organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­oxy­phen­yl)-6-(phenyl­sulfon­yl)perhydro-1,3-thiazolo[3′,4′:1,2]pyrrolo[4,5-c]pyrrole

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 10 December 2007; accepted 21 January 2008; online 25 January 2008)

In the title compound, C21H24N2O3S2, the three five-membered rings adopt envelope conformations. The dihedral angle between the two aromatic rings is 68.4 (1)°. C—H⋯O inter­actions link the mol­ecules into a chain and the chains are cross-linked via C—H⋯π inter­actions involving the meth­oxy­phenyl ring.

Related literature

For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For general background, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Tsuru et al. (1988[Tsuru, D., Yoshimoto, T., Koriyama, N. & Furukawa, S. (1988). J. Biochem. 104, 580-586.]). For a related structure, see: Kavitha et al. (2006[Kavitha, V., Gayathri, D. R., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o2146-o2148.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O3S2

  • Mr = 416.54

  • Monoclinic, P 21 /c

  • a = 14.5533 (8) Å

  • b = 8.3319 (5) Å

  • c = 16.8828 (9) Å

  • β = 98.923 (1)°

  • V = 2022.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.24 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 22482 measured reflections

  • 4769 independent reflections

  • 3991 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.00

  • 4769 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.56 3.437 (3) 158
C3—H3⋯Cg1ii 0.98 2.76 3.729 (2) 172
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted pyrrolidine compounds have gained much importance as they are the structural elements of many alkaloids. The pyrrolidine derivatives have been found to possess antifungal activity against various pathogens (Amal Raj et al., 2003). Thiazolidine derivatives may act as potent inhibitors specific for Pro1yl Endopeptidase (Tsuru et al., 1988). In view of the above facts, we have undertaken the X-ray crystal structure determination of the title compound.

Bond lenghts and angles in the title molecule (Fig. 1) are comparable to those observed in a related structure (Kavitha et al., 2006). The sums of the bond angles around N1 (343.7°) and N2 (333.1°) indicate sp3-hybridization. The thiazolidine and the two pyrrolidine rings (N1/C1—C4, A, and C2/C3/N2/C5/C6, B) adopt envelope conformations. Atom N1 in ring A lies 0.597 (2) Å below the C1—C4 mean plane and atom C6 in ring B lies 0.563 (3) Å above the N2/C3/C2/C5 plane. In the thiazolidine ring, atom C6 deviates by 0.554 (3) Å from the plane of the rest of the atoms in the ring. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) are q2 = 0.406 (2) Å, ϕ = 187.3 (3)° and Δs(N1) = 6.5 (2)° for ring A, q2 = 0.372 (2) Å, ϕ = 137.0 (3)° and Δs(C6) = 4.2 (2)° for ring B, and q2 = 0.378 (2) Å, ϕ = 69.8 (3)° and Δs(C6) = 3.7 (2)° for the thiazolidine ring. The dihedral angle between the two aromatic rings is 68.4 (1)°.

The crystal packing is stabilized by C—H···O and C—H···π intermolecular interactions.

Related literature top

For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For general background, see: Amal Raj et al. (2003); Tsuru et al. (1988). For a related structure, see: Kavitha et al. (2006).

Experimental top

A mixture of 2-(N-allyl-N-phenylsulfonyl) butanal (1.0 mmol) and of 2-p-methoxyphenylthiazolidine-4-carboxylic acid (1.5 mmol) in dry toluene (30 ml) was refluxed under Dean-Stark conditions till the completion of the reaction (3 h). The reaction mixture was then concentrated under reduced pressure. The residue was extracted with dichloromethane (2× 20 ml) and water (2× 20 ml). The organic layer was washed with brine solution (2× 20 ml), dried over anhydrous sodium sulfate and concentrated in vacuum. The residue was then subjected to column chromatography (silica gel, 100–200 mesh) with hexane-ethylacetate (8:2) to obtain the cycloadduct. Single crystals were obtained by recrystallization from methanol.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5(methyl) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis.
3-(4-Methoxyphenyl)-6-(phenylsulfonyl)perhydro-1,3- thiazolo[3',4':1,2]pyrrolo[4,5-c]pyrrole top
Crystal data top
C21H24N2O3S2F(000) = 880
Mr = 416.54Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2394 reflections
a = 14.5533 (8) Åθ = 2.4–28.0°
b = 8.3319 (5) ŵ = 0.29 mm1
c = 16.8828 (9) ÅT = 293 K
β = 98.923 (1)°Block, pale yellow
V = 2022.4 (2) Å30.24 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
ω scansh = 1818
22482 measured reflectionsk = 1011
4769 independent reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.082P)2 + 0.473P]
where P = (Fo2 + 2Fc2)/3
4769 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H24N2O3S2V = 2022.4 (2) Å3
Mr = 416.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5533 (8) ŵ = 0.29 mm1
b = 8.3319 (5) ÅT = 293 K
c = 16.8828 (9) Å0.24 × 0.23 × 0.21 mm
β = 98.923 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3991 reflections with I > 2σ(I)
22482 measured reflectionsRint = 0.020
4769 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
4769 reflectionsΔρmin = 0.16 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65354 (11)0.0421 (2)0.27798 (12)0.0543 (4)
H1A0.62060.00860.22620.065*
H1B0.61160.03710.31730.065*
C20.74011 (12)0.0593 (2)0.30329 (11)0.0518 (4)
H20.73170.16810.28130.062*
C30.81895 (10)0.0293 (2)0.26945 (9)0.0439 (3)
H30.84250.03560.22850.053*
C40.77552 (11)0.1850 (2)0.23356 (11)0.0526 (4)
H4A0.81800.27470.24530.063*
H4B0.75760.17600.17600.063*
C50.77266 (13)0.0635 (3)0.39390 (11)0.0626 (5)
H5A0.74810.02700.42010.075*
H5B0.75340.16220.41710.075*
C60.87749 (12)0.0543 (3)0.40161 (10)0.0569 (4)
H60.90460.01320.45450.068*
C70.92284 (15)0.2141 (3)0.38422 (15)0.0727 (6)
H7A0.88250.27420.34360.087*
H7B0.93540.27880.43250.087*
C80.98632 (10)0.04673 (19)0.32061 (9)0.0436 (3)
H80.98400.05900.26260.052*
C91.05361 (11)0.16890 (19)0.36222 (9)0.0436 (3)
C101.14935 (12)0.1485 (2)0.36544 (12)0.0550 (4)
H101.17130.05770.34230.066*
C111.21182 (12)0.2592 (2)0.40186 (11)0.0564 (4)
H111.27520.24260.40320.068*
C121.18109 (11)0.3950 (2)0.43660 (9)0.0479 (4)
C131.08652 (11)0.4217 (2)0.43145 (10)0.0494 (4)
H131.06490.51490.45260.059*
C141.02415 (11)0.3086 (2)0.39456 (10)0.0478 (4)
H140.96070.32740.39150.057*
C151.22176 (17)0.6174 (3)0.52376 (16)0.0805 (6)
H15A1.18520.69670.49180.121*
H15B1.27630.66690.55290.121*
H15C1.18570.57070.56080.121*
C160.56879 (11)0.3179 (2)0.15034 (11)0.0500 (4)
C170.48978 (12)0.2243 (2)0.13751 (13)0.0618 (5)
H170.46220.18850.18040.074*
C180.45196 (16)0.1844 (3)0.05922 (17)0.0806 (7)
H180.39910.12030.04970.097*
C190.4920 (2)0.2388 (4)0.00370 (16)0.0903 (8)
H190.46640.21100.05580.108*
C200.56928 (18)0.3335 (4)0.00945 (16)0.0913 (8)
H200.59560.37130.03370.110*
C210.60859 (14)0.3736 (3)0.08689 (14)0.0717 (6)
H210.66150.43770.09590.086*
N10.69349 (9)0.20342 (17)0.27399 (8)0.0463 (3)
N20.89254 (8)0.05860 (16)0.33850 (7)0.0425 (3)
O11.24842 (9)0.49627 (18)0.47326 (9)0.0655 (4)
O20.55465 (11)0.3473 (2)0.30071 (10)0.0803 (5)
O30.68031 (11)0.49379 (17)0.24897 (11)0.0845 (5)
S11.02851 (3)0.16174 (6)0.34950 (3)0.06126 (16)
S20.62353 (3)0.35418 (5)0.24924 (3)0.05671 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (8)0.0524 (9)0.0690 (11)0.0053 (7)0.0012 (7)0.0057 (8)
C20.0474 (9)0.0442 (8)0.0619 (10)0.0017 (7)0.0025 (7)0.0016 (7)
C30.0408 (7)0.0513 (9)0.0379 (7)0.0052 (6)0.0013 (6)0.0012 (6)
C40.0375 (8)0.0647 (11)0.0543 (9)0.0039 (7)0.0033 (7)0.0166 (8)
C50.0539 (10)0.0767 (13)0.0591 (10)0.0051 (9)0.0148 (8)0.0172 (9)
C60.0501 (9)0.0787 (13)0.0418 (8)0.0110 (9)0.0065 (7)0.0119 (8)
C70.0654 (12)0.0688 (13)0.0853 (14)0.0174 (10)0.0158 (10)0.0367 (11)
C80.0414 (7)0.0472 (8)0.0412 (7)0.0091 (6)0.0033 (6)0.0006 (6)
C90.0405 (8)0.0486 (8)0.0402 (7)0.0083 (6)0.0018 (6)0.0033 (6)
C100.0434 (8)0.0551 (10)0.0650 (10)0.0143 (7)0.0035 (7)0.0071 (8)
C110.0369 (8)0.0617 (11)0.0681 (11)0.0100 (7)0.0006 (7)0.0002 (9)
C120.0454 (8)0.0520 (9)0.0441 (8)0.0009 (7)0.0005 (6)0.0052 (7)
C130.0495 (9)0.0479 (9)0.0507 (9)0.0068 (7)0.0080 (7)0.0013 (7)
C140.0380 (7)0.0537 (9)0.0513 (9)0.0088 (7)0.0052 (6)0.0007 (7)
C150.0727 (13)0.0751 (14)0.0901 (16)0.0104 (12)0.0017 (12)0.0244 (12)
C160.0384 (8)0.0460 (8)0.0629 (10)0.0071 (6)0.0007 (7)0.0056 (7)
C170.0448 (9)0.0581 (11)0.0795 (13)0.0016 (8)0.0002 (8)0.0085 (9)
C180.0584 (12)0.0700 (13)0.1027 (18)0.0003 (10)0.0211 (12)0.0081 (13)
C190.0831 (17)0.108 (2)0.0723 (14)0.0324 (15)0.0127 (12)0.0067 (14)
C200.0679 (14)0.135 (2)0.0702 (14)0.0243 (15)0.0080 (11)0.0286 (14)
C210.0458 (9)0.0839 (14)0.0830 (14)0.0029 (9)0.0022 (9)0.0269 (12)
N10.0369 (6)0.0462 (7)0.0539 (7)0.0004 (5)0.0009 (5)0.0001 (6)
N20.0384 (6)0.0499 (7)0.0376 (6)0.0061 (5)0.0012 (5)0.0003 (5)
O10.0506 (7)0.0672 (8)0.0754 (9)0.0045 (6)0.0007 (6)0.0105 (7)
O20.0724 (9)0.0955 (12)0.0742 (9)0.0299 (8)0.0151 (7)0.0118 (8)
O30.0785 (10)0.0448 (7)0.1191 (13)0.0049 (7)0.0199 (9)0.0081 (8)
S10.0558 (3)0.0487 (3)0.0802 (3)0.01351 (19)0.0134 (2)0.0004 (2)
S20.0506 (3)0.0477 (3)0.0683 (3)0.00750 (18)0.0018 (2)0.00786 (19)
Geometric parameters (Å, º) top
C1—N11.470 (2)C10—C111.372 (3)
C1—C21.522 (2)C10—H100.93
C1—H1A0.97C11—C121.381 (3)
C1—H1B0.97C11—H110.93
C2—C51.530 (3)C12—O11.367 (2)
C2—C31.546 (2)C12—C131.384 (2)
C2—H20.98C13—C141.387 (2)
C3—N21.4760 (18)C13—H130.93
C3—C41.527 (2)C14—H140.93
C3—H30.98C15—O11.413 (3)
C4—N11.472 (2)C15—H15A0.96
C4—H4A0.97C15—H15B0.96
C4—H4B0.97C15—H15C0.96
C5—C61.513 (2)C16—C211.375 (3)
C5—H5A0.97C16—C171.378 (2)
C5—H5B0.97C16—S21.7611 (18)
C6—N21.463 (2)C17—C181.391 (3)
C6—C71.534 (3)C17—H170.93
C6—H60.98C18—C191.366 (4)
C7—S11.783 (2)C18—H180.93
C7—H7A0.97C19—C201.364 (4)
C7—H7B0.97C19—H190.93
C8—N21.4461 (19)C20—C211.384 (4)
C8—C91.508 (2)C20—H200.93
C8—S11.8812 (16)C21—H210.93
C8—H80.98N1—S21.630 (1)
C9—C141.382 (2)O2—S21.426 (2)
C9—C101.396 (2)O3—S21.427 (2)
N1—C1—C2101.78 (13)C11—C10—H10119.2
N1—C1—H1A111.4C9—C10—H10119.2
C2—C1—H1A111.4C10—C11—C12120.36 (15)
N1—C1—H1B111.4C10—C11—H11119.8
C2—C1—H1B111.4C12—C11—H11119.8
H1A—C1—H1B109.3O1—C12—C11116.22 (15)
C1—C2—C5114.08 (16)O1—C12—C13124.43 (16)
C1—C2—C3105.12 (13)C11—C12—C13119.34 (16)
C5—C2—C3104.36 (13)C12—C13—C14119.61 (16)
C1—C2—H2111.0C12—C13—H13120.2
C5—C2—H2111.0C14—C13—H13120.2
C3—C2—H2111.0C9—C14—C13121.87 (15)
N2—C3—C4112.20 (14)C9—C14—H14119.1
N2—C3—C2106.04 (12)C13—C14—H14119.1
C4—C3—C2105.49 (12)O1—C15—H15A109.5
N2—C3—H3111.0O1—C15—H15B109.5
C4—C3—H3111.0H15A—C15—H15B109.5
C2—C3—H3111.0O1—C15—H15C109.5
N1—C4—C3102.71 (13)H15A—C15—H15C109.5
N1—C4—H4A111.2H15B—C15—H15C109.5
C3—C4—H4A111.2C21—C16—C17120.69 (19)
N1—C4—H4B111.2C21—C16—S2119.82 (15)
C3—C4—H4B111.2C17—C16—S2119.33 (15)
H4A—C4—H4B109.1C16—C17—C18118.8 (2)
C6—C5—C2103.68 (14)C16—C17—H17120.6
C6—C5—H5A111.0C18—C17—H17120.6
C2—C5—H5A111.0C19—C18—C17120.4 (2)
C6—C5—H5B111.0C19—C18—H18119.8
C2—C5—H5B111.0C17—C18—H18119.8
H5A—C5—H5B109.0C18—C19—C20120.4 (2)
N2—C6—C5103.46 (13)C18—C19—H19119.8
N2—C6—C7107.54 (14)C20—C19—H19119.8
C5—C6—C7113.43 (19)C19—C20—C21120.2 (2)
N2—C6—H6110.7C19—C20—H20119.9
C5—C6—H6110.7C21—C20—H20119.9
C7—C6—H6110.7C16—C21—C20119.5 (2)
C6—C7—S1105.61 (15)C16—C21—H21120.3
C6—C7—H7A110.6C20—C21—H21120.3
S1—C7—H7A110.6C1—N1—C4106.32 (14)
C6—C7—H7B110.6C1—N1—S2118.72 (10)
S1—C7—H7B110.6C4—N1—S2118.72 (11)
H7A—C7—H7B108.8C8—N2—C6111.15 (12)
N2—C8—C9114.97 (13)C8—N2—C3114.61 (12)
N2—C8—S1106.84 (11)C6—N2—C3107.25 (13)
C9—C8—S1109.88 (10)C12—O1—C15117.99 (15)
N2—C8—H8108.3C7—S1—C892.74 (8)
C9—C8—H8108.3O3—S2—O2119.8 (1)
S1—C8—H8108.3O3—S2—N1106.9 (1)
C14—C9—C10117.13 (16)O2—S2—N1106.4 (1)
C14—C9—C8122.25 (14)O3—S2—C16108.3 (1)
C10—C9—C8120.52 (14)O2—S2—C16108.3 (1)
C11—C10—C9121.58 (16)N1—S2—C16106.5 (1)
N1—C1—C2—C584.89 (18)C19—C20—C21—C160.4 (4)
N1—C1—C2—C328.83 (17)C2—C1—N1—C443.59 (17)
C1—C2—C3—N2124.51 (14)C2—C1—N1—S2179.41 (12)
C5—C2—C3—N24.15 (18)C3—C4—N1—C140.24 (16)
C1—C2—C3—C45.32 (18)C3—C4—N1—S2177.24 (11)
C5—C2—C3—C4115.04 (15)C9—C8—N2—C696.95 (16)
N2—C3—C4—N194.75 (15)S1—C8—N2—C625.25 (15)
C2—C3—C4—N120.26 (17)C9—C8—N2—C3141.25 (14)
C1—C2—C5—C6140.00 (16)S1—C8—N2—C396.54 (13)
C3—C2—C5—C625.83 (19)C5—C6—N2—C8162.77 (15)
C2—C5—C6—N238.5 (2)C7—C6—N2—C842.48 (19)
C2—C5—C6—C777.72 (19)C5—C6—N2—C336.79 (18)
N2—C6—C7—S139.16 (19)C7—C6—N2—C383.51 (17)
C5—C6—C7—S1152.93 (13)C4—C3—N2—C8101.22 (15)
N2—C8—C9—C1418.7 (2)C2—C3—N2—C8144.10 (13)
S1—C8—C9—C14139.26 (14)C4—C3—N2—C6134.88 (14)
N2—C8—C9—C10164.94 (15)C2—C3—N2—C620.21 (17)
S1—C8—C9—C1044.39 (19)C11—C12—O1—C15166.82 (19)
C14—C9—C10—C112.5 (3)C13—C12—O1—C1514.2 (3)
C8—C9—C10—C11178.99 (17)C6—C7—S1—C821.16 (15)
C9—C10—C11—C120.0 (3)N2—C8—S1—C71.24 (13)
C10—C11—C12—O1178.36 (17)C9—C8—S1—C7124.11 (13)
C10—C11—C12—C132.6 (3)C1—N1—S2—O3179.18 (14)
O1—C12—C13—C14178.35 (16)C4—N1—S2—O347.46 (16)
C11—C12—C13—C142.7 (3)C1—N1—S2—O251.72 (16)
C10—C9—C14—C132.4 (3)C4—N1—S2—O2176.55 (13)
C8—C9—C14—C13178.82 (15)C1—N1—S2—C1663.61 (15)
C12—C13—C14—C90.2 (3)C4—N1—S2—C1668.11 (14)
C21—C16—C17—C181.3 (3)C21—C16—S2—O324.79 (18)
S2—C16—C17—C18174.25 (15)C17—C16—S2—O3159.64 (15)
C16—C17—C18—C190.7 (3)C21—C16—S2—O2156.12 (16)
C17—C18—C19—C200.3 (4)C17—C16—S2—O228.32 (18)
C18—C19—C20—C210.9 (4)C21—C16—S2—N189.80 (17)
C17—C16—C21—C200.7 (3)C17—C16—S2—N185.77 (16)
S2—C16—C21—C20174.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.563.437 (3)158
C3—H3···Cg1ii0.982.763.729 (2)172
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24N2O3S2
Mr416.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.5533 (8), 8.3319 (5), 16.8828 (9)
β (°) 98.923 (1)
V3)2022.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22482, 4769, 3991
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.00
No. of reflections4769
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.563.437 (3)158
C3—H3···Cg1ii0.982.763.729 (2)172
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKavitha, V., Gayathri, D. R., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o2146–o2148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuru, D., Yoshimoto, T., Koriyama, N. & Furukawa, S. (1988). J. Biochem. 104, 580–586.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds