organic compounds
2,5-Dibenzoylbenzene-1,4-diaminium dichloride
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn
The 20H18N2O22+·2Cl−, is composed of one-half of the 2,5-dibenzoylbenzene-1,4-diaminium dication, located on a centre of inversion, and one Cl− ion. The dihedral angle between the central benzene ring and the benzoyl phenyl ring is 53.3 (2)°. In the ions are linked to form a two-dimensional network parallel to the (10) plane by N—H⋯Cl hydrogen bonds.
of the title compound, CRelated literature
For bond-length data, see: Allen et al. (1987). For general background, see: Antoniadis et al. (1994); Imai et al. (1975); Kolosov et al. (2002); Tonzola et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807068730/ci2546sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068730/ci2546Isup2.hkl
2,5-Dibenzoyl-1,4-phenylenediamine was synthesized as reported elsewhere (Imai et al., 1975). Single crystals suitable for X-ray diffraction were obtained by dissolving the compound (2.0 g, 6.3 mmol) in hydrochloric acid (50 ml, 1.0 mol/l) and allowing the solution to evaporate at room temperature for about 25 d.
N-bound H atoms were located in a difference map and refined with the N—H distances restrained to be equal. C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).C20H18N2O22+·2Cl− | F(000) = 404 |
Mr = 389.26 | Dx = 1.451 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 12.373 (3) Å | θ = 9–13° |
b = 5.195 (1) Å | µ = 0.38 mm−1 |
c = 14.315 (3) Å | T = 298 K |
β = 104.46 (3)° | Block, colourless |
V = 891.0 (4) Å3 | 0.40 × 0.10 × 0.10 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 1232 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 26.0°, θmin = 2.0° |
ω/2θ scans | h = −15→14 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→6 |
Tmin = 0.862, Tmax = 0.963 | l = 0→17 |
1754 measured reflections | 3 standard reflections every 200 reflections |
1754 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0704P)2 + 0.5685P] where P = (Fo2 + 2Fc2)/3 |
1754 reflections | (Δ/σ)max = 0.001 |
130 parameters | Δρmax = 0.31 e Å−3 |
3 restraints | Δρmin = −0.28 e Å−3 |
C20H18N2O22+·2Cl− | V = 891.0 (4) Å3 |
Mr = 389.26 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.373 (3) Å | µ = 0.38 mm−1 |
b = 5.195 (1) Å | T = 298 K |
c = 14.315 (3) Å | 0.40 × 0.10 × 0.10 mm |
β = 104.46 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1754 independent reflections |
Absorption correction: ψ scan (North et al., 1968) | 1232 reflections with I > 2σ(I) |
Tmin = 0.862, Tmax = 0.963 | Rint = 0.000 |
1754 measured reflections | 3 standard reflections every 200 reflections |
R[F2 > 2σ(F2)] = 0.055 | 3 restraints |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.31 e Å−3 |
1754 reflections | Δρmin = −0.28 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2971 (2) | 0.0151 (5) | −0.11097 (19) | 0.0386 (7) | |
N1 | 0.6436 (3) | 0.5247 (6) | 0.1879 (2) | 0.0265 (7) | |
H1N | 0.635 (4) | 0.655 (7) | 0.224 (3) | 0.073 (17)* | |
H2N | 0.633 (3) | 0.394 (7) | 0.222 (3) | 0.045 (12)* | |
H3N | 0.714 (2) | 0.517 (8) | 0.188 (3) | 0.040 (12)* | |
C1 | 0.1700 (4) | 0.2318 (8) | 0.1666 (3) | 0.0438 (10) | |
H1 | 0.1688 | 0.3459 | 0.2164 | 0.053* | |
C2 | 0.1003 (3) | 0.0237 (9) | 0.1510 (3) | 0.0450 (10) | |
H2 | 0.0508 | −0.0008 | 0.1896 | 0.054* | |
C3 | 0.1022 (3) | −0.1489 (8) | 0.0793 (3) | 0.0442 (10) | |
H3 | 0.0558 | −0.2922 | 0.0706 | 0.053* | |
C4 | 0.1732 (3) | −0.1104 (7) | 0.0200 (3) | 0.0372 (9) | |
H4 | 0.1731 | −0.2260 | −0.0296 | 0.045* | |
C5 | 0.2448 (3) | 0.1002 (7) | 0.0339 (3) | 0.0274 (8) | |
C6 | 0.2430 (3) | 0.2733 (7) | 0.1081 (3) | 0.0352 (9) | |
H6 | 0.2902 | 0.4154 | 0.1184 | 0.042* | |
C7 | 0.3141 (3) | 0.1395 (6) | −0.0361 (2) | 0.0262 (8) | |
C8 | 0.4074 (3) | 0.3311 (6) | −0.0166 (2) | 0.0230 (7) | |
C9 | 0.4812 (3) | 0.3497 (7) | 0.0737 (2) | 0.0250 (7) | |
H9 | 0.4697 | 0.2484 | 0.1239 | 0.030* | |
C10 | 0.5707 (3) | 0.5142 (6) | 0.0907 (2) | 0.0230 (7) | |
Cl1 | 0.59773 (8) | 0.02097 (17) | 0.29914 (7) | 0.0350 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0478 (16) | 0.0345 (15) | 0.0357 (14) | −0.0127 (13) | 0.0148 (12) | −0.0065 (12) |
N1 | 0.0268 (15) | 0.0226 (16) | 0.0272 (15) | −0.0029 (14) | 0.0015 (12) | 0.0026 (14) |
C1 | 0.054 (3) | 0.037 (2) | 0.047 (2) | −0.004 (2) | 0.025 (2) | −0.008 (2) |
C2 | 0.039 (2) | 0.051 (3) | 0.050 (2) | 0.002 (2) | 0.0205 (19) | 0.010 (2) |
C3 | 0.041 (2) | 0.035 (2) | 0.060 (3) | −0.0108 (19) | 0.019 (2) | 0.004 (2) |
C4 | 0.048 (2) | 0.026 (2) | 0.040 (2) | −0.0095 (18) | 0.0165 (18) | −0.0018 (17) |
C5 | 0.0274 (18) | 0.0209 (17) | 0.0343 (19) | −0.0024 (14) | 0.0082 (15) | 0.0009 (15) |
C6 | 0.042 (2) | 0.0258 (19) | 0.039 (2) | −0.0010 (16) | 0.0108 (17) | 0.0012 (16) |
C7 | 0.0291 (18) | 0.0184 (16) | 0.0309 (18) | 0.0025 (14) | 0.0070 (15) | 0.0041 (14) |
C8 | 0.0242 (16) | 0.0171 (16) | 0.0276 (17) | 0.0007 (13) | 0.0059 (13) | 0.0017 (14) |
C9 | 0.0307 (18) | 0.0199 (17) | 0.0254 (17) | −0.0008 (14) | 0.0091 (14) | 0.0050 (14) |
C10 | 0.0284 (17) | 0.0182 (16) | 0.0214 (15) | 0.0012 (14) | 0.0046 (13) | −0.0003 (14) |
Cl1 | 0.0418 (5) | 0.0276 (5) | 0.0393 (5) | 0.0038 (4) | 0.0168 (4) | 0.0054 (4) |
O1—C7 | 1.223 (4) | C4—C5 | 1.390 (5) |
N1—C10 | 1.458 (4) | C4—H4 | 0.93 |
N1—H1N | 0.87 (3) | C5—C6 | 1.396 (5) |
N1—H2N | 0.87 (3) | C5—C7 | 1.487 (5) |
N1—H3N | 0.87 (2) | C6—H6 | 0.93 |
C1—C2 | 1.366 (6) | C7—C8 | 1.497 (5) |
C1—C6 | 1.393 (5) | C8—C9 | 1.388 (5) |
C1—H1 | 0.93 | C8—C10i | 1.409 (4) |
C2—C3 | 1.367 (6) | C9—C10 | 1.372 (5) |
C2—H2 | 0.93 | C9—H9 | 0.93 |
C3—C4 | 1.381 (5) | C10—C8i | 1.409 (4) |
C3—H3 | 0.93 | ||
C10—N1—H1N | 117 (3) | C4—C5—C6 | 119.0 (3) |
C10—N1—H2N | 111 (3) | C4—C5—C7 | 117.7 (3) |
H1N—N1—H2N | 102 (4) | C6—C5—C7 | 123.1 (3) |
C10—N1—H3N | 112 (3) | C1—C6—C5 | 119.6 (4) |
H1N—N1—H3N | 108 (4) | C1—C6—H6 | 120.2 |
H2N—N1—H3N | 105 (4) | C5—C6—H6 | 120.2 |
C2—C1—C6 | 120.1 (4) | O1—C7—C5 | 121.1 (3) |
C2—C1—H1 | 119.9 | O1—C7—C8 | 118.1 (3) |
C6—C1—H1 | 119.9 | C5—C7—C8 | 120.9 (3) |
C1—C2—C3 | 120.8 (4) | C9—C8—C10i | 117.1 (3) |
C1—C2—H2 | 119.6 | C9—C8—C7 | 121.2 (3) |
C3—C2—H2 | 119.6 | C10i—C8—C7 | 121.6 (3) |
C2—C3—C4 | 120.0 (4) | C10—C9—C8 | 121.5 (3) |
C2—C3—H3 | 120.0 | C10—C9—H9 | 119.2 |
C4—C3—H3 | 120.0 | C8—C9—H9 | 119.2 |
C3—C4—C5 | 120.4 (4) | C9—C10—C8i | 121.4 (3) |
C3—C4—H4 | 119.8 | C9—C10—N1 | 118.1 (3) |
C5—C4—H4 | 119.8 | C8i—C10—N1 | 120.5 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1ii | 0.87 (4) | 2.29 (4) | 3.155 (3) | 172 (4) |
N1—H2N···Cl1 | 0.87 (4) | 2.33 (4) | 3.187 (3) | 174 (4) |
N1—H3N···Cl1iii | 0.87 (3) | 2.29 (3) | 3.159 (4) | 175 (2) |
Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H18N2O22+·2Cl− |
Mr | 389.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 12.373 (3), 5.195 (1), 14.315 (3) |
β (°) | 104.46 (3) |
V (Å3) | 891.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.40 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.862, 0.963 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1754, 1754, 1232 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.162, 1.08 |
No. of reflections | 1754 |
No. of parameters | 130 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.28 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1i | 0.87 (4) | 2.29 (4) | 3.155 (3) | 172 (4) |
N1—H2N···Cl1 | 0.87 (4) | 2.33 (4) | 3.187 (3) | 174 (4) |
N1—H3N···Cl1ii | 0.87 (3) | 2.29 (3) | 3.159 (4) | 175 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the innovation fund of Jiangsu Province, China. The authors thank the Center for Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Synth. Met. 62, 265–271. CrossRef CAS Web of Science Google Scholar
Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. A Polym. Chem. 13, 2233–2249. CrossRef CAS Google Scholar
Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,5-Dibenzoyl-1,4-phenylenediamine (DBPDA) is one of the important monomers, being utilized to synthesize organic semiconductors and conjugated polymers containing anthrazoline unit (Tonzola et al., 2003), which are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002), thin film transistors, and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound.
The asymmetric unit is composed of one-half of the 2,5-dibenzoyl-1,4-phenylenediaminium dication located on a centre of inversion, and one chloride ion (Fig.1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the C1—C6 and C8—C10/C8A—C10A rings is 53.3 (2)°.
In the crystal structure, molecules are connected together by N—H···Cl hydrogen bonds (Table 1) to form a two-dimensional network parallel to the (1 0 1) plane (Fig. 2).