metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m303-m304

catena-Poly[[[aqua­(propane-1,3-di­amine-κ2N,N′)copper(II)]-μ-fumarato-κ2O:O′] monohydrate]

aSchool of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala, India, bDepartment of Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and cDepartment of Chemistry, The University of the West Indies – Mona Campus, Kingston 7, Jamaica
*Correspondence e-mail: mohammed.bakir@uwimona.edu.jm

(Received 13 December 2007; accepted 2 January 2008; online 9 January 2008)

The asymmetric unit of the title compound, {[Cu(C4H2O4)(C3H10N2)(H2O)]·H2O}n, consists of two CuII atoms, half each of two propane-1,3-diamine ligands and two coordinated water mol­ecules, all lying on crystallographic mirror planes, also one fumarate dianion and one uncoordinated water mol­ecule in a general position. The Cu(C3H10N2)(H2O) units are linked via fumarate dianions into a zigzag chain running along the a axis. A longer Cu—O distance [2.873 (3) Å] is to a water mol­ecule bridging equivalent CuII atoms in adjacent chains, forming a three-dimensional framework. One of the CuII atoms is in a distorted square-pyramidal environment and the other is in a pseudo-octa­hedral geometry of the [5+1] type. O—H⋯O and N—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature, see: Chan (2007[Chan, W. K. (2007). Coord. Chem. Rev. 251, 2104-2118.]); Dong et al. (2006[Dong, G.-Y., Cui, G.-H. & Lin, J. (2006). Acta Cryst. E62, m628-m630.]); Mori et al. (2005[Mori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555-2573.]); Mukherjee et al. (2004[Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Nirmalendu, C. R. (2004). Eur. J. Inorg. Chem. 23, 4675-4680.]); Rudkevich (2007[Rudkevich, D. M. (2007). Eur. J. Org. Chem. 20, 3255-3270.]); Shi et al. (2007[Shi, J.-M., Zhang, F.-X., Wu, C.-J., Yi, L. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1473-1478.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]); Zheng & Xie (2004[Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Solid State Chem. 177, 1352-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H2O4)(C3H10N2)(H2O)]·H2O

  • Mr = 286.76

  • Orthorhombic, P m c 21

  • a = 14.993 (3) Å

  • b = 8.0948 (17) Å

  • c = 9.259 (2) Å

  • V = 1123.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS IIC image-plate system diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.543, Tmax = 0.82

  • 10226 measured reflections

  • 3345 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.14

  • 3345 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1415 Friedel pairs

  • Flack parameter: 0.011 (18)

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.019 (3)
Cu1—O1 2.024 (2)
Cu1—O3 2.180 (3)
Cu2—N1′ 2.010 (3)
Cu2—O1′ 2.015 (3)
Cu2—O3′ 2.270 (3)
N1i—Cu1—N1 90.42 (18)
N1—Cu1—O1 88.93 (11)
N1—Cu1—O1i 173.62 (11)
O1—Cu1—O1i 91.00 (14)
N1—Cu1—O3 97.70 (11)
O1—Cu1—O3 88.68 (10)
N1′ii—Cu2—N1′ 89.83 (19)
N1′—Cu2—O1′ 89.47 (10)
N1′—Cu2—O1′ii 175.68 (13)
O1′—Cu2—O1′ii 90.90 (15)
N1′—Cu2—O3′ 95.62 (11)
O1′—Cu2—O3′ 88.69 (10)
Symmetry codes: (i) -x+1, y, z; (ii) -x, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2′ 0.87 2.17 2.887 (5) 140
O3—H3⋯O2iii 0.85 1.88 2.713 (3) 166
O3′—H3′⋯O2′iv 0.85 1.91 2.708 (3) 156
N1—H1A⋯O1v 0.90 2.20 3.083 (4) 167
N1′—H1′A⋯O4vi 0.90 2.25 3.071 (5) 151
N1′—H1′B⋯O1′vii 0.90 2.26 3.135 (3) 164
O4—H4B⋯O2viii 0.86 1.99 2.785 (4) 153
Symmetry codes: (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x, -y, z+{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x, -y, z+{\script{1\over 2}}]; (vii) [x, -y, z-{\script{1\over 2}}]; (viii) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metallo-polymers are of current interest because of their physical properties and applications in many areas (Chan, 2007; Rudkevich, 2007; Shi et al., 2007; Mori et al., 2005). The synthesis and crystal structure of copper-polycarboxylate polymers have been reported (Mukherjee et al., 2004; Ye et al., 2005). Now we report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of two CuII atoms, one half each of two 1,3-diaminopropane ligands and two water molecules, all lying on crystallographic mirror planes, and one fumarate dianion. As shown in Fig.1, the [(aqua)(propane-1,3-diamino-κ2-N,N)copper(II)] units are linked via amphi-monodentate fumarate dianions into a zigzag chain along the a axis. Each CuII atom has a distorted square-pyramidal environment, being coordinated by two N atoms of the 1,3-diaminopropane ligand and two cis-oxygen atoms from two bridging fumarate dianions in the basal positions and a water molecule in the apical position. The axial Cu—O bond distance [2.180 (3) Å] is shorter, and the Cu···Cu distance [9.084 Å] is longer than the corresponding distances [2.481 Å and 8.857 Å] reported for fumarate bridged [(aqua)(1,2-dimethylethane-1,2-diamine-κ2-N,N)copper(II)] (Mukherjee et al., 2004). The six-membered metallocyclic ring formed by the N,N-bidentae propane-1,3-diamine ligand and the CuII atom adopts a chair conformation.

In the crystal structure, the longer Cu2—O3'(-x,-y,-1/2 + z) coordination [2.873 (3) Å] involving the water molecule bridges CuII atoms of adjacent zigzag chains, leading to the formation a three-dimensional framework. The coordination of the Cu2 atom in the network is pseudo-octahedral of the [5 + 1] type. The structure is further stabilized by O—H···O and N—H···O hydrogen bonds (Table 2). The geometry of hydrogen bonds are similar to those reported for a variety of copper compounds (Zheng & Xie, 2004; Dong et al., 2006).

Due to their convenient synthesis and potential catalytic and sorption applications, studies are in progress in our laboratories to synthesis several other polycarboxylate metallopolymers which are structurally and electronically tuned by polyamines.

Related literature top

For related literature, see: Chan (2007); Dong et al. (2006); Mori et al. (2005); Mukherjee et al. (2004); Rudkevich (2007); Shi et al. (2007); Ye et al. (2005); Zheng & Xie (2004).

Experimental top

Fumaric acid (0.12 g, 1.0 mmol) was added to an aqueous suspension of CuCO3.Cu(OH)2.H2O (0.12 g, 0.50 mmol), and then propane-1,3-diamine (0.08 ml, 1.0 mmol) was added dropwise, with stirring and heating. The mixture was allowed to react for 2 h and filtered, and the filtrate was allowed to stand at room temperature for 4 d. At the end of this time, deep blue colourless crystals deposited, which were filtered off and dried in air.

Refinement top

The water H atoms were located from a difference Fourier map and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with N—H = 0.90 Å, C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CuII center, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [symmetry code: -x + 1, y, z.]
[Figure 2] Fig. 2. Part of a zigzag polymeric chain of the title compound. Hydrogen bonds are shown as dashed lines.
catena-Poly[[[aqua(propane-1,3-diamine-κ2N,N')copper(II)]-µ- fumarato-κ2O:O'] monohydrate] top
Crystal data top
[Cu(C4H2O4)(C3H10N2)(H2O)]·H2OF(000) = 596
Mr = 286.76Dx = 1.701 Mg m3
Orthorhombic, Pmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2Cell parameters from 6311 reflections
a = 14.993 (3) Åθ = 1.4–25.0°
b = 8.0948 (17) ŵ = 1.96 mm1
c = 9.259 (2) ÅT = 293 K
V = 1123.7 (4) Å3Plate, blue
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS IIC image-plate system
diffractometer
3345 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 105 pixels mm-1θmax = 33.0°, θmin = 1.4°
ϕ scansh = 2020
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1111
Tmin = 0.543, Tmax = 0.82l = 1211
10226 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3345 reflectionsΔρmax = 0.47 e Å3
154 parametersΔρmin = 0.82 e Å3
1 restraintAbsolute structure: Flack (1983), 1415 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (18)
Crystal data top
[Cu(C4H2O4)(C3H10N2)(H2O)]·H2OV = 1123.7 (4) Å3
Mr = 286.76Z = 4
Orthorhombic, Pmc21Mo Kα radiation
a = 14.993 (3) ŵ = 1.96 mm1
b = 8.0948 (17) ÅT = 293 K
c = 9.259 (2) Å0.30 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS IIC image-plate system
diffractometer
3345 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2913 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.82Rint = 0.054
10226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.47 e Å3
S = 1.14Δρmin = 0.82 e Å3
3345 reflectionsAbsolute structure: Flack (1983), 1415 Friedel pairs
154 parametersAbsolute structure parameter: 0.011 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.54986 (6)0.72824 (5)0.02037 (11)
Cu20.00000.01107 (9)0.46996 (5)0.02080 (12)
O10.40374 (16)0.3988 (3)0.6507 (2)0.0289 (5)
O1'0.09578 (17)0.1419 (3)0.5436 (3)0.0286 (5)
O20.34823 (19)0.3174 (4)0.8619 (3)0.0505 (8)
O2'0.1459 (2)0.2442 (4)0.3340 (3)0.0484 (8)
O30.50000.6785 (5)0.5214 (4)0.0381 (9)
H30.55110.66990.48230.057*
O3'0.00000.1382 (5)0.6885 (3)0.0342 (8)
H3'0.05330.16020.71300.051*
N10.4044 (2)0.6854 (4)0.8260 (3)0.0299 (6)
H1A0.39860.64770.91700.036*
H1B0.35250.66520.78040.036*
N1'0.0947 (2)0.1553 (4)0.3820 (3)0.0279 (6)
H1'A0.14720.12690.42180.034*
H1'B0.09790.13060.28740.034*
C10.4162 (3)0.8666 (5)0.8328 (5)0.0461 (10)
H1C0.36530.91540.88140.055*
H1D0.41840.91080.73550.055*
C1'0.0848 (3)0.3360 (4)0.3952 (4)0.0359 (8)
H1'C0.08380.36620.49650.043*
H1'D0.13570.38980.35070.043*
C20.50000.9135 (7)0.9117 (7)0.0498 (14)
H2A0.50000.86021.00560.060*
H2B0.50001.03200.92760.060*
C2'0.00000.3955 (6)0.3235 (6)0.0402 (12)
H2'A0.00000.51530.32310.048*
H2'B0.00000.35880.22380.048*
C30.34705 (18)0.3246 (4)0.7272 (4)0.0272 (5)
C3'0.1494 (2)0.2248 (4)0.4675 (4)0.0264 (6)
C40.2697 (2)0.2419 (4)0.6537 (3)0.0275 (6)
H40.25150.13880.68690.033*
C4'0.2259 (2)0.3090 (4)0.5432 (3)0.0261 (6)
H4'0.24340.41290.51120.031*
O40.2556 (3)0.1667 (5)0.0869 (5)0.0787 (12)
H4A0.23590.23580.15100.118*
H4B0.26860.23270.01680.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0162 (2)0.0256 (3)0.0193 (2)0.0000.0000.0011 (2)
Cu20.0144 (2)0.0250 (3)0.0230 (2)0.0000.0000.00166 (16)
O10.0209 (12)0.0378 (13)0.0279 (12)0.0114 (9)0.0002 (8)0.0035 (9)
O1'0.0187 (13)0.0361 (13)0.0309 (12)0.0071 (10)0.0010 (9)0.0060 (10)
O20.0413 (17)0.085 (2)0.0248 (12)0.0221 (15)0.0051 (11)0.0059 (13)
O2'0.0428 (16)0.076 (2)0.0268 (12)0.0199 (15)0.0077 (11)0.0016 (11)
O30.0268 (19)0.059 (2)0.0288 (17)0.0000.0000.0176 (15)
O3'0.0233 (17)0.052 (2)0.0278 (17)0.0000.0000.0130 (12)
N10.0258 (16)0.0330 (16)0.0309 (14)0.0067 (11)0.0060 (11)0.0027 (10)
N1'0.0240 (16)0.0295 (16)0.0303 (15)0.0048 (12)0.0025 (11)0.0001 (11)
C10.046 (2)0.030 (2)0.062 (3)0.0113 (16)0.0114 (19)0.0031 (16)
C1'0.0327 (18)0.0295 (18)0.045 (2)0.0088 (14)0.0022 (14)0.0057 (14)
C20.059 (4)0.030 (3)0.059 (4)0.0000.0000.010 (2)
C2'0.047 (3)0.024 (3)0.050 (3)0.0000.0000.007 (2)
C30.0199 (13)0.0347 (15)0.0270 (13)0.0054 (9)0.0014 (15)0.0028 (16)
C3'0.0155 (14)0.0348 (16)0.0289 (14)0.0039 (11)0.0022 (12)0.0027 (12)
C40.0219 (16)0.0346 (17)0.0260 (15)0.0089 (12)0.0026 (11)0.0019 (11)
C4'0.0194 (15)0.0294 (16)0.0296 (15)0.0046 (12)0.0011 (11)0.0036 (11)
O40.063 (2)0.099 (3)0.074 (2)0.004 (2)0.0086 (16)0.037 (2)
Geometric parameters (Å, º) top
Cu1—N1i2.019 (3)N1'—H1'B0.90
Cu1—N12.019 (3)C1—C21.502 (6)
Cu1—O12.024 (2)C1—H1C0.97
Cu1—O1i2.024 (2)C1—H1D0.97
Cu1—O32.180 (3)C1'—C2'1.513 (5)
Cu2—N1'ii2.010 (3)C1'—H1'C0.97
Cu2—N1'2.010 (3)C1'—H1'D0.97
Cu2—O1'2.015 (3)C2—C1i1.502 (6)
Cu2—O1'ii2.015 (3)C2—H2A0.97
Cu2—O3'2.270 (3)C2—H2B0.97
O1—C31.259 (4)C2'—C1'ii1.513 (5)
O1'—C3'1.262 (4)C2'—H2'A0.97
O2—C31.249 (5)C2'—H2'B0.97
O2'—C3'1.247 (4)C3—C41.502 (4)
O3—H30.85C3'—C4'1.507 (4)
O3'—H3'0.85C4—C4'1.331 (4)
N1—C11.479 (5)C4—H40.93
N1—H1A0.90C4'—H4'0.93
N1—H1B0.90O4—H4A0.86
N1'—C1'1.475 (5)O4—H4B0.86
N1'—H1'A0.90
N1i—Cu1—N190.42 (18)N1—C1—H1C109.3
N1i—Cu1—O1173.62 (11)C2—C1—H1C109.3
N1—Cu1—O188.93 (11)N1—C1—H1D109.3
N1i—Cu1—O1i88.93 (11)C2—C1—H1D109.3
N1—Cu1—O1i173.62 (11)H1C—C1—H1D107.9
O1—Cu1—O1i91.00 (14)N1'—C1'—C2'111.3 (3)
N1i—Cu1—O397.70 (12)N1'—C1'—H1'C109.4
N1—Cu1—O397.70 (11)C2'—C1'—H1'C109.4
O1—Cu1—O388.68 (10)N1'—C1'—H1'D109.4
O1i—Cu1—O388.68 (10)C2'—C1'—H1'D109.4
N1'ii—Cu2—N1'89.83 (19)H1'C—C1'—H1'D108.0
N1'ii—Cu2—O1'175.68 (13)C1—C2—C1i113.6 (5)
N1'—Cu2—O1'89.47 (10)C1—C2—H2A108.9
N1'ii—Cu2—O1'ii89.47 (10)C1i—C2—H2A108.9
N1'—Cu2—O1'ii175.68 (13)C1—C2—H2B108.9
O1'—Cu2—O1'ii90.90 (15)C1i—C2—H2B108.9
N1'ii—Cu2—O3'95.62 (11)H2A—C2—H2B107.7
N1'—Cu2—O3'95.62 (11)C1'—C2'—C1'ii114.4 (5)
O1'—Cu2—O3'88.69 (10)C1'—C2'—H2'A108.7
O1'ii—Cu2—O3'88.69 (10)C1'ii—C2'—H2'A108.7
C3—O1—Cu1124.7 (2)C1'—C2'—H2'B108.7
C3'—O1'—Cu2126.3 (2)C1'ii—C2'—H2'B108.7
Cu1—O3—H3109.6H2'A—C2'—H2'B107.6
Cu2—O3'—H3'109.5O2—C3—O1125.1 (3)
C1—N1—Cu1118.3 (2)O2—C3—C4116.3 (3)
C1—N1—H1A107.9O1—C3—C4118.6 (3)
Cu1—N1—H1A107.7O2'—C3'—O1'126.4 (3)
C1—N1—H1B107.7O2'—C3'—C4'115.9 (3)
Cu1—N1—H1B107.7O1'—C3'—C4'117.7 (3)
H1A—N1—H1B107.1C4'—C4—C3123.2 (3)
C1'—N1'—Cu2118.1 (2)C4'—C4—H4118.4
C1'—N1'—H1'A107.9C3—C4—H4118.4
Cu2—N1'—H1'A107.7C4—C4'—C3'123.3 (3)
C1'—N1'—H1'B107.8C4—C4'—H4'118.4
Cu2—N1'—H1'B107.6C3'—C4'—H4'118.4
H1'A—N1'—H1'B107.2H4A—O4—H4B101.0
N1—C1—C2111.8 (4)
N1—Cu1—O1—C355.8 (3)Cu2—N1'—C1'—C2'60.7 (4)
O1i—Cu1—O1—C3117.8 (2)N1—C1—C2—C1i67.9 (6)
O3—Cu1—O1—C3153.5 (3)N1'—C1'—C2'—C1'ii66.0 (6)
N1'—Cu2—O1'—C3'63.3 (3)Cu1—O1—C3—O29.0 (5)
O1'ii—Cu2—O1'—C3'112.3 (3)Cu1—O1—C3—C4169.0 (2)
O3'—Cu2—O1'—C3'159.0 (3)Cu2—O1'—C3'—O2'9.9 (5)
N1i—Cu1—N1—C142.8 (3)Cu2—O1'—C3'—C4'169.8 (2)
O1—Cu1—N1—C1143.6 (3)O2—C3—C4—C4'137.3 (3)
O3—Cu1—N1—C155.1 (3)O1—C3—C4—C4'40.9 (4)
N1'ii—Cu2—N1'—C1'46.1 (3)C3—C4—C4'—C3'178.8 (3)
O1'—Cu2—N1'—C1'138.2 (2)O2'—C3'—C4'—C4142.2 (3)
O3'—Cu2—N1'—C1'49.5 (3)O1'—C3'—C4'—C437.5 (5)
Cu1—N1—C1—C259.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.872.172.887 (5)140
O3—H3···O2iii0.851.882.713 (3)166
O3—H3···O2iv0.851.912.708 (3)156
N1—H1A···O1v0.902.203.083 (4)167
N1—H1A···O4vi0.902.253.071 (5)151
N1—H1B···O1vii0.902.263.135 (3)164
O4—H4B···O2viii0.861.992.785 (4)153
Symmetry codes: (iii) x+1, y+1, z1/2; (iv) x, y, z+1/2; (v) x, y+1, z+1/2; (vi) x, y, z+1/2; (vii) x, y, z1/2; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C4H2O4)(C3H10N2)(H2O)]·H2O
Mr286.76
Crystal system, space groupOrthorhombic, Pmc21
Temperature (K)293
a, b, c (Å)14.993 (3), 8.0948 (17), 9.259 (2)
V3)1123.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS IIC image-plate system
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.543, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
10226, 3345, 2913
Rint0.054
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.14
No. of reflections3345
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.82
Absolute structureFlack (1983), 1415 Friedel pairs
Absolute structure parameter0.011 (18)

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cu1—N12.019 (3)Cu2—N1'2.010 (3)
Cu1—O12.024 (2)Cu2—O1'2.015 (3)
Cu1—O32.180 (3)Cu2—O3'2.270 (3)
N1i—Cu1—N190.42 (18)N1'ii—Cu2—N1'89.83 (19)
N1—Cu1—O188.93 (11)N1'—Cu2—O1'89.47 (10)
N1—Cu1—O1i173.62 (11)N1'—Cu2—O1'ii175.68 (13)
O1—Cu1—O1i91.00 (14)O1'—Cu2—O1'ii90.90 (15)
N1—Cu1—O397.70 (11)N1'—Cu2—O3'95.62 (11)
O1—Cu1—O388.68 (10)O1'—Cu2—O3'88.69 (10)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2'0.872.172.887 (5)140
O3—H3···O2iii0.851.882.713 (3)166
O3'—H3'···O2'iv0.851.912.708 (3)156
N1—H1A···O1v0.902.203.083 (4)167
N1'—H1'A···O4vi0.902.253.071 (5)151
N1'—H1'B···O1'vii0.902.263.135 (3)164
O4—H4B···O2viii0.861.992.785 (4)153
Symmetry codes: (iii) x+1, y+1, z1/2; (iv) x, y, z+1/2; (v) x, y+1, z+1/2; (vi) x, y, z+1/2; (vii) x, y, z1/2; (viii) x, y, z1.
 

Acknowledgements

The authors thank Professor Lennart Sjölin for his efforts to establish research collaboration between the University of the West Indies – Mona Campus and Göteborg University.

References

First citationChan, W. K. (2007). Coord. Chem. Rev. 251, 2104–2118.  Web of Science CrossRef CAS Google Scholar
First citationDong, G.-Y., Cui, G.-H. & Lin, J. (2006). Acta Cryst. E62, m628–m630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555–2573.  Web of Science CrossRef CAS Google Scholar
First citationMukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Nirmalendu, C. R. (2004). Eur. J. Inorg. Chem. 23, 4675–4680.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRudkevich, D. M. (2007). Eur. J. Org. Chem. 20, 3255–3270.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J.-M., Zhang, F.-X., Wu, C.-J., Yi, L. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1473–1478.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationZheng, Y.-Q. & Xie, H.-Z. (2004). J. Solid State Chem. 177, 1352–1358.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m303-m304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds