organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Di­ethyl­amino­carbon­yl)meth­yl]-2-[hydr­­oxy(6-meth­oxy­quinolin-4-yl)meth­yl]-5-vinyl-1-azoniabi­cyclo­[2.2.2]octane chloride monohydrate

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
*Correspondence e-mail: zhangliping76518@163.com.cn

(Received 6 December 2007; accepted 27 December 2007; online 25 January 2008)

In the title compound, C26H36N3O3+·Cl·H2O, the mol­ecular structure of the cation is stabilized by a number of C—H⋯O intra­molecular inter­actions. In the crystal structure, O—H⋯Cl and C—H⋯Cl hydrogen bonds link the ions into a ribbon-like structure along the a axis.

Related literature

For related structures, see: Oleksyn et al. (1979[Oleksyn, B., Lebioda, Ł. & Ciechanowicz-Rutkowska, M. (1979). Acta Cryst. B35, 440-444.]); Zhang et al. (2006[Zhang, L. P., Chen, X. D., Lv, J. & Wang, Y. M. (2006). J. Mol. Struct. 789, 169-176.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N3O3+·Cl·H2O

  • Mr = 492.04

  • Orthorhombic, P 21 21 21

  • a = 8.2213 (12) Å

  • b = 17.441 (3) Å

  • c = 18.161 (3) Å

  • V = 2604.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 292 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.973

  • 15334 measured reflections

  • 5361 independent reflections

  • 3043 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.111

  • S = 0.99

  • 5361 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2317 Friedel pairs

  • Flack parameter: 0.14 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1 0.82 2.25 3.038 (2) 161
C19—H19A⋯Cl1i 0.97 2.70 3.580 (4) 150
C20—H20B⋯O2 0.97 2.33 3.001 (4) 126
C21—H21B⋯Cl1 0.97 2.76 3.650 (3) 152
C21—H21B⋯O2 0.97 2.58 3.169 (4) 119
O4⋯Cl1ii     3.141 (4)  
O4⋯Cl1iii     3.214 (4)  
Symmetry codes: (i) x+1, y, z; (ii) 1+x, y, -1+z; (iii) [{1 \over 2}+x, {3 \over 2}-y, 1-z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT (Version 5.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SAINT (Version 5.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound (Fig. 1), the quinoline ring system is planar with a maximum deviation of 0.026 (3) Å for atom C8. Bond lengths and angles are comparable to those observed in a related cinchonine structure (Oleksyn et al., 1979) but the molecules differ slightly in the relative orientations of azoniabicyclo[2.2.2]octane and quinoline units.

The structure of cation is stabilized by a number of C—H···O intramolecular interactions. In the crystal structure O—H···Cl, C—H···Cl and Ow···Cl interactions link the ions into a ribbon along the a axis (Fig.2). Similar packing arrangement is found in the structure of a related cinchonine quaternary salt (Zhang et al., 2006).

Related literature top

For related structures, see: Oleksyn et al. (1979); Zhang et al. (2006).

Experimental top

The title compound was prepared by the reaction of 2-chloro-N,N-diethylacetamide (3 mmol) with quinine (2 mmol) in acetone (5 ml) refluxed for 5 h under a N2 atmosphere. The resulting precipitate was isolated by filtration, washed, dried, and recrystallized from Et2O and CH2Cl2 (7:1). Single crystals suitable for X-ray diffraction study were obtained from CH2Cl2 by slow evaporation at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93–0.98 Å, and Uiso(H) = 1.5Ueq(OOH, CCH3) or 1.2Ueq(C). Each methyl group was allowed to rotate freely about its C—C bond. H-atoms bound to the oxygen atom of the water molecule could not be located from difference Fourier maps.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Water molecule has been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding have been omitted.
1-[(Diethylaminocarbonyl)methyl]-2-[hydroxy(6-methoxyquinolin-4-yl)methyl]- 5-vinyl-1-azoniabicyclo[2.2.2]octane chloride monohydrate top
Crystal data top
C26H36N3O3+·Cl·H2OF(000) = 1056
Mr = 492.04Dx = 1.255 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2754 reflections
a = 8.2213 (12) Åθ = 2.3–21.7°
b = 17.441 (3) ŵ = 0.18 mm1
c = 18.161 (3) ÅT = 292 K
V = 2604.0 (7) Å3Block, colourless
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5361 independent reflections
Radiation source: fine-focus sealed tube3043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 610
Tmin = 0.938, Tmax = 0.973k = 2121
15334 measured reflectionsl = 1922
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4431P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5361 reflectionsΔρmax = 0.15 e Å3
311 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 2317 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (9)
Crystal data top
C26H36N3O3+·Cl·H2OV = 2604.0 (7) Å3
Mr = 492.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2213 (12) ŵ = 0.18 mm1
b = 17.441 (3) ÅT = 292 K
c = 18.161 (3) Å0.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5361 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3043 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.973Rint = 0.062
15334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.15 e Å3
S = 1.00Δρmin = 0.18 e Å3
5361 reflectionsAbsolute structure: Flack (1983), 2317 Friedel pairs
311 parametersAbsolute structure parameter: 0.14 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3225 (4)0.93582 (15)0.56437 (14)0.0753 (8)
O20.4216 (3)0.66267 (12)0.82251 (11)0.0479 (6)
H20.35250.67370.85330.072*
O30.5222 (3)0.90203 (12)0.78329 (11)0.0526 (6)
N20.6959 (3)0.76896 (13)0.82281 (11)0.0354 (6)
N30.4329 (4)0.92548 (14)0.89798 (14)0.0464 (7)
C10.3147 (4)0.73809 (18)0.63577 (14)0.0376 (7)
C20.3419 (4)0.81809 (18)0.63353 (16)0.0410 (8)
H2A0.38780.84260.67390.049*
C30.3012 (5)0.8596 (2)0.57254 (18)0.0539 (9)
C40.2293 (5)0.8234 (2)0.51162 (18)0.0663 (12)
H40.20160.85230.47050.080*
C50.2000 (5)0.7482 (3)0.51186 (17)0.0637 (10)
H50.15150.72540.47110.076*
C60.2417 (4)0.7029 (2)0.57315 (17)0.0470 (9)
N10.2080 (4)0.62659 (18)0.56833 (16)0.0588 (8)
C70.2426 (4)0.5857 (2)0.6256 (2)0.0548 (10)
H70.22060.53350.62320.066*
C80.3111 (4)0.61412 (19)0.69128 (17)0.0474 (8)
H80.32990.58140.73080.057*
C90.3497 (4)0.69032 (18)0.69654 (15)0.0363 (8)
C100.4145 (7)0.9754 (2)0.6174 (3)0.1019 (17)
H10A0.51590.94940.62500.153*
H10B0.35520.97730.66290.153*
H10C0.43511.02670.60050.153*
C110.4261 (4)0.72014 (16)0.76742 (14)0.0328 (7)
H110.36440.76480.78450.039*
C120.6021 (3)0.74435 (18)0.75294 (13)0.0320 (7)
H120.59830.78900.72020.038*
C130.7026 (4)0.68341 (19)0.71416 (16)0.0414 (8)
H13A0.69180.68920.66130.050*
H13B0.66320.63290.72760.050*
C140.8815 (4)0.6912 (2)0.73606 (18)0.0486 (9)
H140.95060.66140.70270.058*
C150.9306 (4)0.7755 (2)0.73507 (17)0.0527 (9)
H151.04700.77750.74660.063*
C160.8411 (4)0.81627 (19)0.79803 (16)0.0440 (8)
H16A0.91480.82370.83910.053*
H16B0.80450.86630.78150.053*
C190.8954 (5)0.6608 (2)0.81431 (18)0.0571 (10)
H19A1.00310.67150.83360.069*
H19B0.87930.60570.81460.069*
C200.7671 (4)0.69938 (17)0.86258 (16)0.0464 (9)
H20A0.81600.71550.90870.056*
H20B0.68100.66310.87370.056*
C170.9092 (5)0.8107 (3)0.6606 (2)0.0611 (11)
H170.94960.78220.62140.073*
C180.8428 (6)0.8751 (3)0.6433 (2)0.0897 (15)
H18A0.79990.90650.67990.108*
H18B0.83770.89020.59430.108*
C210.5994 (4)0.81309 (17)0.87826 (14)0.0370 (7)
H21A0.67140.82800.91810.044*
H21B0.51720.77940.89880.044*
C220.5158 (4)0.88459 (17)0.84909 (17)0.0388 (8)
C230.3385 (5)0.9913 (2)0.8714 (2)0.0639 (11)
H23A0.39631.01520.83090.077*
H23B0.32971.02880.91070.077*
C240.1710 (6)0.9696 (3)0.8462 (3)0.116 (2)
H24A0.11160.94790.88660.174*
H24B0.17880.93270.80710.174*
H24C0.11541.01450.82870.174*
C250.4319 (5)0.9119 (2)0.97795 (17)0.0571 (10)
H25A0.45900.85870.98740.069*
H25B0.32330.92100.99680.069*
C260.5499 (6)0.9624 (2)1.0182 (2)0.0776 (14)
H26A0.52981.01501.00560.116*
H26B0.65890.94891.00440.116*
H26C0.53650.95561.07030.116*
Cl10.19903 (11)0.74211 (6)0.93207 (4)0.0619 (3)
O40.9536 (5)0.8684 (2)0.01438 (18)0.1224 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (2)0.0584 (17)0.0655 (16)0.0077 (16)0.0188 (19)0.0180 (14)
O20.0541 (17)0.0496 (14)0.0399 (12)0.0007 (12)0.0049 (12)0.0114 (11)
O30.0734 (18)0.0461 (14)0.0383 (13)0.0105 (13)0.0025 (13)0.0030 (11)
N20.0321 (14)0.0401 (15)0.0341 (12)0.0020 (13)0.0009 (13)0.0032 (11)
N30.055 (2)0.0343 (16)0.0500 (16)0.0071 (15)0.0124 (15)0.0005 (12)
C10.0311 (17)0.048 (2)0.0341 (15)0.0033 (17)0.0008 (15)0.0072 (15)
C20.040 (2)0.049 (2)0.0342 (17)0.0088 (17)0.0035 (16)0.0010 (15)
C30.060 (2)0.055 (2)0.046 (2)0.012 (2)0.001 (2)0.0022 (18)
C40.082 (3)0.078 (3)0.0381 (19)0.016 (3)0.009 (2)0.005 (2)
C50.073 (3)0.080 (3)0.0382 (18)0.009 (3)0.015 (2)0.009 (2)
C60.044 (2)0.055 (2)0.0419 (19)0.0060 (17)0.0009 (17)0.0078 (17)
N10.0565 (19)0.065 (2)0.0547 (18)0.0069 (17)0.0075 (18)0.0142 (17)
C70.045 (2)0.050 (2)0.069 (2)0.0047 (18)0.001 (2)0.020 (2)
C80.0370 (19)0.051 (2)0.054 (2)0.0063 (18)0.0021 (18)0.0017 (16)
C90.0263 (18)0.0421 (19)0.0403 (17)0.0032 (15)0.0043 (15)0.0049 (15)
C100.146 (5)0.049 (3)0.111 (4)0.002 (3)0.038 (4)0.019 (3)
C110.0324 (18)0.0349 (17)0.0310 (15)0.0007 (14)0.0006 (14)0.0008 (13)
C120.0288 (16)0.0425 (18)0.0247 (13)0.0041 (15)0.0030 (13)0.0017 (13)
C130.0324 (18)0.051 (2)0.0407 (17)0.0089 (18)0.0004 (17)0.0122 (15)
C140.032 (2)0.062 (2)0.051 (2)0.0098 (18)0.0014 (17)0.0197 (18)
C150.0279 (19)0.073 (3)0.057 (2)0.0010 (19)0.0005 (18)0.0126 (19)
C160.034 (2)0.053 (2)0.0451 (18)0.0070 (17)0.0019 (17)0.0046 (16)
C190.048 (2)0.058 (2)0.065 (2)0.0162 (19)0.016 (2)0.0141 (19)
C200.052 (2)0.044 (2)0.0426 (18)0.0094 (17)0.0153 (18)0.0010 (15)
C170.043 (2)0.086 (3)0.054 (2)0.013 (2)0.014 (2)0.004 (2)
C180.110 (4)0.095 (4)0.064 (3)0.020 (3)0.022 (3)0.009 (3)
C210.0422 (19)0.0399 (18)0.0288 (14)0.0031 (16)0.0018 (15)0.0058 (14)
C220.040 (2)0.0332 (18)0.0427 (19)0.0022 (16)0.0007 (16)0.0042 (15)
C230.075 (3)0.040 (2)0.077 (3)0.020 (2)0.010 (2)0.0034 (19)
C240.057 (3)0.106 (4)0.186 (6)0.015 (3)0.008 (4)0.059 (4)
C250.076 (3)0.051 (2)0.0440 (19)0.003 (2)0.023 (2)0.0046 (17)
C260.117 (4)0.061 (3)0.055 (2)0.019 (3)0.001 (3)0.0084 (19)
Cl10.0504 (5)0.0839 (7)0.0515 (5)0.0123 (5)0.0083 (5)0.0087 (5)
O40.128 (3)0.127 (3)0.113 (2)0.002 (2)0.014 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C31.349 (4)C13—C141.529 (4)
O1—C101.406 (5)C13—H13A0.97
O2—C111.417 (3)C13—H13B0.97
O2—H20.82C14—C191.521 (5)
O3—C221.234 (3)C14—C151.525 (5)
N2—C211.495 (3)C14—H140.98
N2—C161.519 (4)C15—C171.496 (5)
N2—C201.529 (4)C15—C161.535 (4)
N2—C121.546 (3)C15—H150.98
N3—C221.327 (4)C16—H16A0.97
N3—C231.468 (4)C16—H16B0.97
N3—C251.472 (4)C19—C201.528 (4)
C1—C91.412 (4)C19—H19A0.97
C1—C21.414 (4)C19—H19B0.97
C1—C61.425 (4)C20—H20A0.97
C2—C31.365 (4)C20—H20B0.97
C2—H2A0.93C17—C181.287 (5)
C3—C41.405 (5)C17—H170.93
C4—C51.333 (5)C18—H18A0.93
C4—H40.93C18—H18B0.93
C5—C61.407 (5)C21—C221.519 (4)
C5—H50.93C21—H21A0.97
C6—N11.363 (4)C21—H21B0.97
N1—C71.293 (4)C23—C241.500 (6)
C7—C81.409 (4)C23—H23A0.97
C7—H70.93C23—H23B0.97
C8—C91.370 (4)C24—H24A0.96
C8—H80.93C24—H24B0.96
C9—C111.524 (4)C24—H24C0.96
C10—H10A0.96C25—C261.500 (5)
C10—H10B0.96C25—H25A0.97
C10—H10C0.96C25—H25B0.97
C11—C121.530 (4)C26—H26A0.96
C11—H110.98C26—H26B0.96
C12—C131.519 (4)C26—H26C0.96
C12—H120.98
C3—O1—C10118.6 (3)C19—C14—H14110.5
C11—O2—H2109.5C15—C14—H14110.5
C21—N2—C16109.7 (2)C13—C14—H14110.5
C21—N2—C20107.1 (2)C17—C15—C14112.1 (3)
C16—N2—C20105.7 (2)C17—C15—C16115.2 (3)
C21—N2—C12115.5 (2)C14—C15—C16108.2 (3)
C16—N2—C12107.4 (2)C17—C15—H15107.0
C20—N2—C12111.0 (2)C14—C15—H15107.0
C22—N3—C23118.2 (3)C16—C15—H15107.0
C22—N3—C25125.2 (3)N2—C16—C15110.2 (3)
C23—N3—C25116.6 (3)N2—C16—H16A109.6
C9—C1—C2124.9 (3)C15—C16—H16A109.6
C9—C1—C6117.1 (3)N2—C16—H16B109.6
C2—C1—C6117.9 (3)C15—C16—H16B109.6
C3—C2—C1120.6 (3)H16A—C16—H16B108.1
C3—C2—H2A119.7C14—C19—C20109.3 (3)
C1—C2—H2A119.7C14—C19—H19A109.8
O1—C3—C2125.5 (3)C20—C19—H19A109.8
O1—C3—C4114.3 (3)C14—C19—H19B109.8
C2—C3—C4120.2 (3)C20—C19—H19B109.8
C5—C4—C3121.1 (3)H19A—C19—H19B108.3
C5—C4—H4119.5C19—C20—N2110.0 (2)
C3—C4—H4119.5C19—C20—H20A109.7
C4—C5—C6120.7 (3)N2—C20—H20A109.7
C4—C5—H5119.6C19—C20—H20B109.7
C6—C5—H5119.6N2—C20—H20B109.7
N1—C6—C5116.6 (3)H20A—C20—H20B108.2
N1—C6—C1123.9 (3)C18—C17—C15129.0 (4)
C5—C6—C1119.5 (3)C18—C17—H17115.5
C7—N1—C6116.3 (3)C15—C17—H17115.5
N1—C7—C8125.1 (3)C17—C18—H18A120.0
N1—C7—H7117.5C17—C18—H18B120.0
C8—C7—H7117.5H18A—C18—H18B120.0
C9—C8—C7119.5 (3)N2—C21—C22115.3 (2)
C9—C8—H8120.2N2—C21—H21A108.4
C7—C8—H8120.2C22—C21—H21A108.4
C8—C9—C1118.1 (3)N2—C21—H21B108.4
C8—C9—C11119.1 (3)C22—C21—H21B108.4
C1—C9—C11122.9 (3)H21A—C21—H21B107.5
O1—C10—H10A109.5O3—C22—N3122.5 (3)
O1—C10—H10B109.5O3—C22—C21121.4 (3)
H10A—C10—H10B109.5N3—C22—C21116.1 (3)
O1—C10—H10C109.5N3—C23—C24112.9 (3)
H10A—C10—H10C109.5N3—C23—H23A109.0
H10B—C10—H10C109.5C24—C23—H23A109.0
O2—C11—C9110.1 (2)N3—C23—H23B109.0
O2—C11—C12110.0 (2)C24—C23—H23B109.0
C9—C11—C12109.8 (2)H23A—C23—H23B107.8
O2—C11—H11109.0C23—C24—H24A109.5
C9—C11—H11109.0C23—C24—H24B109.5
C12—C11—H11109.0H24A—C24—H24B109.5
C13—C12—C11113.6 (3)C23—C24—H24C109.5
C13—C12—N2107.7 (2)H24A—C24—H24C109.5
C11—C12—N2114.0 (2)H24B—C24—H24C109.5
C13—C12—H12107.0N3—C25—C26112.5 (3)
C11—C12—H12107.0N3—C25—H25A109.1
N2—C12—H12107.0C26—C25—H25A109.1
C12—C13—C14109.9 (2)N3—C25—H25B109.1
C12—C13—H13A109.7C26—C25—H25B109.1
C14—C13—H13A109.7H25A—C25—H25B107.8
C12—C13—H13B109.7C25—C26—H26A109.5
C14—C13—H13B109.7C25—C26—H26B109.5
H13A—C13—H13B108.2H26A—C26—H26B109.5
C19—C14—C15109.1 (3)C25—C26—H26C109.5
C19—C14—C13106.5 (3)H26A—C26—H26C109.5
C15—C14—C13109.7 (3)H26B—C26—H26C109.5
C9—C1—C2—C3178.8 (3)C16—N2—C12—C11160.6 (2)
C6—C1—C2—C31.0 (5)C20—N2—C12—C1184.3 (3)
C10—O1—C3—C29.8 (6)C11—C12—C13—C14150.9 (3)
C10—O1—C3—C4170.9 (4)N2—C12—C13—C1423.6 (3)
C1—C2—C3—O1179.6 (3)C12—C13—C14—C1974.2 (3)
C1—C2—C3—C41.0 (5)C12—C13—C14—C1543.7 (4)
O1—C3—C4—C5179.7 (4)C19—C14—C15—C17176.2 (3)
C2—C3—C4—C50.3 (6)C13—C14—C15—C1759.8 (4)
C3—C4—C5—C60.5 (6)C19—C14—C15—C1648.0 (3)
C4—C5—C6—N1179.7 (4)C13—C14—C15—C1668.3 (3)
C4—C5—C6—C10.5 (5)C21—N2—C16—C15173.8 (2)
C9—C1—C6—N11.6 (5)C20—N2—C16—C1571.1 (3)
C2—C1—C6—N1179.6 (3)C12—N2—C16—C1547.5 (3)
C9—C1—C6—C5178.2 (3)C17—C15—C16—N2107.2 (3)
C2—C1—C6—C50.2 (4)C14—C15—C16—N219.1 (3)
C5—C6—N1—C7178.2 (3)C15—C14—C19—C2067.4 (4)
C1—C6—N1—C71.6 (5)C13—C14—C19—C2050.9 (4)
C6—N1—C7—C80.1 (5)C14—C19—C20—N214.0 (4)
N1—C7—C8—C91.8 (5)C21—N2—C20—C19168.1 (3)
C7—C8—C9—C11.7 (5)C16—N2—C20—C1951.2 (3)
C7—C8—C9—C11179.1 (3)C12—N2—C20—C1964.9 (3)
C2—C1—C9—C8177.7 (3)C14—C15—C17—C18133.4 (5)
C6—C1—C9—C80.1 (4)C16—C15—C17—C189.1 (6)
C2—C1—C9—C111.5 (5)C16—N2—C21—C2266.6 (3)
C6—C1—C9—C11179.4 (3)C20—N2—C21—C22179.1 (3)
C8—C9—C11—O29.1 (4)C12—N2—C21—C2255.0 (3)
C1—C9—C11—O2170.2 (3)C23—N3—C22—O33.5 (5)
C8—C9—C11—C12112.2 (3)C25—N3—C22—O3174.3 (3)
C1—C9—C11—C1268.6 (4)C23—N3—C22—C21174.8 (3)
O2—C11—C12—C1370.3 (3)C25—N3—C22—C217.4 (5)
C9—C11—C12—C1351.0 (3)N2—C21—C22—O33.3 (4)
O2—C11—C12—N253.6 (3)N2—C21—C22—N3178.4 (3)
C9—C11—C12—N2175.0 (2)C22—N3—C23—C2486.3 (4)
C21—N2—C12—C13164.9 (2)C25—N3—C23—C2495.7 (4)
C16—N2—C12—C1372.3 (3)C22—N3—C25—C2696.8 (4)
C20—N2—C12—C1342.8 (3)C23—N3—C25—C2681.1 (4)
C21—N2—C12—C1137.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl10.822.253.038 (2)161
C19—H19A···Cl1i0.972.703.580 (4)150
C20—H20B···O20.972.333.001 (4)126
C21—H21B···Cl10.972.763.650 (3)152
C21—H21B···O20.972.583.169 (4)119
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H36N3O3+·Cl·H2O
Mr492.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)8.2213 (12), 17.441 (3), 18.161 (3)
V3)2604.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
15334, 5361, 3043
Rint0.062
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.111, 1.00
No. of reflections5361
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18
Absolute structureFlack (1983), 2317 Friedel pairs
Absolute structure parameter0.14 (9)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl10.822.253.038 (2)161
C19—H19A···Cl1i0.972.703.580 (4)150
C20—H20B···O20.972.333.001 (4)126
C21—H21B···Cl10.972.763.650 (3)152
C21—H21B···O20.972.583.169 (4)119
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Youth Foundation of Jiangnan University (grant No. 104000-52210691).

References

First citationBruker (1998). SMART. Version 5.2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT (Version 5.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOleksyn, B., Lebioda, Ł. & Ciechanowicz-Rutkowska, M. (1979). Acta Cryst. B35, 440–444.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. P., Chen, X. D., Lv, J. & Wang, Y. M. (2006). J. Mol. Struct. 789, 169–176.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds