a slightly distorted octahedron. The axial positions are occupied by the chloride ions. The glyoxime moieties are individually planar. The CoIII ion and the four N atoms of dimethylglyoxime ligands are approximately coplanar. The Co—N and Co—Cl bond lengths are normal (Table 1), and are comparable with the corresponding values observed in a related complex (Lee et al., 2007).

Strong intramolecular O—H···O hydrogen bonds are observed between the dimethylglyoxime and dimethylglyoximate ligands (Table 2). The crystal packing is stabilized by O—H···O and C—H···Cl hydrogen bonds. Atoms O2 and C4 of the molecule at (x, y, z) act as donors to atoms O1 and Cl1, respectively, of the molecule at (-1/2 + x, -y, -1/2 + z). These two hydrogen bonds form a chain running along the [1 0 1] direction. The chains are cross-linked through C—H···Cl intermolecular hydrogen bonds.

Related literature top

For related literature, see: Dayalan & Vijayaraghavan (2001); Lee et al. (2007); Gupta et al. (2000, 2001, 2004); Ohkubo & Fukuzumi (2005); Razavelt et al. (2005). Trommel et al. (2001).

Experimental top

Cobalt(II) chloride hexahydrate was thoroughly grinded and exposed to microwave for 30 s. Dehydrated cobalt(II) chloride (1.3 g) was mixed with dimethyl glyoxime (2.32 g). The mixture was intimately grinded and made into a paste using acetone and exposed to microwave radiation for 60 s. The microwave treated reaction mixture was exposed to atmosphere, till it became green. The green coloured product was recrystallized from acetone. Single crystals were obtained by slow evaporation of the acetone solution.

Refinement top

All H atoms were fixed geometrically (O—H = 0.82 Å and C—H = 0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 (Bruker–Nonius, 2004); data reduction: SAINT (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.
Dichlorido(dimethylglyoximato-κ2N,N')(dimethylglyoxime- κ2N,N')cobalt(III) top
Crystal data top
[Co(C4H7N2O2)Cl2(C4H8N2O2)]F(000) = 368
Mr = 361.07Dx = 1.763 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3586 reflections
a = 8.1901 (2) Åθ = 2.8–37.2°
b = 8.1261 (2) ŵ = 1.67 mm1
c = 10.4463 (3) ÅT = 293 K
β = 102.007 (1)°Plate, green
V = 680.03 (3) Å30.20 × 0.12 × 0.12 mm
Z = 2
Data collection top
Bruker–Nonius Kappa APEXII CCD
diffractometer
5284 independent reflections
Radiation source: fine-focus sealed tube4711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 37.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1213
Tmin = 0.786, Tmax = 0.819k = 1313
10990 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0235P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.023
5284 reflectionsΔρmax = 0.56 e Å3
179 parametersΔρmin = 0.29 e Å3
2 restraintsAbsolute structure: Flack (1983), 2067 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (7)
Crystal data top
[Co(C4H7N2O2)Cl2(C4H8N2O2)]V = 680.03 (3) Å3
Mr = 361.07Z = 2
Monoclinic, PnMo Kα radiation
a = 8.1901 (2) ŵ = 1.67 mm1
b = 8.1261 (2) ÅT = 293 K
c = 10.4463 (3) Å0.20 × 0.12 × 0.12 mm
β = 102.007 (1)°
Data collection top
Bruker–Nonius Kappa APEXII CCD
diffractometer
5284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4711 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.819Rint = 0.021
10990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.56 e Å3
S = 0.99Δρmin = 0.29 e Å3
5284 reflectionsAbsolute structure: Flack (1983), 2067 Friedel pairs
179 parametersAbsolute structure parameter: 0.008 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2744 (2)0.2411 (2)0.7384 (2)0.0354 (4)
H1A0.37620.30160.74360.053*
H1B0.18480.29740.68120.053*
H1C0.24970.23250.82410.053*
C20.29345 (19)0.07336 (17)0.68614 (15)0.0255 (3)
C30.15626 (19)0.01410 (18)0.60187 (15)0.0259 (3)
C40.0162 (2)0.0517 (2)0.56788 (19)0.0362 (4)
H4A0.09120.03390.52900.054*
H4B0.04860.09080.64570.054*
H4C0.02070.14080.50690.054*
C50.5786 (2)0.6808 (2)0.5132 (2)0.0353 (4)
H5A0.65400.68270.45410.053*
H5B0.62130.74970.58730.053*
H5C0.47120.72080.46910.053*
C60.5617 (2)0.50905 (17)0.55842 (15)0.0264 (3)
C70.70180 (19)0.41674 (18)0.63553 (16)0.0266 (3)
C80.8762 (2)0.4804 (2)0.6649 (2)0.0411 (4)
H8A0.88660.56470.73050.062*
H8B0.90270.52530.58670.062*
H8C0.95180.39210.69660.062*
Cl10.36969 (5)0.33736 (5)0.79458 (4)0.03361 (8)
Cl20.48754 (5)0.09885 (5)0.44061 (4)0.03422 (9)
Co0.42858 (2)0.21491 (2)0.618650 (19)0.02055 (4)
N10.43373 (15)0.00641 (15)0.70278 (13)0.0232 (2)
N20.20367 (15)0.15171 (15)0.56038 (12)0.0242 (2)
N30.65689 (16)0.27610 (14)0.67399 (13)0.0249 (2)
N40.42440 (16)0.42760 (15)0.53841 (13)0.0257 (2)
O10.57344 (14)0.05436 (13)0.77384 (12)0.0303 (2)
O20.09198 (16)0.24162 (15)0.46980 (13)0.0301 (2)
H20.06880.19040.40080.045*
O30.77626 (15)0.18097 (16)0.74654 (14)0.0362 (3)
H30.73520.09340.76280.054*
O40.28559 (16)0.50431 (15)0.46882 (14)0.0378 (3)
H40.20910.43770.45060.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0400 (9)0.0242 (7)0.0421 (10)0.0089 (7)0.0088 (8)0.0041 (7)
C20.0304 (7)0.0209 (5)0.0252 (7)0.0042 (5)0.0061 (6)0.0010 (5)
C30.0278 (7)0.0254 (6)0.0247 (7)0.0041 (5)0.0061 (5)0.0038 (5)
C40.0295 (8)0.0382 (8)0.0401 (9)0.0097 (7)0.0052 (6)0.0017 (7)
C50.0420 (10)0.0239 (6)0.0423 (10)0.0035 (7)0.0138 (8)0.0061 (7)
C60.0352 (7)0.0208 (5)0.0250 (7)0.0012 (5)0.0108 (6)0.0010 (5)
C70.0266 (7)0.0249 (6)0.0284 (7)0.0044 (5)0.0060 (6)0.0009 (6)
C80.0336 (8)0.0405 (9)0.0493 (11)0.0137 (7)0.0085 (7)0.0027 (8)
Cl10.0474 (2)0.02841 (16)0.02782 (18)0.00147 (15)0.01415 (16)0.00198 (14)
Cl20.0435 (2)0.03213 (17)0.02942 (18)0.00460 (16)0.01298 (16)0.00663 (15)
Co0.02324 (7)0.01784 (6)0.02009 (7)0.00196 (6)0.00338 (5)0.00024 (6)
N10.0265 (6)0.0198 (5)0.0229 (6)0.0016 (4)0.0040 (4)0.0001 (4)
N20.0249 (6)0.0231 (5)0.0229 (6)0.0003 (5)0.0011 (4)0.0002 (5)
N30.0257 (5)0.0213 (5)0.0265 (6)0.0010 (4)0.0028 (5)0.0003 (5)
N40.0313 (6)0.0225 (5)0.0231 (6)0.0021 (5)0.0050 (5)0.0031 (4)
O10.0290 (5)0.0268 (5)0.0320 (6)0.0008 (4)0.0010 (4)0.0085 (4)
O20.0293 (6)0.0312 (5)0.0260 (5)0.0023 (4)0.0027 (4)0.0016 (4)
O30.0286 (6)0.0295 (5)0.0462 (8)0.0009 (5)0.0020 (5)0.0101 (5)
O40.0339 (6)0.0338 (6)0.0420 (7)0.0040 (5)0.0002 (5)0.0115 (6)
Geometric parameters (Å, º) top
C1—C21.489 (2)C7—C81.490 (2)
C1—H1A0.96C8—H8A0.96
C1—H1B0.96C8—H8B0.96
C1—H1C0.96C8—H8C0.96
C2—N11.2990 (19)Cl1—Co2.2292 (4)
C2—C31.460 (2)Cl2—Co2.2261 (4)
C3—N21.2881 (18)Co—N21.8870 (12)
C3—C41.483 (2)Co—N31.9048 (13)
C4—H4A0.96Co—N11.9051 (12)
C4—H4B0.96Co—N41.9181 (12)
C4—H4C0.96N1—O11.3231 (17)
C5—C61.489 (2)N1—O11.3231 (17)
C5—H5A0.96N2—O21.3805 (17)
C5—H5B0.96N3—O31.3489 (17)
C5—H5C0.96N4—O41.3659 (17)
C6—N41.284 (2)O2—H20.82
C6—C71.464 (2)O3—H30.82
C7—N31.2901 (18)O4—H40.82
C2—C1—H1A109.5H8A—C8—H8C109.5
C2—C1—H1B109.5H8B—C8—H8C109.5
H1A—C1—H1B109.5N2—Co—N3178.64 (6)
C2—C1—H1C109.5N2—Co—N180.40 (5)
H1A—C1—H1C109.5N3—Co—N199.56 (5)
H1B—C1—H1C109.5N2—Co—N4100.18 (5)
N1—C2—C3112.72 (13)N3—Co—N479.90 (5)
N1—C2—C1124.42 (15)N1—Co—N4178.48 (6)
C3—C2—C1122.72 (13)N2—Co—Cl288.97 (4)
N2—C3—C2112.18 (13)N3—Co—Cl289.67 (4)
N2—C3—C4124.84 (15)N1—Co—Cl291.19 (4)
C2—C3—C4122.98 (13)N4—Co—Cl290.23 (4)
C3—C4—H4A109.5N2—Co—Cl191.34 (4)
C3—C4—H4B109.5N3—Co—Cl190.02 (4)
H4A—C4—H4B109.5N1—Co—Cl190.26 (4)
C3—C4—H4C109.5N4—Co—Cl188.33 (4)
H4A—C4—H4C109.5Cl2—Co—Cl1178.550 (17)
H4B—C4—H4C109.5C2—N1—O1121.76 (12)
C6—C5—H5A109.5C2—N1—O1121.76 (12)
C6—C5—H5B109.5C2—N1—Co116.61 (11)
H5A—C5—H5B109.5O1—N1—Co121.62 (9)
C6—C5—H5C109.5O1—N1—Co121.62 (9)
H5A—C5—H5C109.5C3—N2—O2119.14 (12)
H5B—C5—H5C109.5C3—N2—Co118.04 (11)
N4—C6—C7112.65 (13)O2—N2—Co122.70 (9)
N4—C6—C5124.55 (16)C7—N3—O3117.54 (13)
C7—C6—C5122.77 (14)C7—N3—Co117.53 (11)
N3—C7—C6112.57 (13)O3—N3—Co124.89 (9)
N3—C7—C8124.50 (15)C6—N4—O4117.09 (12)
C6—C7—C8122.93 (14)C6—N4—Co117.25 (11)
C7—C8—H8A109.5O4—N4—Co125.52 (9)
C7—C8—H8B109.5N2—O2—H2109.5
H8A—C8—H8B109.5N3—O3—H3109.5
C7—C8—H8C109.5N4—O4—H4109.5
N1—C2—C3—N20.71 (19)N4—Co—N2—C3176.40 (11)
C1—C2—C3—N2175.17 (14)Cl2—Co—N2—C393.56 (11)
N1—C2—C3—C4179.90 (14)Cl1—Co—N2—C387.86 (11)
C1—C2—C3—C44.0 (2)N1—Co—N2—O2173.82 (12)
N4—C6—C7—N33.70 (19)N4—Co—N2—O27.61 (12)
C5—C6—C7—N3174.29 (15)Cl2—Co—N2—O282.44 (11)
N4—C6—C7—C8176.17 (15)Cl1—Co—N2—O296.15 (11)
C5—C6—C7—C85.8 (2)C6—C7—N3—O3179.68 (13)
C3—C2—N1—O1178.56 (13)C8—C7—N3—O30.5 (2)
C1—C2—N1—O12.8 (2)C6—C7—N3—Co2.60 (17)
C3—C2—N1—O1178.56 (13)C8—C7—N3—Co177.27 (13)
C1—C2—N1—O12.8 (2)N1—Co—N3—C7179.35 (11)
C3—C2—N1—Co1.02 (16)N4—Co—N3—C70.79 (11)
C1—C2—N1—Co176.83 (13)Cl2—Co—N3—C789.50 (11)
N2—Co—N1—C21.70 (11)Cl1—Co—N3—C789.08 (11)
N3—Co—N1—C2179.68 (11)N1—Co—N3—O33.11 (13)
Cl2—Co—N1—C290.45 (11)N4—Co—N3—O3178.33 (13)
Cl1—Co—N1—C289.61 (10)Cl2—Co—N3—O388.04 (12)
N2—Co—N1—O1177.89 (12)Cl1—Co—N3—O393.37 (12)
N3—Co—N1—O10.74 (12)C7—C6—N4—O4179.09 (13)
Cl2—Co—N1—O189.14 (11)C5—C6—N4—O41.1 (2)
Cl1—Co—N1—O190.80 (11)C7—C6—N4—Co3.19 (17)
N2—Co—N1—O1177.89 (12)C5—C6—N4—Co174.76 (13)
N3—Co—N1—O10.74 (12)N2—Co—N4—C6179.87 (11)
Cl2—Co—N1—O189.14 (11)N3—Co—N4—C61.51 (11)
Cl1—Co—N1—O190.80 (11)Cl2—Co—N4—C691.14 (11)
C2—C3—N2—O2173.96 (13)Cl1—Co—N4—C688.81 (11)
C4—C3—N2—O25.2 (2)N2—Co—N4—O44.35 (13)
C2—C3—N2—Co2.17 (17)N3—Co—N4—O4177.02 (13)
C4—C3—N2—Co178.66 (12)Cl2—Co—N4—O493.35 (12)
N1—Co—N2—C32.17 (11)Cl1—Co—N4—O486.70 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.812.5875 (16)158
O4—H4···O20.821.892.6604 (18)156
O2—H2···O1i0.821.732.5297 (17)163
C4—H4C···Cl1i0.962.733.6473 (19)160
C5—H5A···Cl1ii0.962.673.6317 (18)175
Symmetry codes: (i) x1/2, y, z1/2; (ii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C4H7N2O2)Cl2(C4H8N2O2)]
Mr361.07
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)8.1901 (2), 8.1261 (2), 10.4463 (3)
β (°) 102.007 (1)
V3)680.03 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerBruker–Nonius Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.786, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
10990, 5284, 4711
Rint0.021
(sin θ/λ)max1)0.851
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 0.99
No. of reflections5284
No. of parameters179
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.29
Absolute structureFlack (1983), 2067 Friedel pairs
Absolute structure parameter0.008 (7)

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cl1—Co2.2292 (4)Co—N31.9048 (13)
Cl2—Co2.2261 (4)Co—N11.9051 (12)
Co—N21.8870 (12)Co—N41.9181 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.812.5875 (16)158
O4—H4···O20.821.892.6604 (18)156
O2—H2···O1i0.821.732.5297 (17)163
C4—H4C···Cl1i0.962.733.6473 (19)160
C5—H5A···Cl1ii0.962.673.6317 (18)175
Symmetry codes: (i) x1/2, y, z1/2; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors are grateful to Dr S. Ramanathan, Principal, Presidency College (Autonomous), Chennai, India, and Rev. Fr A. Albert Muthumalai, S. J., Principal, Loyola College (Auton­omous), Chennai, India, for providing the necessary facilities. The Head, SAIF, CDRI, Lucknow, India, is thanked for supplying the elemental analysis data and the Head, SAIF, IIT Madras, Chennai, India, for recording the NMR spectra and for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A 40, 959–964.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, B. D., Singh, V., Quanango, K., Vijay Kanth, V., Yamuna, R., Barclay, T. & Cordes, W. (2000). J. Organomet. Chem. 602, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, B. D., Vijaykanth, V. & Singh, V. (2004). Organometallics, 23, 2067–2079.  Web of Science CSD CrossRef Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105–1113.  CrossRef CAS Google Scholar
First citationRazavelt, M., Artero, V. & Fentcave, M. (2005). Inorg. Chem. 44, 4786–4795.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358–3366.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m300-m301
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds