metal-organic compounds
catena-Poly[[[aqua(propane-1,3-diamine-κ2N,N′)copper(II)]-μ-fumarato-κ2O:O′] monohydrate]
aSchool of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala, India, bDepartment of Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and cDepartment of Chemistry, The University of the West Indies – Mona Campus, Kingston 7, Jamaica
*Correspondence e-mail: mohammed.bakir@uwimona.edu.jm
The 4H2O4)(C3H10N2)(H2O)]·H2O}n, consists of two CuII atoms, half each of two propane-1,3-diamine ligands and two coordinated water molecules, all lying on crystallographic mirror planes, also one fumarate dianion and one uncoordinated water molecule in a general position. The Cu(C3H10N2)(H2O) units are linked via fumarate dianions into a zigzag chain running along the a axis. A longer Cu—O distance [2.873 (3) Å] is to a water molecule bridging equivalent CuII atoms in adjacent chains, forming a three-dimensional framework. One of the CuII atoms is in a distorted square-pyramidal environment and the other is in a pseudo-octahedral geometry of the [5+1] type. O—H⋯O and N—H⋯O hydrogen bonds are observed in the crystal structure.
of the title compound, {[Cu(CRelated literature
For related literature, see: Chan (2007); Dong et al. (2006); Mori et al. (2005); Mukherjee et al. (2004); Rudkevich (2007); Shi et al. (2007); Ye et al. (2005); Zheng & Xie (2004).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808000160/ci2545sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808000160/ci2545Isup2.hkl
Fumaric acid (0.12 g, 1.0 mmol) was added to an aqueous suspension of CuCO3.Cu(OH)2.H2O (0.12 g, 0.50 mmol), and then propane-1,3-diamine (0.08 ml, 1.0 mmol) was added dropwise, with stirring and heating. The mixture was allowed to react for 2 h and filtered, and the filtrate was allowed to stand at room temperature for 4 d. At the end of this time, deep blue colourless crystals deposited, which were filtered off and dried in air.
The water H atoms were located from a difference Fourier map and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with N—H = 0.90 Å, C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The coordination environment of the CuII center, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [symmetry code: -x + 1, y, z.] | |
Fig. 2. Part of a zigzag polymeric chain of the title compound. Hydrogen bonds are shown as dashed lines. |
[Cu(C4H2O4)(C3H10N2)(H2O)]·H2O | F(000) = 596 |
Mr = 286.76 | Dx = 1.701 Mg m−3 |
Orthorhombic, Pmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2 | Cell parameters from 6311 reflections |
a = 14.993 (3) Å | θ = 1.4–25.0° |
b = 8.0948 (17) Å | µ = 1.96 mm−1 |
c = 9.259 (2) Å | T = 293 K |
V = 1123.7 (4) Å3 | Plate, blue |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Rigaku R-AXIS IIC image-plate system diffractometer | 3345 independent reflections |
Radiation source: fine-focus sealed tube | 2913 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 105 pixels mm-1 | θmax = 33.0°, θmin = 1.4° |
ϕ scans | h = −20→20 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | k = −11→11 |
Tmin = 0.543, Tmax = 0.82 | l = −12→11 |
10226 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
3345 reflections | Δρmax = 0.47 e Å−3 |
154 parameters | Δρmin = −0.82 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1415 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.011 (18) |
[Cu(C4H2O4)(C3H10N2)(H2O)]·H2O | V = 1123.7 (4) Å3 |
Mr = 286.76 | Z = 4 |
Orthorhombic, Pmc21 | Mo Kα radiation |
a = 14.993 (3) Å | µ = 1.96 mm−1 |
b = 8.0948 (17) Å | T = 293 K |
c = 9.259 (2) Å | 0.30 × 0.20 × 0.10 mm |
Rigaku R-AXIS IIC image-plate system diffractometer | 3345 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 2913 reflections with I > 2σ(I) |
Tmin = 0.543, Tmax = 0.82 | Rint = 0.054 |
10226 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.096 | Δρmax = 0.47 e Å−3 |
S = 1.14 | Δρmin = −0.82 e Å−3 |
3345 reflections | Absolute structure: Flack (1983), 1415 Friedel pairs |
154 parameters | Absolute structure parameter: 0.011 (18) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.54986 (6) | 0.72824 (5) | 0.02037 (11) | |
Cu2 | 0.0000 | −0.01107 (9) | 0.46996 (5) | 0.02080 (12) | |
O1 | 0.40374 (16) | 0.3988 (3) | 0.6507 (2) | 0.0289 (5) | |
O1' | 0.09578 (17) | 0.1419 (3) | 0.5436 (3) | 0.0286 (5) | |
O2 | 0.34823 (19) | 0.3174 (4) | 0.8619 (3) | 0.0505 (8) | |
O2' | 0.1459 (2) | 0.2442 (4) | 0.3340 (3) | 0.0484 (8) | |
O3 | 0.5000 | 0.6785 (5) | 0.5214 (4) | 0.0381 (9) | |
H3 | 0.5511 | 0.6699 | 0.4823 | 0.057* | |
O3' | 0.0000 | −0.1382 (5) | 0.6885 (3) | 0.0342 (8) | |
H3' | −0.0533 | −0.1602 | 0.7130 | 0.051* | |
N1 | 0.4044 (2) | 0.6854 (4) | 0.8260 (3) | 0.0299 (6) | |
H1A | 0.3986 | 0.6477 | 0.9170 | 0.036* | |
H1B | 0.3525 | 0.6652 | 0.7804 | 0.036* | |
N1' | 0.0947 (2) | −0.1553 (4) | 0.3820 (3) | 0.0279 (6) | |
H1'A | 0.1472 | −0.1269 | 0.4218 | 0.034* | |
H1'B | 0.0979 | −0.1306 | 0.2874 | 0.034* | |
C1 | 0.4162 (3) | 0.8666 (5) | 0.8328 (5) | 0.0461 (10) | |
H1C | 0.3653 | 0.9154 | 0.8814 | 0.055* | |
H1D | 0.4184 | 0.9108 | 0.7355 | 0.055* | |
C1' | 0.0848 (3) | −0.3360 (4) | 0.3952 (4) | 0.0359 (8) | |
H1'C | 0.0838 | −0.3662 | 0.4965 | 0.043* | |
H1'D | 0.1357 | −0.3898 | 0.3507 | 0.043* | |
C2 | 0.5000 | 0.9135 (7) | 0.9117 (7) | 0.0498 (14) | |
H2A | 0.5000 | 0.8602 | 1.0056 | 0.060* | |
H2B | 0.5000 | 1.0320 | 0.9276 | 0.060* | |
C2' | 0.0000 | −0.3955 (6) | 0.3235 (6) | 0.0402 (12) | |
H2'A | 0.0000 | −0.5153 | 0.3231 | 0.048* | |
H2'B | 0.0000 | −0.3588 | 0.2238 | 0.048* | |
C3 | 0.34705 (18) | 0.3246 (4) | 0.7272 (4) | 0.0272 (5) | |
C3' | 0.1494 (2) | 0.2248 (4) | 0.4675 (4) | 0.0264 (6) | |
C4 | 0.2697 (2) | 0.2419 (4) | 0.6537 (3) | 0.0275 (6) | |
H4 | 0.2515 | 0.1388 | 0.6869 | 0.033* | |
C4' | 0.2259 (2) | 0.3090 (4) | 0.5432 (3) | 0.0261 (6) | |
H4' | 0.2434 | 0.4129 | 0.5112 | 0.031* | |
O4 | 0.2556 (3) | 0.1667 (5) | 0.0869 (5) | 0.0787 (12) | |
H4A | 0.2359 | 0.2358 | 0.1510 | 0.118* | |
H4B | 0.2686 | 0.2327 | 0.0168 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0162 (2) | 0.0256 (3) | 0.0193 (2) | 0.000 | 0.000 | −0.0011 (2) |
Cu2 | 0.0144 (2) | 0.0250 (3) | 0.0230 (2) | 0.000 | 0.000 | −0.00166 (16) |
O1 | 0.0209 (12) | 0.0378 (13) | 0.0279 (12) | −0.0114 (9) | 0.0002 (8) | −0.0035 (9) |
O1' | 0.0187 (13) | 0.0361 (13) | 0.0309 (12) | −0.0071 (10) | 0.0010 (9) | −0.0060 (10) |
O2 | 0.0413 (17) | 0.085 (2) | 0.0248 (12) | −0.0221 (15) | −0.0051 (11) | 0.0059 (13) |
O2' | 0.0428 (16) | 0.076 (2) | 0.0268 (12) | −0.0199 (15) | −0.0077 (11) | 0.0016 (11) |
O3 | 0.0268 (19) | 0.059 (2) | 0.0288 (17) | 0.000 | 0.000 | 0.0176 (15) |
O3' | 0.0233 (17) | 0.052 (2) | 0.0278 (17) | 0.000 | 0.000 | 0.0130 (12) |
N1 | 0.0258 (16) | 0.0330 (16) | 0.0309 (14) | 0.0067 (11) | 0.0060 (11) | −0.0027 (10) |
N1' | 0.0240 (16) | 0.0295 (16) | 0.0303 (15) | 0.0048 (12) | 0.0025 (11) | 0.0001 (11) |
C1 | 0.046 (2) | 0.030 (2) | 0.062 (3) | 0.0113 (16) | 0.0114 (19) | 0.0031 (16) |
C1' | 0.0327 (18) | 0.0295 (18) | 0.045 (2) | 0.0088 (14) | 0.0022 (14) | 0.0057 (14) |
C2 | 0.059 (4) | 0.030 (3) | 0.059 (4) | 0.000 | 0.000 | −0.010 (2) |
C2' | 0.047 (3) | 0.024 (3) | 0.050 (3) | 0.000 | 0.000 | −0.007 (2) |
C3 | 0.0199 (13) | 0.0347 (15) | 0.0270 (13) | −0.0054 (9) | −0.0014 (15) | 0.0028 (16) |
C3' | 0.0155 (14) | 0.0348 (16) | 0.0289 (14) | −0.0039 (11) | −0.0022 (12) | −0.0027 (12) |
C4 | 0.0219 (16) | 0.0346 (17) | 0.0260 (15) | −0.0089 (12) | 0.0026 (11) | −0.0019 (11) |
C4' | 0.0194 (15) | 0.0294 (16) | 0.0296 (15) | −0.0046 (12) | −0.0011 (11) | −0.0036 (11) |
O4 | 0.063 (2) | 0.099 (3) | 0.074 (2) | −0.004 (2) | 0.0086 (16) | 0.037 (2) |
Cu1—N1i | 2.019 (3) | N1'—H1'B | 0.90 |
Cu1—N1 | 2.019 (3) | C1—C2 | 1.502 (6) |
Cu1—O1 | 2.024 (2) | C1—H1C | 0.97 |
Cu1—O1i | 2.024 (2) | C1—H1D | 0.97 |
Cu1—O3 | 2.180 (3) | C1'—C2' | 1.513 (5) |
Cu2—N1'ii | 2.010 (3) | C1'—H1'C | 0.97 |
Cu2—N1' | 2.010 (3) | C1'—H1'D | 0.97 |
Cu2—O1' | 2.015 (3) | C2—C1i | 1.502 (6) |
Cu2—O1'ii | 2.015 (3) | C2—H2A | 0.97 |
Cu2—O3' | 2.270 (3) | C2—H2B | 0.97 |
O1—C3 | 1.259 (4) | C2'—C1'ii | 1.513 (5) |
O1'—C3' | 1.262 (4) | C2'—H2'A | 0.97 |
O2—C3 | 1.249 (5) | C2'—H2'B | 0.97 |
O2'—C3' | 1.247 (4) | C3—C4 | 1.502 (4) |
O3—H3 | 0.85 | C3'—C4' | 1.507 (4) |
O3'—H3' | 0.85 | C4—C4' | 1.331 (4) |
N1—C1 | 1.479 (5) | C4—H4 | 0.93 |
N1—H1A | 0.90 | C4'—H4' | 0.93 |
N1—H1B | 0.90 | O4—H4A | 0.86 |
N1'—C1' | 1.475 (5) | O4—H4B | 0.86 |
N1'—H1'A | 0.90 | ||
N1i—Cu1—N1 | 90.42 (18) | N1—C1—H1C | 109.3 |
N1i—Cu1—O1 | 173.62 (11) | C2—C1—H1C | 109.3 |
N1—Cu1—O1 | 88.93 (11) | N1—C1—H1D | 109.3 |
N1i—Cu1—O1i | 88.93 (11) | C2—C1—H1D | 109.3 |
N1—Cu1—O1i | 173.62 (11) | H1C—C1—H1D | 107.9 |
O1—Cu1—O1i | 91.00 (14) | N1'—C1'—C2' | 111.3 (3) |
N1i—Cu1—O3 | 97.70 (12) | N1'—C1'—H1'C | 109.4 |
N1—Cu1—O3 | 97.70 (11) | C2'—C1'—H1'C | 109.4 |
O1—Cu1—O3 | 88.68 (10) | N1'—C1'—H1'D | 109.4 |
O1i—Cu1—O3 | 88.68 (10) | C2'—C1'—H1'D | 109.4 |
N1'ii—Cu2—N1' | 89.83 (19) | H1'C—C1'—H1'D | 108.0 |
N1'ii—Cu2—O1' | 175.68 (13) | C1—C2—C1i | 113.6 (5) |
N1'—Cu2—O1' | 89.47 (10) | C1—C2—H2A | 108.9 |
N1'ii—Cu2—O1'ii | 89.47 (10) | C1i—C2—H2A | 108.9 |
N1'—Cu2—O1'ii | 175.68 (13) | C1—C2—H2B | 108.9 |
O1'—Cu2—O1'ii | 90.90 (15) | C1i—C2—H2B | 108.9 |
N1'ii—Cu2—O3' | 95.62 (11) | H2A—C2—H2B | 107.7 |
N1'—Cu2—O3' | 95.62 (11) | C1'—C2'—C1'ii | 114.4 (5) |
O1'—Cu2—O3' | 88.69 (10) | C1'—C2'—H2'A | 108.7 |
O1'ii—Cu2—O3' | 88.69 (10) | C1'ii—C2'—H2'A | 108.7 |
C3—O1—Cu1 | 124.7 (2) | C1'—C2'—H2'B | 108.7 |
C3'—O1'—Cu2 | 126.3 (2) | C1'ii—C2'—H2'B | 108.7 |
Cu1—O3—H3 | 109.6 | H2'A—C2'—H2'B | 107.6 |
Cu2—O3'—H3' | 109.5 | O2—C3—O1 | 125.1 (3) |
C1—N1—Cu1 | 118.3 (2) | O2—C3—C4 | 116.3 (3) |
C1—N1—H1A | 107.9 | O1—C3—C4 | 118.6 (3) |
Cu1—N1—H1A | 107.7 | O2'—C3'—O1' | 126.4 (3) |
C1—N1—H1B | 107.7 | O2'—C3'—C4' | 115.9 (3) |
Cu1—N1—H1B | 107.7 | O1'—C3'—C4' | 117.7 (3) |
H1A—N1—H1B | 107.1 | C4'—C4—C3 | 123.2 (3) |
C1'—N1'—Cu2 | 118.1 (2) | C4'—C4—H4 | 118.4 |
C1'—N1'—H1'A | 107.9 | C3—C4—H4 | 118.4 |
Cu2—N1'—H1'A | 107.7 | C4—C4'—C3' | 123.3 (3) |
C1'—N1'—H1'B | 107.8 | C4—C4'—H4' | 118.4 |
Cu2—N1'—H1'B | 107.6 | C3'—C4'—H4' | 118.4 |
H1'A—N1'—H1'B | 107.2 | H4A—O4—H4B | 101.0 |
N1—C1—C2 | 111.8 (4) | ||
N1—Cu1—O1—C3 | −55.8 (3) | Cu2—N1'—C1'—C2' | 60.7 (4) |
O1i—Cu1—O1—C3 | 117.8 (2) | N1—C1—C2—C1i | 67.9 (6) |
O3—Cu1—O1—C3 | −153.5 (3) | N1'—C1'—C2'—C1'ii | −66.0 (6) |
N1'—Cu2—O1'—C3' | 63.3 (3) | Cu1—O1—C3—O2 | −9.0 (5) |
O1'ii—Cu2—O1'—C3' | −112.3 (3) | Cu1—O1—C3—C4 | 169.0 (2) |
O3'—Cu2—O1'—C3' | 159.0 (3) | Cu2—O1'—C3'—O2' | 9.9 (5) |
N1i—Cu1—N1—C1 | 42.8 (3) | Cu2—O1'—C3'—C4' | −169.8 (2) |
O1—Cu1—N1—C1 | −143.6 (3) | O2—C3—C4—C4' | 137.3 (3) |
O3—Cu1—N1—C1 | −55.1 (3) | O1—C3—C4—C4' | −40.9 (4) |
N1'ii—Cu2—N1'—C1' | −46.1 (3) | C3—C4—C4'—C3' | 178.8 (3) |
O1'—Cu2—N1'—C1' | 138.2 (2) | O2'—C3'—C4'—C4 | −142.2 (3) |
O3'—Cu2—N1'—C1' | 49.5 (3) | O1'—C3'—C4'—C4 | 37.5 (5) |
Cu1—N1—C1—C2 | −59.6 (4) |
Symmetry codes: (i) −x+1, y, z; (ii) −x, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O2′ | 0.87 | 2.17 | 2.887 (5) | 140 |
O3—H3···O2iii | 0.85 | 1.88 | 2.713 (3) | 166 |
O3′—H3′···O2′iv | 0.85 | 1.91 | 2.708 (3) | 156 |
N1—H1A···O1v | 0.90 | 2.20 | 3.083 (4) | 167 |
N1′—H1′A···O4vi | 0.90 | 2.25 | 3.071 (5) | 151 |
N1′—H1′B···O1′vii | 0.90 | 2.26 | 3.135 (3) | 164 |
O4—H4B···O2viii | 0.86 | 1.99 | 2.785 (4) | 153 |
Symmetry codes: (iii) −x+1, −y+1, z−1/2; (iv) −x, −y, z+1/2; (v) x, −y+1, z+1/2; (vi) x, −y, z+1/2; (vii) x, −y, z−1/2; (viii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H2O4)(C3H10N2)(H2O)]·H2O |
Mr | 286.76 |
Crystal system, space group | Orthorhombic, Pmc21 |
Temperature (K) | 293 |
a, b, c (Å) | 14.993 (3), 8.0948 (17), 9.259 (2) |
V (Å3) | 1123.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS IIC image-plate system diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
Tmin, Tmax | 0.543, 0.82 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10226, 3345, 2913 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.765 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.096, 1.14 |
No. of reflections | 3345 |
No. of parameters | 154 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.82 |
Absolute structure | Flack (1983), 1415 Friedel pairs |
Absolute structure parameter | 0.011 (18) |
Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Cu1—N1 | 2.019 (3) | Cu2—N1' | 2.010 (3) |
Cu1—O1 | 2.024 (2) | Cu2—O1' | 2.015 (3) |
Cu1—O3 | 2.180 (3) | Cu2—O3' | 2.270 (3) |
N1i—Cu1—N1 | 90.42 (18) | N1'ii—Cu2—N1' | 89.83 (19) |
N1—Cu1—O1 | 88.93 (11) | N1'—Cu2—O1' | 89.47 (10) |
N1—Cu1—O1i | 173.62 (11) | N1'—Cu2—O1'ii | 175.68 (13) |
O1—Cu1—O1i | 91.00 (14) | O1'—Cu2—O1'ii | 90.90 (15) |
N1—Cu1—O3 | 97.70 (11) | N1'—Cu2—O3' | 95.62 (11) |
O1—Cu1—O3 | 88.68 (10) | O1'—Cu2—O3' | 88.69 (10) |
Symmetry codes: (i) −x+1, y, z; (ii) −x, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O2' | 0.87 | 2.17 | 2.887 (5) | 140 |
O3—H3···O2iii | 0.85 | 1.88 | 2.713 (3) | 166 |
O3'—H3'···O2'iv | 0.85 | 1.91 | 2.708 (3) | 156 |
N1—H1A···O1v | 0.90 | 2.20 | 3.083 (4) | 167 |
N1'—H1'A···O4vi | 0.90 | 2.25 | 3.071 (5) | 151 |
N1'—H1'B···O1'vii | 0.90 | 2.26 | 3.135 (3) | 164 |
O4—H4B···O2viii | 0.86 | 1.99 | 2.785 (4) | 153 |
Symmetry codes: (iii) −x+1, −y+1, z−1/2; (iv) −x, −y, z+1/2; (v) x, −y+1, z+1/2; (vi) x, −y, z+1/2; (vii) x, −y, z−1/2; (viii) x, y, z−1. |
Acknowledgements
The authors thank Professor Lennart Sjölin for his efforts to establish research collaboration between the University of the West Indies – Mona Campus and Göteborg University.
References
Chan, W. K. (2007). Coord. Chem. Rev. 251, 2104–2118. Web of Science CrossRef CAS Google Scholar
Dong, G.-Y., Cui, G.-H. & Lin, J. (2006). Acta Cryst. E62, m628–m630. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Mori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555–2573. Web of Science CrossRef CAS Google Scholar
Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Nirmalendu, C. R. (2004). Eur. J. Inorg. Chem. 23, 4675–4680. Web of Science CSD CrossRef Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rudkevich, D. M. (2007). Eur. J. Org. Chem. 20, 3255–3270. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, J.-M., Zhang, F.-X., Wu, C.-J., Yi, L. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1473–1478. Web of Science CSD CrossRef CAS Google Scholar
Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565. Web of Science CrossRef CAS Google Scholar
Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Solid State Chem. 177, 1352–1358. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metallo-polymers are of current interest because of their physical properties and applications in many areas (Chan, 2007; Rudkevich, 2007; Shi et al., 2007; Mori et al., 2005). The synthesis and crystal structure of copper-polycarboxylate polymers have been reported (Mukherjee et al., 2004; Ye et al., 2005). Now we report here the crystal structure of the title compound.
The asymmetric unit of the title compound consists of two CuII atoms, one half each of two 1,3-diaminopropane ligands and two water molecules, all lying on crystallographic mirror planes, and one fumarate dianion. As shown in Fig.1, the [(aqua)(propane-1,3-diamino-κ2-N,N)copper(II)] units are linked via amphi-monodentate fumarate dianions into a zigzag chain along the a axis. Each CuII atom has a distorted square-pyramidal environment, being coordinated by two N atoms of the 1,3-diaminopropane ligand and two cis-oxygen atoms from two bridging fumarate dianions in the basal positions and a water molecule in the apical position. The axial Cu—O bond distance [2.180 (3) Å] is shorter, and the Cu···Cu distance [9.084 Å] is longer than the corresponding distances [2.481 Å and 8.857 Å] reported for fumarate bridged [(aqua)(1,2-dimethylethane-1,2-diamine-κ2-N,N)copper(II)] (Mukherjee et al., 2004). The six-membered metallocyclic ring formed by the N,N-bidentae propane-1,3-diamine ligand and the CuII atom adopts a chair conformation.
In the crystal structure, the longer Cu2—O3'(-x,-y,-1/2 + z) coordination [2.873 (3) Å] involving the water molecule bridges CuII atoms of adjacent zigzag chains, leading to the formation a three-dimensional framework. The coordination of the Cu2 atom in the network is pseudo-octahedral of the [5 + 1] type. The structure is further stabilized by O—H···O and N—H···O hydrogen bonds (Table 2). The geometry of hydrogen bonds are similar to those reported for a variety of copper compounds (Zheng & Xie, 2004; Dong et al., 2006).
Due to their convenient synthesis and potential catalytic and sorption applications, studies are in progress in our laboratories to synthesis several other polycarboxylate metallopolymers which are structurally and electronically tuned by polyamines.