organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­benzoyl­benzene-1,4-diaminium dichloride

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 14 December 2007; accepted 29 December 2007; online 9 January 2008)

The asymmetric unit of the title compound, C20H18N2O22+·2Cl, is composed of one-half of the 2,5-dibenzoyl­benzene-1,4-diaminium dication, located on a centre of inversion, and one Cl ion. The dihedral angle between the central benzene ring and the benzoyl phenyl ring is 53.3 (2)°. In the crystal structure, ions are linked to form a two-dimensional network parallel to the (10[\overline{1}]) plane by N—H⋯Cl hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For general background, see: Antoniadis et al. (1994[Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Synth. Met. 62, 265-271.]); Imai et al. (1975[Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. A Polym. Chem. 13, 2233-2249.]); Kolosov et al. (2002[Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.]); Tonzola et al. (2003[Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O22+·2Cl

  • Mr = 389.26

  • Monoclinic, P 21 /n

  • a = 12.373 (3) Å

  • b = 5.195 (1) Å

  • c = 14.315 (3) Å

  • β = 104.46 (3)°

  • V = 891.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 (2) K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.862, Tmax = 0.963

  • 1754 measured reflections

  • 1754 independent reflections

  • 1232 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.162

  • S = 1.08

  • 1754 reflections

  • 130 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.87 (4) 2.29 (4) 3.155 (3) 172 (4)
N1—H2N⋯Cl1 0.87 (4) 2.33 (4) 3.187 (3) 174 (4)
N1—H3N⋯Cl1ii 0.87 (3) 2.29 (3) 3.159 (4) 175 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,5-Dibenzoyl-1,4-phenylenediamine (DBPDA) is one of the important monomers, being utilized to synthesize organic semiconductors and conjugated polymers containing anthrazoline unit (Tonzola et al., 2003), which are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002), thin film transistors, and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound.

The asymmetric unit is composed of one-half of the 2,5-dibenzoyl-1,4-phenylenediaminium dication located on a centre of inversion, and one chloride ion (Fig.1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the C1—C6 and C8—C10/C8A—C10A rings is 53.3 (2)°.

In the crystal structure, molecules are connected together by N—H···Cl hydrogen bonds (Table 1) to form a two-dimensional network parallel to the (1 0 1) plane (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background, see: Antoniadis et al. (1994); Imai et al. (1975); Kolosov et al. (2002); Tonzola et al. (2003).

Experimental top

2,5-Dibenzoyl-1,4-phenylenediamine was synthesized as reported elsewhere (Imai et al., 1975). Single crystals suitable for X-ray diffraction were obtained by dissolving the compound (2.0 g, 6.3 mmol) in hydrochloric acid (50 ml, 1.0 mol/l) and allowing the solution to evaporate at room temperature for about 25 d.

Refinement top

N-bound H atoms were located in a difference map and refined with the N—H distances restrained to be equal. C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Atoms labelled with the suffix a are generated by the symmetry operations (1 - x, 1 - y, -z). Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
2,5-Dibenzoylbenzene-1,4-diaminium dichloride top
Crystal data top
C20H18N2O22+·2ClF(000) = 404
Mr = 389.26Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.373 (3) Åθ = 9–13°
b = 5.195 (1) ŵ = 0.38 mm1
c = 14.315 (3) ÅT = 298 K
β = 104.46 (3)°Block, colourless
V = 891.0 (4) Å30.40 × 0.10 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 1514
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.862, Tmax = 0.963l = 017
1754 measured reflections3 standard reflections every 200 reflections
1754 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.5685P]
where P = (Fo2 + 2Fc2)/3
1754 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H18N2O22+·2ClV = 891.0 (4) Å3
Mr = 389.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.373 (3) ŵ = 0.38 mm1
b = 5.195 (1) ÅT = 298 K
c = 14.315 (3) Å0.40 × 0.10 × 0.10 mm
β = 104.46 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1754 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1232 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.963Rint = 0.000
1754 measured reflections3 standard reflections every 200 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
1754 reflectionsΔρmin = 0.28 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2971 (2)0.0151 (5)0.11097 (19)0.0386 (7)
N10.6436 (3)0.5247 (6)0.1879 (2)0.0265 (7)
H1N0.635 (4)0.655 (7)0.224 (3)0.073 (17)*
H2N0.633 (3)0.394 (7)0.222 (3)0.045 (12)*
H3N0.714 (2)0.517 (8)0.188 (3)0.040 (12)*
C10.1700 (4)0.2318 (8)0.1666 (3)0.0438 (10)
H10.16880.34590.21640.053*
C20.1003 (3)0.0237 (9)0.1510 (3)0.0450 (10)
H20.05080.00080.18960.054*
C30.1022 (3)0.1489 (8)0.0793 (3)0.0442 (10)
H30.05580.29220.07060.053*
C40.1732 (3)0.1104 (7)0.0200 (3)0.0372 (9)
H40.17310.22600.02960.045*
C50.2448 (3)0.1002 (7)0.0339 (3)0.0274 (8)
C60.2430 (3)0.2733 (7)0.1081 (3)0.0352 (9)
H60.29020.41540.11840.042*
C70.3141 (3)0.1395 (6)0.0361 (2)0.0262 (8)
C80.4074 (3)0.3311 (6)0.0166 (2)0.0230 (7)
C90.4812 (3)0.3497 (7)0.0737 (2)0.0250 (7)
H90.46970.24840.12390.030*
C100.5707 (3)0.5142 (6)0.0907 (2)0.0230 (7)
Cl10.59773 (8)0.02097 (17)0.29914 (7)0.0350 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0478 (16)0.0345 (15)0.0357 (14)0.0127 (13)0.0148 (12)0.0065 (12)
N10.0268 (15)0.0226 (16)0.0272 (15)0.0029 (14)0.0015 (12)0.0026 (14)
C10.054 (3)0.037 (2)0.047 (2)0.004 (2)0.025 (2)0.008 (2)
C20.039 (2)0.051 (3)0.050 (2)0.002 (2)0.0205 (19)0.010 (2)
C30.041 (2)0.035 (2)0.060 (3)0.0108 (19)0.019 (2)0.004 (2)
C40.048 (2)0.026 (2)0.040 (2)0.0095 (18)0.0165 (18)0.0018 (17)
C50.0274 (18)0.0209 (17)0.0343 (19)0.0024 (14)0.0082 (15)0.0009 (15)
C60.042 (2)0.0258 (19)0.039 (2)0.0010 (16)0.0108 (17)0.0012 (16)
C70.0291 (18)0.0184 (16)0.0309 (18)0.0025 (14)0.0070 (15)0.0041 (14)
C80.0242 (16)0.0171 (16)0.0276 (17)0.0007 (13)0.0059 (13)0.0017 (14)
C90.0307 (18)0.0199 (17)0.0254 (17)0.0008 (14)0.0091 (14)0.0050 (14)
C100.0284 (17)0.0182 (16)0.0214 (15)0.0012 (14)0.0046 (13)0.0003 (14)
Cl10.0418 (5)0.0276 (5)0.0393 (5)0.0038 (4)0.0168 (4)0.0054 (4)
Geometric parameters (Å, º) top
O1—C71.223 (4)C4—C51.390 (5)
N1—C101.458 (4)C4—H40.93
N1—H1N0.87 (3)C5—C61.396 (5)
N1—H2N0.87 (3)C5—C71.487 (5)
N1—H3N0.87 (2)C6—H60.93
C1—C21.366 (6)C7—C81.497 (5)
C1—C61.393 (5)C8—C91.388 (5)
C1—H10.93C8—C10i1.409 (4)
C2—C31.367 (6)C9—C101.372 (5)
C2—H20.93C9—H90.93
C3—C41.381 (5)C10—C8i1.409 (4)
C3—H30.93
C10—N1—H1N117 (3)C4—C5—C6119.0 (3)
C10—N1—H2N111 (3)C4—C5—C7117.7 (3)
H1N—N1—H2N102 (4)C6—C5—C7123.1 (3)
C10—N1—H3N112 (3)C1—C6—C5119.6 (4)
H1N—N1—H3N108 (4)C1—C6—H6120.2
H2N—N1—H3N105 (4)C5—C6—H6120.2
C2—C1—C6120.1 (4)O1—C7—C5121.1 (3)
C2—C1—H1119.9O1—C7—C8118.1 (3)
C6—C1—H1119.9C5—C7—C8120.9 (3)
C1—C2—C3120.8 (4)C9—C8—C10i117.1 (3)
C1—C2—H2119.6C9—C8—C7121.2 (3)
C3—C2—H2119.6C10i—C8—C7121.6 (3)
C2—C3—C4120.0 (4)C10—C9—C8121.5 (3)
C2—C3—H3120.0C10—C9—H9119.2
C4—C3—H3120.0C8—C9—H9119.2
C3—C4—C5120.4 (4)C9—C10—C8i121.4 (3)
C3—C4—H4119.8C9—C10—N1118.1 (3)
C5—C4—H4119.8C8i—C10—N1120.5 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1ii0.87 (4)2.29 (4)3.155 (3)172 (4)
N1—H2N···Cl10.87 (4)2.33 (4)3.187 (3)174 (4)
N1—H3N···Cl1iii0.87 (3)2.29 (3)3.159 (4)175 (2)
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O22+·2Cl
Mr389.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.373 (3), 5.195 (1), 14.315 (3)
β (°) 104.46 (3)
V3)891.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.862, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
1754, 1754, 1232
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.162, 1.08
No. of reflections1754
No. of parameters130
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (4)2.29 (4)3.155 (3)172 (4)
N1—H2N···Cl10.87 (4)2.33 (4)3.187 (3)174 (4)
N1—H3N···Cl1ii0.87 (3)2.29 (3)3.159 (4)175 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the innovation fund of Jiangsu Province, China. The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAntoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Synth. Met. 62, 265–271.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationImai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. A Polym. Chem. 13, 2233–2249.  CrossRef CAS Google Scholar
First citationKolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds