organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Bi­cyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bi­cyclo[4.2.0]octa-1(6),2,4-trien-3-yl­methyl]imidazolium hexa­fluoro­phos­phate

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, bSchool of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China, and cAnalytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: orgxie@scu.edu.cn

(Received 29 November 2007; accepted 15 December 2007; online 11 January 2008)

In the title compound, C20H19N2+·PF6, the two benzocyclo­butene units are essentially planar and they form dihedral angles of 38.0 (2) and 72.7 (2)°, with the central imidazolium ring. In the crystal structure, weak C—H⋯π and π-–π stacking inter­actions [centroid–centroid distance = 3.742 (2) Å] contribute to the stability of the crystal structure. The PF6 ion is disordered over two positions with site occupancies of 0.869 (9) and 0.131 (9).

Related literature

For related literature, see: Farona (1996[Farona, M. F. (1996). Prog. Polym. Sci. 21, 505-555.]); Kirchhoff & Bruza (1993[Kirchhoff, R. A. & Bruza, K. J. (1993). Prog. Polym. Sci. 18, 85-185.]); Michellys et al. (2001[Michellys, P., Maurin, P., Toupet, L., Pellissier, H. & Santelli, M. (2001). J. Org. Chem. 66, 115-122.]); Nemeto & Fukumoto (1998[Nemeto, H. & Fukumoto, K. (1998). Tetrahedron, 54, 5425-5464.]); Zhang et al. (2006[Zhang, Y., Gao, J., Shen, X. & Huang, F. (2006). J. Appl. Polym. Sci. 99, 1705-1719.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N2+·F6P

  • Mr = 432.34

  • Triclinic, [P \overline 1]

  • a = 9.311 (3) Å

  • b = 10.138 (3) Å

  • c = 10.562 (3) Å

  • α = 86.82 (2)°

  • β = 86.44 (2)°

  • γ = 73.61 (2)°

  • V = 953.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 (2) K

  • 0.28 × 0.25 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3558 measured reflections

  • 3522 independent reflections

  • 2238 reflections with I > 2σ(I)

  • Rint = 0.006

  • 3 standard reflections every 300 reflections intensity decay: 4.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.223

  • S = 1.15

  • 3522 reflections

  • 299 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg1i 0.97 3.00 3.813 (5) 143
Symmetry code: (i) -x+1, -y-1, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Benzocyclobutenes (BCBs) are important building blocks for new polymers and advanced materials (Nemeto & Fukumoto, 1998; Michellys et al., 2001). Most of the reported benzocyclobutene monomers in the literature are bis-BCB-functionalized compounds owing to their highly crosslinked structure and their excellent properties such as the insolubility, low solvent pickup and good thermal stability (Farona, 1996; Zhang et al., 2006; Kirchhoff & Bruza, 1993). We report here the crystal structure of the title compound, a novel bisbenzocyclobutene-terminated imidazolium which was obtained by an anion metathesis between 1-(4-benzocyclobutenyl)-3-(4-benzocyclobutenylmethyl) imidazolium choloride and hexafluorophosphate ammonium.

The two benzocyclobutene units are essentially planar. The plane of the C1—C8 and C13—C20 benzocyclobutene units form dihedral angles of 38.0 (2) and 72.7 (2)°, respectively, with the central imidazolium ring.

A combination of intermolecular π-π and C—H···π interactions provide packing forces in the crystal structure of the title compound. A π-π interaction between C13—C15/C18—C20 benzene ring and its symmetry- related counterpart at (-x, 1 - y, -z), with their centroids separated by 3.742 (2) Å, plays an important part in the connection of two adjacent molecules. In addition, a weak C—H···π interaction between C2—H2B group and C3—C8 benzene ring at (1 - x, -1 - y, 1 - z) contributes to the crystal packing (Table 1).

Related literature top

For related literature, see: Farona (1996); Kirchhoff & Bruza (1993); Michellys et al. (2001); Nemeto & Fukumoto (1998); Zhang et al. (2006).

Experimental top

4-(N-imidazolyl)benzocyclobutene (5 mmol, 850 mg) and 4-cholomethylbenzocyclobutene (5 mmol, 760 mg) were placed in a two-necked round-bottomed flask under a nitrogen atmosphere, and the mixture was heated at 353 K for 3 h. After the reaction was completed, the resulting 1-(4-benzocyclobutenyl)-3-(4-benzocyclobutenylmethyl)imidazolium chloride, [BBMI][Cl-], was obtained in 85% yield (1.381 g). [BBMI][Cl-] was dissolved in deioned water, and NH4PF6 was added to replace Cl- ions by PF6- ions, to obtain the title compound as a white solid (yield 1.331 g). Colourless crystals of the title compound were obtained by recrystallization of the solid from acetone and ethanol (1:1 v/v). 1 H NMR (400 MHz, CDCl3,): δ 8.84 (s, 1H), 7.41 (t, 1H), 7.31 (m, 2H), 7.27 (2 d, 1H), 7.22 (d, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.15 (s, 1H), 7.09 (d, J = 7.6 Hz, 1H), 5.37 (s, 2H), 3.21 (s, 4H), 3.17 (s, 4H); 13C NMR (100 MHz, CDCl3,): δ 148.58, 148.04, 7.65, 147.21, 133.71, 133.42, 130.78, 128.20, 124.45, 123.53, 122.77, 121.88, 121.46, 117.09, 54.52, 29.47, 29.32 p.p.m.

Refinement top

H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C). Four F atoms of the PF6- ion are disordered over two positions (F3,F4,F5,F6/F3A,F4A,F5A,F6A) with refined occupancies of 0.869 (9) and 0.131 (9). The disordered F atoms were restrained to be coplanar, with the F···F distances restrained to be equal. The displacement parameters of disordered F atoms were restrained to be approximately isotropic.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bicyclo[4.2.0]octa- 1(6),2,4-trien-3-ylmethyl]imidazolium hexafluorophosphate top
Crystal data top
C20H19N2+·F6PZ = 2
Mr = 432.34F(000) = 444
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.311 (3) ÅCell parameters from 20 reflections
b = 10.138 (3) Åθ = 4.9–9.1°
c = 10.562 (3) ŵ = 0.21 mm1
α = 86.82 (2)°T = 296 K
β = 86.44 (2)°Block, colourless
γ = 73.61 (2)°0.28 × 0.25 × 0.18 mm
V = 953.9 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.9°
Graphite monochromatorh = 1011
ω/2θ scansk = 212
3558 measured reflectionsl = 1212
3522 independent reflections3 standard reflections every 300 reflections
2238 reflections with I > 2σ(I) intensity decay: 4.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1349P)2]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.64 e Å3
81 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H19N2+·F6Pγ = 73.61 (2)°
Mr = 432.34V = 953.9 (5) Å3
Triclinic, P1Z = 2
a = 9.311 (3) ÅMo Kα radiation
b = 10.138 (3) ŵ = 0.21 mm1
c = 10.562 (3) ÅT = 296 K
α = 86.82 (2)°0.28 × 0.25 × 0.18 mm
β = 86.44 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
3558 measured reflections3 standard reflections every 300 reflections
3522 independent reflections intensity decay: 4.6%
2238 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.07581 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.15Δρmax = 0.64 e Å3
3522 reflectionsΔρmin = 0.41 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3258 (3)0.0608 (3)0.3056 (3)0.0388 (7)
N20.1779 (3)0.1062 (3)0.1997 (3)0.0412 (7)
C10.7078 (6)0.4108 (5)0.5742 (4)0.0654 (13)
H1A0.65560.43100.65200.078*
H1B0.79110.37580.59170.078*
C20.7481 (5)0.5286 (5)0.4784 (4)0.0658 (13)
H2A0.85220.55470.44760.079*
H2B0.71520.60860.50660.079*
C30.6426 (4)0.4283 (4)0.3899 (4)0.0486 (10)
C40.5802 (5)0.4138 (4)0.2742 (4)0.0534 (11)
H40.60620.48380.21660.064*
C50.4756 (4)0.2881 (4)0.2472 (3)0.0477 (10)
H50.42970.27310.17000.057*
C60.4397 (4)0.1854 (4)0.3348 (3)0.0385 (8)
C70.5044 (4)0.2001 (4)0.4520 (3)0.0452 (9)
H70.48090.13040.50990.054*
C80.6057 (5)0.3256 (4)0.4753 (3)0.0474 (9)
C90.2990 (4)0.0017 (3)0.1915 (3)0.0381 (8)
H90.35720.02470.11750.046*
C100.1233 (5)0.1122 (4)0.3233 (4)0.0583 (12)
H100.03780.17590.35520.070*
C110.2151 (5)0.0095 (4)0.3902 (4)0.0525 (10)
H110.20590.01040.47680.063*
C120.1133 (4)0.2028 (4)0.0937 (3)0.0457 (9)
H12A0.01010.20260.08540.055*
H12B0.16880.17150.01500.055*
C130.1181 (4)0.3462 (4)0.1145 (3)0.0394 (8)
C140.0027 (4)0.4358 (4)0.1797 (3)0.0414 (9)
H140.08820.41030.20720.050*
C150.0126 (4)0.5639 (4)0.2006 (3)0.0446 (9)
C160.0632 (5)0.7005 (4)0.2603 (5)0.0611 (12)
H16A0.07690.69450.35200.073*
H16B0.15500.75220.22150.073*
C170.0771 (5)0.7460 (4)0.2122 (4)0.0613 (12)
H17A0.05690.82180.14960.074*
H17B0.13600.76220.27930.074*
C180.1361 (4)0.6058 (4)0.1564 (3)0.0448 (9)
C190.2544 (4)0.5185 (4)0.0891 (4)0.0494 (10)
H190.33750.54640.05830.059*
C200.2429 (4)0.3886 (4)0.0702 (3)0.0465 (10)
H200.32090.32710.02640.056*
P10.67915 (11)0.11989 (10)0.17994 (9)0.0466 (4)
F10.5204 (3)0.1791 (4)0.2485 (3)0.0890 (10)
F20.8367 (3)0.0567 (3)0.1101 (3)0.0964 (11)
F30.6267 (4)0.0006 (4)0.1205 (3)0.0908 (17)0.869 (9)
F40.7321 (5)0.0220 (4)0.2990 (3)0.109 (2)0.869 (9)
F50.7340 (4)0.2334 (4)0.2388 (5)0.112 (2)0.869 (9)
F60.6275 (5)0.2124 (5)0.0586 (4)0.120 (2)0.869 (9)
F3A0.6793 (7)0.018 (2)0.2185 (12)0.127 (14)0.131 (9)
F4A0.7527 (10)0.1314 (12)0.3022 (15)0.090 (10)0.131 (9)
F5A0.6805 (7)0.260 (2)0.1369 (12)0.103 (11)0.131 (9)
F6A0.6104 (10)0.1040 (12)0.0613 (16)0.093 (10)0.131 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (17)0.0364 (15)0.0320 (15)0.0048 (13)0.0036 (12)0.0025 (12)
N20.0480 (18)0.0395 (16)0.0332 (15)0.0068 (14)0.0038 (13)0.0028 (12)
C10.075 (3)0.066 (3)0.047 (2)0.005 (2)0.023 (2)0.011 (2)
C20.064 (3)0.065 (3)0.056 (3)0.002 (2)0.013 (2)0.012 (2)
C30.046 (2)0.051 (2)0.042 (2)0.0017 (18)0.0069 (16)0.0010 (17)
C40.050 (2)0.055 (2)0.046 (2)0.0046 (18)0.0117 (17)0.0145 (18)
C50.049 (2)0.055 (2)0.0348 (19)0.0043 (18)0.0110 (16)0.0087 (17)
C60.0361 (18)0.0414 (19)0.0340 (17)0.0041 (15)0.0050 (14)0.0004 (14)
C70.057 (2)0.048 (2)0.0287 (17)0.0099 (18)0.0066 (16)0.0024 (15)
C80.055 (2)0.050 (2)0.0331 (18)0.0094 (18)0.0107 (16)0.0070 (16)
C90.044 (2)0.0407 (19)0.0286 (16)0.0088 (16)0.0053 (14)0.0017 (14)
C100.068 (3)0.049 (2)0.042 (2)0.008 (2)0.0080 (19)0.0024 (18)
C110.061 (3)0.050 (2)0.0356 (19)0.0015 (19)0.0081 (18)0.0034 (16)
C120.052 (2)0.046 (2)0.0351 (18)0.0040 (17)0.0135 (16)0.0021 (16)
C130.0406 (19)0.0434 (19)0.0305 (17)0.0041 (15)0.0117 (14)0.0019 (14)
C140.0363 (19)0.043 (2)0.0417 (19)0.0050 (15)0.0094 (15)0.0040 (15)
C150.041 (2)0.043 (2)0.044 (2)0.0004 (16)0.0123 (16)0.0019 (16)
C160.058 (3)0.043 (2)0.075 (3)0.0011 (19)0.008 (2)0.008 (2)
C170.063 (3)0.050 (2)0.071 (3)0.015 (2)0.014 (2)0.002 (2)
C180.045 (2)0.047 (2)0.0414 (19)0.0100 (17)0.0131 (16)0.0077 (16)
C190.042 (2)0.064 (3)0.044 (2)0.0179 (19)0.0051 (17)0.0037 (18)
C200.040 (2)0.056 (2)0.0373 (19)0.0024 (17)0.0069 (16)0.0042 (17)
P10.0469 (6)0.0481 (6)0.0409 (6)0.0061 (5)0.0024 (4)0.0045 (4)
F10.0595 (17)0.125 (2)0.0650 (17)0.0038 (16)0.0102 (13)0.0246 (17)
F20.0592 (18)0.098 (2)0.127 (3)0.0126 (16)0.0273 (18)0.042 (2)
F30.093 (3)0.122 (4)0.078 (3)0.060 (3)0.027 (2)0.048 (3)
F40.165 (4)0.074 (3)0.054 (2)0.023 (3)0.021 (2)0.0058 (18)
F50.105 (3)0.082 (3)0.158 (5)0.031 (2)0.003 (3)0.061 (3)
F60.151 (4)0.106 (4)0.060 (2)0.024 (3)0.002 (2)0.034 (2)
F3A0.122 (19)0.094 (16)0.18 (2)0.059 (14)0.017 (16)0.033 (16)
F4A0.077 (13)0.105 (19)0.079 (13)0.006 (12)0.049 (11)0.013 (12)
F5A0.140 (19)0.086 (15)0.091 (17)0.050 (13)0.001 (14)0.004 (13)
F6A0.145 (18)0.095 (17)0.052 (12)0.048 (14)0.024 (11)0.012 (12)
Geometric parameters (Å, º) top
N1—C91.334 (4)C12—H12B0.97
N1—C111.382 (4)C13—C201.395 (5)
N1—C61.435 (4)C13—C141.400 (5)
N2—C91.313 (4)C14—C151.378 (5)
N2—C101.370 (5)C14—H140.93
N2—C121.484 (4)C15—C181.381 (6)
C1—C81.517 (5)C15—C161.518 (5)
C1—C21.558 (6)C16—C171.552 (7)
C1—H1A0.97C16—H16A0.97
C1—H1B0.97C16—H16B0.97
C2—C31.522 (5)C17—C181.510 (5)
C2—H2A0.97C17—H17A0.97
C2—H2B0.97C17—H17B0.97
C3—C41.368 (5)C18—C191.387 (5)
C3—C81.371 (5)C19—C201.378 (5)
C4—C51.395 (5)C19—H190.93
C4—H40.93C20—H200.93
C5—C61.386 (5)P1—F3A1.43 (3)
C5—H50.93P1—F5A1.47 (2)
C6—C71.393 (5)P1—F6A1.48 (2)
C7—C81.373 (5)P1—F4A1.524 (18)
C7—H70.93P1—F51.556 (4)
C9—H90.93P1—F61.563 (4)
C10—C111.343 (5)P1—F41.572 (4)
C10—H100.93P1—F11.576 (3)
C11—H110.93P1—F21.579 (3)
C12—C131.497 (5)P1—F31.597 (4)
C12—H12A0.97
C9—N1—C11107.5 (3)C15—C14—H14122.0
C9—N1—C6126.8 (3)C13—C14—H14122.0
C11—N1—C6125.4 (3)C14—C15—C18123.0 (3)
C9—N2—C10108.2 (3)C14—C15—C16144.1 (4)
C9—N2—C12125.8 (3)C18—C15—C1693.0 (3)
C10—N2—C12125.9 (3)C15—C16—C1786.7 (3)
C8—C1—C286.7 (3)C15—C16—H16A114.2
C8—C1—H1A114.2C17—C16—H16A114.2
C2—C1—H1A114.2C15—C16—H16B114.2
C8—C1—H1B114.2C17—C16—H16B114.2
C2—C1—H1B114.2H16A—C16—H16B111.4
H1A—C1—H1B111.4C18—C17—C1686.8 (3)
C3—C2—C186.3 (3)C18—C17—H17A114.2
C3—C2—H2A114.3C16—C17—H17A114.2
C1—C2—H2A114.3C18—C17—H17B114.2
C3—C2—H2B114.3C16—C17—H17B114.2
C1—C2—H2B114.3H17A—C17—H17B111.3
H2A—C2—H2B111.4C15—C18—C19121.1 (4)
C4—C3—C8122.4 (3)C15—C18—C1793.5 (3)
C4—C3—C2144.0 (4)C19—C18—C17145.3 (4)
C8—C3—C293.5 (3)C20—C19—C18116.7 (4)
C3—C4—C5116.3 (3)C20—C19—H19121.6
C3—C4—H4121.8C18—C19—H19121.6
C5—C4—H4121.8C19—C20—C13122.2 (3)
C6—C5—C4120.5 (3)C19—C20—H20118.9
C6—C5—H5119.8C13—C20—H20118.9
C4—C5—H5119.8F3A—P1—F5A178.4 (5)
C5—C6—C7123.0 (3)F3A—P1—F6A88.8 (6)
C5—C6—N1118.5 (3)F5A—P1—F6A90.0 (6)
C7—C6—N1118.5 (3)F3A—P1—F4A89.6 (6)
C8—C7—C6114.7 (3)F5A—P1—F4A91.5 (6)
C8—C7—H7122.7F6A—P1—F4A178.2 (6)
C6—C7—H7122.7F5—P1—F692.2 (3)
C3—C8—C7123.1 (3)F5—P1—F489.7 (3)
C3—C8—C193.5 (3)F6—P1—F4177.9 (2)
C7—C8—C1143.4 (3)F3A—P1—F191.1 (2)
N2—C9—N1109.6 (3)F5A—P1—F190.1 (2)
N2—C9—H9125.2F6A—P1—F191.5 (2)
N1—C9—H9125.2F4A—P1—F189.5 (2)
C11—C10—N2107.8 (3)F5—P1—F189.43 (19)
C11—C10—H10126.1F6—P1—F190.82 (19)
N2—C10—H10126.1F4—P1—F190.17 (19)
C10—C11—N1106.8 (3)F3A—P1—F287.5 (2)
C10—C11—H11126.6F5A—P1—F291.3 (2)
N1—C11—H11126.6F6A—P1—F287.4 (2)
N2—C12—C13111.8 (3)F4A—P1—F291.5 (2)
N2—C12—H12A109.3F5—P1—F292.30 (19)
C13—C12—H12A109.3F6—P1—F289.4 (2)
N2—C12—H12B109.3F4—P1—F289.5 (2)
C13—C12—H12B109.3F1—P1—F2178.25 (18)
H12A—C12—H12B107.9F5—P1—F3178.5 (2)
C20—C13—C14120.9 (3)F6—P1—F388.8 (3)
C20—C13—C12119.8 (3)F4—P1—F389.3 (2)
C14—C13—C12119.3 (3)F1—P1—F391.61 (18)
C15—C14—C13116.0 (4)F2—P1—F386.66 (17)
C8—C1—C2—C30.8 (3)C12—N2—C10—C11178.3 (4)
C1—C2—C3—C4177.7 (7)N2—C10—C11—N10.8 (5)
C1—C2—C3—C80.9 (4)C9—N1—C11—C100.7 (5)
C8—C3—C4—C50.3 (7)C6—N1—C11—C10174.1 (4)
C2—C3—C4—C5176.0 (6)C9—N2—C12—C13115.5 (4)
C3—C4—C5—C60.3 (7)C10—N2—C12—C1363.2 (5)
C4—C5—C6—C70.4 (7)N2—C12—C13—C2089.8 (4)
C4—C5—C6—N1176.8 (4)N2—C12—C13—C1489.5 (4)
C9—N1—C6—C535.6 (6)C20—C13—C14—C152.4 (5)
C11—N1—C6—C5138.2 (4)C12—C13—C14—C15177.0 (3)
C9—N1—C6—C7147.2 (4)C13—C14—C15—C182.5 (5)
C11—N1—C6—C739.0 (5)C13—C14—C15—C16178.8 (5)
C5—C6—C7—C80.9 (6)C14—C15—C16—C17179.7 (5)
N1—C6—C7—C8176.2 (3)C18—C15—C16—C170.8 (3)
C4—C3—C8—C70.3 (7)C15—C16—C17—C180.8 (3)
C2—C3—C8—C7178.1 (4)C14—C15—C18—C191.0 (6)
C4—C3—C8—C1178.7 (4)C16—C15—C18—C19179.7 (3)
C2—C3—C8—C10.9 (4)C14—C15—C18—C17179.9 (3)
C6—C7—C8—C30.9 (6)C16—C15—C18—C170.9 (3)
C6—C7—C8—C1177.5 (6)C16—C17—C18—C150.9 (3)
C2—C1—C8—C30.9 (4)C16—C17—C18—C19179.2 (6)
C2—C1—C8—C7177.7 (6)C15—C18—C19—C200.7 (5)
C10—N2—C9—N10.2 (4)C17—C18—C19—C20177.3 (5)
C12—N2—C9—N1178.7 (3)C18—C19—C20—C130.8 (5)
C11—N1—C9—N20.3 (4)C14—C13—C20—C190.8 (5)
C6—N1—C9—N2174.4 (3)C12—C13—C20—C19178.6 (3)
C9—N2—C10—C110.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1i0.973.003.813 (5)143
Symmetry code: (i) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC20H19N2+·F6P
Mr432.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.311 (3), 10.138 (3), 10.562 (3)
α, β, γ (°)86.82 (2), 86.44 (2), 73.61 (2)
V3)953.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.25 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3558, 3522, 2238
Rint0.006
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.223, 1.15
No. of reflections3522
No. of parameters299
No. of restraints81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.41

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1i0.973.003.813 (5)143
Symmetry code: (i) x+1, y1, z+1.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20574046) for financial support.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarona, M. F. (1996). Prog. Polym. Sci. 21, 505–555.  CrossRef CAS Web of Science Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationKirchhoff, R. A. & Bruza, K. J. (1993). Prog. Polym. Sci. 18, 85–185.  CrossRef CAS Web of Science Google Scholar
First citationMichellys, P., Maurin, P., Toupet, L., Pellissier, H. & Santelli, M. (2001). J. Org. Chem. 66, 115–122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNemeto, H. & Fukumoto, K. (1998). Tetrahedron, 54, 5425–5464.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Gao, J., Shen, X. & Huang, F. (2006). J. Appl. Polym. Sci. 99, 1705–1719.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds