metal-organic compounds
Dichlorido(dimethylglyoximato-κ2N,N′)(dimethylglyoxime-κ2N,N′)cobalt(III)
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: a_spandian@yahoo.com
In the title compound, [Co(C4H7N2O2)Cl2(C4H8N2O2)], the CoIII ion has a distorted octahedral coordination environment. The equatorial plane consists of four N atoms, two each from the dimethylglyoxime and dimethylglyoximate ligands, while the two axial positions are occupied by two chloride ions. Strong intramolecular O—H⋯O hydrogen bonds are observed between the dimethylglyoxime and dimethylglyoximate ligands. Molecules are linked into a chain running along the [101] direction by O—H⋯O and C—H⋯Cl hydrogen bonds. The chains are cross-linked through intermolecular C—H⋯Cl hydrogen bonds.
Related literature
For related literature, see: Dayalan & Vijayaraghavan (2001); Lee et al. (2007); Gupta et al. (2000, 2001, 2004); Ohkubo & Fukuzumi (2005); Razavelt et al. (2005). Trommel et al. (2001).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker–Nonius, 2004); cell APEX2; data reduction: SAINT (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536807068407/ci2517sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068407/ci2517Isup2.hkl
Cobalt(II) chloride hexahydrate was thoroughly grinded and exposed to microwave for 30 s. Dehydrated cobalt(II) chloride (1.3 g) was mixed with dimethyl glyoxime (2.32 g). The mixture was intimately grinded and made into a paste using acetone and exposed to microwave radiation for 60 s. The microwave treated reaction mixture was exposed to atmosphere, till it became green. The green coloured product was recrystallized from acetone. Single crystals were obtained by slow evaporation of the acetone solution.
All H atoms were fixed geometrically (O—H = 0.82 Å and C—H = 0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C,O).
Data collection: APEX2 (Bruker–Nonius, 2004); cell
APEX2 (Bruker–Nonius, 2004); data reduction: SAINT (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii. |
[Co(C4H7N2O2)Cl2(C4H8N2O2)] | F(000) = 368 |
Mr = 361.07 | Dx = 1.763 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 3586 reflections |
a = 8.1901 (2) Å | θ = 2.8–37.2° |
b = 8.1261 (2) Å | µ = 1.67 mm−1 |
c = 10.4463 (3) Å | T = 293 K |
β = 102.007 (1)° | Plate, green |
V = 680.03 (3) Å3 | 0.20 × 0.12 × 0.12 mm |
Z = 2 |
Bruker–Nonius Kappa APEXII CCD diffractometer | 5284 independent reflections |
Radiation source: fine-focus sealed tube | 4711 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω and ϕ scans | θmax = 37.2°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −12→13 |
Tmin = 0.786, Tmax = 0.819 | k = −13→13 |
10990 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0235P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.023 |
5284 reflections | Δρmax = 0.56 e Å−3 |
179 parameters | Δρmin = −0.29 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 2067 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.008 (7) |
[Co(C4H7N2O2)Cl2(C4H8N2O2)] | V = 680.03 (3) Å3 |
Mr = 361.07 | Z = 2 |
Monoclinic, Pn | Mo Kα radiation |
a = 8.1901 (2) Å | µ = 1.67 mm−1 |
b = 8.1261 (2) Å | T = 293 K |
c = 10.4463 (3) Å | 0.20 × 0.12 × 0.12 mm |
β = 102.007 (1)° |
Bruker–Nonius Kappa APEXII CCD diffractometer | 5284 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 4711 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 0.819 | Rint = 0.021 |
10990 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.057 | Δρmax = 0.56 e Å−3 |
S = 0.99 | Δρmin = −0.29 e Å−3 |
5284 reflections | Absolute structure: Flack (1983), 2067 Friedel pairs |
179 parameters | Absolute structure parameter: 0.008 (7) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2744 (2) | −0.2411 (2) | 0.7384 (2) | 0.0354 (4) | |
H1A | 0.3762 | −0.3016 | 0.7436 | 0.053* | |
H1B | 0.1848 | −0.2974 | 0.6812 | 0.053* | |
H1C | 0.2497 | −0.2325 | 0.8241 | 0.053* | |
C2 | 0.29345 (19) | −0.07336 (17) | 0.68614 (15) | 0.0255 (3) | |
C3 | 0.15626 (19) | 0.01410 (18) | 0.60187 (15) | 0.0259 (3) | |
C4 | −0.0162 (2) | −0.0517 (2) | 0.56788 (19) | 0.0362 (4) | |
H4A | −0.0912 | 0.0339 | 0.5290 | 0.054* | |
H4B | −0.0486 | −0.0908 | 0.6457 | 0.054* | |
H4C | −0.0207 | −0.1408 | 0.5069 | 0.054* | |
C5 | 0.5786 (2) | 0.6808 (2) | 0.5132 (2) | 0.0353 (4) | |
H5A | 0.6540 | 0.6827 | 0.4541 | 0.053* | |
H5B | 0.6213 | 0.7497 | 0.5873 | 0.053* | |
H5C | 0.4712 | 0.7208 | 0.4691 | 0.053* | |
C6 | 0.5617 (2) | 0.50905 (17) | 0.55842 (15) | 0.0264 (3) | |
C7 | 0.70180 (19) | 0.41674 (18) | 0.63553 (16) | 0.0266 (3) | |
C8 | 0.8762 (2) | 0.4804 (2) | 0.6649 (2) | 0.0411 (4) | |
H8A | 0.8866 | 0.5647 | 0.7305 | 0.062* | |
H8B | 0.9027 | 0.5253 | 0.5867 | 0.062* | |
H8C | 0.9518 | 0.3921 | 0.6966 | 0.062* | |
Cl1 | 0.36969 (5) | 0.33736 (5) | 0.79458 (4) | 0.03361 (8) | |
Cl2 | 0.48754 (5) | 0.09885 (5) | 0.44061 (4) | 0.03422 (9) | |
Co | 0.42858 (2) | 0.21491 (2) | 0.618650 (19) | 0.02055 (4) | |
N1 | 0.43373 (15) | 0.00641 (15) | 0.70278 (13) | 0.0232 (2) | |
N2 | 0.20367 (15) | 0.15171 (15) | 0.56038 (12) | 0.0242 (2) | |
N3 | 0.65689 (16) | 0.27610 (14) | 0.67399 (13) | 0.0249 (2) | |
N4 | 0.42440 (16) | 0.42760 (15) | 0.53841 (13) | 0.0257 (2) | |
O1 | 0.57344 (14) | −0.05436 (13) | 0.77384 (12) | 0.0303 (2) | |
O2 | 0.09198 (16) | 0.24162 (15) | 0.46980 (13) | 0.0301 (2) | |
H2 | 0.0688 | 0.1904 | 0.4008 | 0.045* | |
O3 | 0.77626 (15) | 0.18097 (16) | 0.74654 (14) | 0.0362 (3) | |
H3 | 0.7352 | 0.0934 | 0.7628 | 0.054* | |
O4 | 0.28559 (16) | 0.50431 (15) | 0.46882 (14) | 0.0378 (3) | |
H4 | 0.2091 | 0.4377 | 0.4506 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0400 (9) | 0.0242 (7) | 0.0421 (10) | −0.0089 (7) | 0.0088 (8) | 0.0041 (7) |
C2 | 0.0304 (7) | 0.0209 (5) | 0.0252 (7) | −0.0042 (5) | 0.0061 (6) | −0.0010 (5) |
C3 | 0.0278 (7) | 0.0254 (6) | 0.0247 (7) | −0.0041 (5) | 0.0061 (5) | −0.0038 (5) |
C4 | 0.0295 (8) | 0.0382 (8) | 0.0401 (9) | −0.0097 (7) | 0.0052 (6) | −0.0017 (7) |
C5 | 0.0420 (10) | 0.0239 (6) | 0.0423 (10) | −0.0035 (7) | 0.0138 (8) | 0.0061 (7) |
C6 | 0.0352 (7) | 0.0208 (5) | 0.0250 (7) | −0.0012 (5) | 0.0108 (6) | 0.0010 (5) |
C7 | 0.0266 (7) | 0.0249 (6) | 0.0284 (7) | −0.0044 (5) | 0.0060 (6) | −0.0009 (6) |
C8 | 0.0336 (8) | 0.0405 (9) | 0.0493 (11) | −0.0137 (7) | 0.0085 (7) | 0.0027 (8) |
Cl1 | 0.0474 (2) | 0.02841 (16) | 0.02782 (18) | 0.00147 (15) | 0.01415 (16) | −0.00198 (14) |
Cl2 | 0.0435 (2) | 0.03213 (17) | 0.02942 (18) | −0.00460 (16) | 0.01298 (16) | −0.00663 (15) |
Co | 0.02324 (7) | 0.01784 (6) | 0.02009 (7) | −0.00196 (6) | 0.00338 (5) | 0.00024 (6) |
N1 | 0.0265 (6) | 0.0198 (5) | 0.0229 (6) | −0.0016 (4) | 0.0040 (4) | 0.0001 (4) |
N2 | 0.0249 (6) | 0.0231 (5) | 0.0229 (6) | −0.0003 (5) | 0.0011 (4) | −0.0002 (5) |
N3 | 0.0257 (5) | 0.0213 (5) | 0.0265 (6) | −0.0010 (4) | 0.0028 (5) | 0.0003 (5) |
N4 | 0.0313 (6) | 0.0225 (5) | 0.0231 (6) | 0.0021 (5) | 0.0050 (5) | 0.0031 (4) |
O1 | 0.0290 (5) | 0.0268 (5) | 0.0320 (6) | 0.0008 (4) | −0.0010 (4) | 0.0085 (4) |
O2 | 0.0293 (6) | 0.0312 (5) | 0.0260 (5) | 0.0023 (4) | −0.0027 (4) | −0.0016 (4) |
O3 | 0.0286 (6) | 0.0295 (5) | 0.0462 (8) | 0.0009 (5) | −0.0020 (5) | 0.0101 (5) |
O4 | 0.0339 (6) | 0.0338 (6) | 0.0420 (7) | 0.0040 (5) | −0.0002 (5) | 0.0115 (6) |
C1—C2 | 1.489 (2) | C7—C8 | 1.490 (2) |
C1—H1A | 0.96 | C8—H8A | 0.96 |
C1—H1B | 0.96 | C8—H8B | 0.96 |
C1—H1C | 0.96 | C8—H8C | 0.96 |
C2—N1 | 1.2990 (19) | Cl1—Co | 2.2292 (4) |
C2—C3 | 1.460 (2) | Cl2—Co | 2.2261 (4) |
C3—N2 | 1.2881 (18) | Co—N2 | 1.8870 (12) |
C3—C4 | 1.483 (2) | Co—N3 | 1.9048 (13) |
C4—H4A | 0.96 | Co—N1 | 1.9051 (12) |
C4—H4B | 0.96 | Co—N4 | 1.9181 (12) |
C4—H4C | 0.96 | N1—O1 | 1.3231 (17) |
C5—C6 | 1.489 (2) | N1—O1 | 1.3231 (17) |
C5—H5A | 0.96 | N2—O2 | 1.3805 (17) |
C5—H5B | 0.96 | N3—O3 | 1.3489 (17) |
C5—H5C | 0.96 | N4—O4 | 1.3659 (17) |
C6—N4 | 1.284 (2) | O2—H2 | 0.82 |
C6—C7 | 1.464 (2) | O3—H3 | 0.82 |
C7—N3 | 1.2901 (18) | O4—H4 | 0.82 |
C2—C1—H1A | 109.5 | H8A—C8—H8C | 109.5 |
C2—C1—H1B | 109.5 | H8B—C8—H8C | 109.5 |
H1A—C1—H1B | 109.5 | N2—Co—N3 | 178.64 (6) |
C2—C1—H1C | 109.5 | N2—Co—N1 | 80.40 (5) |
H1A—C1—H1C | 109.5 | N3—Co—N1 | 99.56 (5) |
H1B—C1—H1C | 109.5 | N2—Co—N4 | 100.18 (5) |
N1—C2—C3 | 112.72 (13) | N3—Co—N4 | 79.90 (5) |
N1—C2—C1 | 124.42 (15) | N1—Co—N4 | 178.48 (6) |
C3—C2—C1 | 122.72 (13) | N2—Co—Cl2 | 88.97 (4) |
N2—C3—C2 | 112.18 (13) | N3—Co—Cl2 | 89.67 (4) |
N2—C3—C4 | 124.84 (15) | N1—Co—Cl2 | 91.19 (4) |
C2—C3—C4 | 122.98 (13) | N4—Co—Cl2 | 90.23 (4) |
C3—C4—H4A | 109.5 | N2—Co—Cl1 | 91.34 (4) |
C3—C4—H4B | 109.5 | N3—Co—Cl1 | 90.02 (4) |
H4A—C4—H4B | 109.5 | N1—Co—Cl1 | 90.26 (4) |
C3—C4—H4C | 109.5 | N4—Co—Cl1 | 88.33 (4) |
H4A—C4—H4C | 109.5 | Cl2—Co—Cl1 | 178.550 (17) |
H4B—C4—H4C | 109.5 | C2—N1—O1 | 121.76 (12) |
C6—C5—H5A | 109.5 | C2—N1—O1 | 121.76 (12) |
C6—C5—H5B | 109.5 | C2—N1—Co | 116.61 (11) |
H5A—C5—H5B | 109.5 | O1—N1—Co | 121.62 (9) |
C6—C5—H5C | 109.5 | O1—N1—Co | 121.62 (9) |
H5A—C5—H5C | 109.5 | C3—N2—O2 | 119.14 (12) |
H5B—C5—H5C | 109.5 | C3—N2—Co | 118.04 (11) |
N4—C6—C7 | 112.65 (13) | O2—N2—Co | 122.70 (9) |
N4—C6—C5 | 124.55 (16) | C7—N3—O3 | 117.54 (13) |
C7—C6—C5 | 122.77 (14) | C7—N3—Co | 117.53 (11) |
N3—C7—C6 | 112.57 (13) | O3—N3—Co | 124.89 (9) |
N3—C7—C8 | 124.50 (15) | C6—N4—O4 | 117.09 (12) |
C6—C7—C8 | 122.93 (14) | C6—N4—Co | 117.25 (11) |
C7—C8—H8A | 109.5 | O4—N4—Co | 125.52 (9) |
C7—C8—H8B | 109.5 | N2—O2—H2 | 109.5 |
H8A—C8—H8B | 109.5 | N3—O3—H3 | 109.5 |
C7—C8—H8C | 109.5 | N4—O4—H4 | 109.5 |
N1—C2—C3—N2 | 0.71 (19) | N4—Co—N2—C3 | −176.40 (11) |
C1—C2—C3—N2 | −175.17 (14) | Cl2—Co—N2—C3 | 93.56 (11) |
N1—C2—C3—C4 | 179.90 (14) | Cl1—Co—N2—C3 | −87.86 (11) |
C1—C2—C3—C4 | 4.0 (2) | N1—Co—N2—O2 | −173.82 (12) |
N4—C6—C7—N3 | −3.70 (19) | N4—Co—N2—O2 | 7.61 (12) |
C5—C6—C7—N3 | 174.29 (15) | Cl2—Co—N2—O2 | −82.44 (11) |
N4—C6—C7—C8 | 176.17 (15) | Cl1—Co—N2—O2 | 96.15 (11) |
C5—C6—C7—C8 | −5.8 (2) | C6—C7—N3—O3 | −179.68 (13) |
C3—C2—N1—O1 | −178.56 (13) | C8—C7—N3—O3 | 0.5 (2) |
C1—C2—N1—O1 | −2.8 (2) | C6—C7—N3—Co | 2.60 (17) |
C3—C2—N1—O1 | −178.56 (13) | C8—C7—N3—Co | −177.27 (13) |
C1—C2—N1—O1 | −2.8 (2) | N1—Co—N3—C7 | −179.35 (11) |
C3—C2—N1—Co | 1.02 (16) | N4—Co—N3—C7 | −0.79 (11) |
C1—C2—N1—Co | 176.83 (13) | Cl2—Co—N3—C7 | 89.50 (11) |
N2—Co—N1—C2 | −1.70 (11) | Cl1—Co—N3—C7 | −89.08 (11) |
N3—Co—N1—C2 | 179.68 (11) | N1—Co—N3—O3 | 3.11 (13) |
Cl2—Co—N1—C2 | −90.45 (11) | N4—Co—N3—O3 | −178.33 (13) |
Cl1—Co—N1—C2 | 89.61 (10) | Cl2—Co—N3—O3 | −88.04 (12) |
N2—Co—N1—O1 | 177.89 (12) | Cl1—Co—N3—O3 | 93.37 (12) |
N3—Co—N1—O1 | −0.74 (12) | C7—C6—N4—O4 | 179.09 (13) |
Cl2—Co—N1—O1 | 89.14 (11) | C5—C6—N4—O4 | 1.1 (2) |
Cl1—Co—N1—O1 | −90.80 (11) | C7—C6—N4—Co | 3.19 (17) |
N2—Co—N1—O1 | 177.89 (12) | C5—C6—N4—Co | −174.76 (13) |
N3—Co—N1—O1 | −0.74 (12) | N2—Co—N4—C6 | 179.87 (11) |
Cl2—Co—N1—O1 | 89.14 (11) | N3—Co—N4—C6 | −1.51 (11) |
Cl1—Co—N1—O1 | −90.80 (11) | Cl2—Co—N4—C6 | −91.14 (11) |
C2—C3—N2—O2 | 173.96 (13) | Cl1—Co—N4—C6 | 88.81 (11) |
C4—C3—N2—O2 | −5.2 (2) | N2—Co—N4—O4 | 4.35 (13) |
C2—C3—N2—Co | −2.17 (17) | N3—Co—N4—O4 | −177.02 (13) |
C4—C3—N2—Co | 178.66 (12) | Cl2—Co—N4—O4 | 93.35 (12) |
N1—Co—N2—C3 | 2.17 (11) | Cl1—Co—N4—O4 | −86.70 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.82 | 1.81 | 2.5875 (16) | 158 |
O4—H4···O2 | 0.82 | 1.89 | 2.6604 (18) | 156 |
O2—H2···O1i | 0.82 | 1.73 | 2.5297 (17) | 163 |
C4—H4C···Cl1i | 0.96 | 2.73 | 3.6473 (19) | 160 |
C5—H5A···Cl1ii | 0.96 | 2.67 | 3.6317 (18) | 175 |
Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C4H7N2O2)Cl2(C4H8N2O2)] |
Mr | 361.07 |
Crystal system, space group | Monoclinic, Pn |
Temperature (K) | 293 |
a, b, c (Å) | 8.1901 (2), 8.1261 (2), 10.4463 (3) |
β (°) | 102.007 (1) |
V (Å3) | 680.03 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.20 × 0.12 × 0.12 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.786, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10990, 5284, 4711 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.851 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.057, 0.99 |
No. of reflections | 5284 |
No. of parameters | 179 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.29 |
Absolute structure | Flack (1983), 2067 Friedel pairs |
Absolute structure parameter | 0.008 (7) |
Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
Cl1—Co | 2.2292 (4) | Co—N3 | 1.9048 (13) |
Cl2—Co | 2.2261 (4) | Co—N1 | 1.9051 (12) |
Co—N2 | 1.8870 (12) | Co—N4 | 1.9181 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.82 | 1.81 | 2.5875 (16) | 158 |
O4—H4···O2 | 0.82 | 1.89 | 2.6604 (18) | 156 |
O2—H2···O1i | 0.82 | 1.73 | 2.5297 (17) | 163 |
C4—H4C···Cl1i | 0.96 | 2.73 | 3.6473 (19) | 160 |
C5—H5A···Cl1ii | 0.96 | 2.67 | 3.6317 (18) | 175 |
Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x+1/2, −y+1, z−1/2. |
Acknowledgements
The authors are grateful to Dr S. Ramanathan, Principal, Presidency College (Autonomous), Chennai, India, and Rev. Fr A. Albert Muthumalai, S. J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities. The Head, SAIF, CDRI, Lucknow, India, is thanked for supplying the elemental analysis data and the Head, SAIF, IIT Madras, Chennai, India, for recording the NMR spectra and for the X-ray data collection.
References
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker–Nonius (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A 40, 959–964. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gupta, B. D., Singh, V., Quanango, K., Vijay Kanth, V., Yamuna, R., Barclay, T. & Cordes, W. (2000). J. Organomet. Chem. 602, 1–4. Web of Science CSD CrossRef CAS Google Scholar
Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83–92. Web of Science CSD CrossRef CAS Google Scholar
Gupta, B. D., Vijaykanth, V. & Singh, V. (2004). Organometallics, 23, 2067–2079. Web of Science CSD CrossRef Google Scholar
Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105–1113. CrossRef CAS Google Scholar
Razavelt, M., Artero, V. & Fentcave, M. (2005). Inorg. Chem. 44, 4786–4795. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358–3366. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dimethylglyoximatocobalt(III) complexes, generally known as cobaloximes, have been studied extensively as model compounds for vitamine-B12 (Trommel et al., 2001; Ohkubo & Fukuzumi, 2005). Most of the work on cobaloximes include electron-transfer reactions (Dayalan & Vijayaraghavan, 2001) and catalytic activity (Razavelt et al., 2005) in solution. There are few literature evidences relating the structural aspects of cobaloximes (Gupta et al., 2000; Gupta et al., 2001; Gupta et al., 2004). We report here the synthesis and X-ray crystal structure of the title compoud.
The coordination geometry around the CoIII ion can be described as a slightly distorted octahedron. The axial positions are occupied by the chloride ions. The glyoxime moieties are individually planar. The CoIII ion and the four N atoms of dimethylglyoxime ligands are approximately coplanar. The Co—N and Co—Cl bond lengths are normal (Table 1), and are comparable with the corresponding values observed in a related complex (Lee et al., 2007).
Strong intramolecular O—H···O hydrogen bonds are observed between the dimethylglyoxime and dimethylglyoximate ligands (Table 2). The crystal packing is stabilized by O—H···O and C—H···Cl hydrogen bonds. Atoms O2 and C4 of the molecule at (x, y, z) act as donors to atoms O1 and Cl1, respectively, of the molecule at (-1/2 + x, -y, -1/2 + z). These two hydrogen bonds form a chain running along the [1 0 1] direction. The chains are cross-linked through C—H···Cl intermolecular hydrogen bonds.