organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[2,3,5,6-Tetra­methyl-p-phenyl­ene­bis­(methyl­ene­thio)]bis­­(pyridine N-oxide)

aDepartment of Chemistry, Popes College, Sawyerpuram, Tamilnadu, India, bDepartment of Physics, Karunya University, Coimbatore 641114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 15 December 2007; accepted 29 December 2007; online 9 January 2008)

Mol­ecules of the title compound, C22H24N2O2S2, lie across centres of inversion. The two thio­pyridine N-oxide groups adopt a stepped trans configuration with respect to the benzene ring, by virtue of the symmetry. The oxopyridinium ring forms a dihedral angle of 79.9 (2)° with the benzene ring. The crystal structure is stabilized by a strong ππ inter­action between the pyridinium rings of adjacent mol­ecules [ring centroid–centroid distance = 3.464 (3) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For biological activities of N-oxide derivatives, see: Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145-150.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans., pp. 379-381.]). For a related structure, see: Hartung et al. (1996[Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841-2844.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N2O2S2

  • Mr = 412.55

  • Monoclinic, P 21 /c

  • a = 11.8431 (13) Å

  • b = 9.0108 (9) Å

  • c = 9.7551 (10) Å

  • β = 112.611 (9)°

  • V = 961.01 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.68 mm−1

  • T = 193 (2) K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.80, Tmax = 0.87

  • 1929 measured reflections

  • 1813 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.077

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.170

  • S = 0.99

  • 1813 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955).

The asymmetric unit of the title compound consists of one half of a centrosymmetric molecule. The two thiopyridine-N-oxide groups adopt a stepped trans conformation with respect to the benzene ring, by virtue of the symmetry. The oxopyridinium ring forms a dihedral angle of 79.9 (2)° with the benzene ring. The N—O bond length is in good agreement with the mean value of 1.304 (15)Å reported in the literature for pyridine N-oxides (Allen et al., 1987). As observed in a similar structure (Hartung et al., 1996), the S atom is bent significantly towards the N-oxide O atom [N9—C8—S7 = 111.4 (3)°].

The crystal packing is stabilized by a strong π-π interaction between the pyridinium rings of adjacent molecules at (x, y, z) and (-x, 2 - y, -z), with a ring centroid to centroid distance of 3.464 (3) Å.

Related literature top

For bond-length data, see: Allen et al. (1987). For biological activities of N-oxides derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For a related structure, see: Hartung et al. (1996).

Experimental top

A mixture of 1,4-bis(bromomethyl)durene (0.320, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.298,2 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.34 g, 82%). The compound was recrystallized from chloroform-methanol (1:2 v/v).

Refinement top

C-bound H atoms were placed in calculated positions [C—H = 0.95 Å (aromatic), 0.98 Å (methylene), and 0.99 Å (methyl)] and refined in the riding-model approximation, with Uiso(H)=1.2–1.5Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Atoms labelled with the suffix a are generated by the symmetry operations (1 - x, 1 - y, 1 - z).
2,2'-[2,3,5,6-Tetramethyl-p-phenylenebis(methylenethio)]bis(pyridine N-oxide) top
Crystal data top
C22H24N2O2S2F(000) = 436
Mr = 412.55Dx = 1.426 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.8431 (13) Åθ = 15–29.3°
b = 9.0108 (9) ŵ = 2.68 mm1
c = 9.7551 (10) ÅT = 193 K
β = 112.611 (9)°Block, colourless
V = 961.01 (17) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.077
ω/2θ scansθmax = 70°, θmin = 4.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 1413
Tmin = 0.80, Tmax = 0.87k = 010
1929 measured reflectionsl = 011
1813 independent reflections3 standard reflections every 60 min
1200 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.1008P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.42 e Å3
1813 reflectionsΔρmin = 0.41 e Å3
129 parameters
Crystal data top
C22H24N2O2S2V = 961.01 (17) Å3
Mr = 412.55Z = 2
Monoclinic, P21/cCu Kα radiation
a = 11.8431 (13) ŵ = 2.68 mm1
b = 9.0108 (9) ÅT = 193 K
c = 9.7551 (10) Å0.10 × 0.10 × 0.05 mm
β = 112.611 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1200 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.077
Tmin = 0.80, Tmax = 0.873 standard reflections every 60 min
1929 measured reflections intensity decay: 3%
1813 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.99Δρmax = 0.42 e Å3
1813 reflectionsΔρmin = 0.41 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4444 (3)0.6186 (4)0.4063 (4)0.0220 (8)
C20.5351 (3)0.6459 (4)0.5463 (4)0.0234 (8)
C30.4077 (3)0.4715 (4)0.3606 (4)0.0243 (8)
C40.5706 (4)0.8042 (4)0.5965 (4)0.0305 (9)
H4A0.50490.87140.53740.046*
H4B0.6460.82990.5830.046*
H4C0.58380.81360.70170.046*
C50.3044 (4)0.4452 (4)0.2124 (4)0.0347 (10)
H5A0.24280.52330.19420.052*
H5B0.2670.34840.21320.052*
H5C0.33650.4470.13360.052*
C60.3835 (3)0.7458 (4)0.3017 (4)0.0258 (8)
H6A0.35280.71140.19730.031*
H6B0.44290.8270.31380.031*
S70.25697 (9)0.81142 (11)0.34802 (10)0.0290 (3)
C80.1962 (3)0.9526 (4)0.2167 (4)0.0254 (8)
N90.1042 (3)1.0262 (4)0.2392 (4)0.0293 (7)
C100.0488 (4)1.1435 (4)0.1524 (5)0.0340 (10)
H100.01231.19690.17250.041*
C110.0792 (4)1.1863 (4)0.0363 (5)0.0347 (9)
H110.03941.26830.02420.042*
C120.1688 (4)1.1083 (5)0.0083 (5)0.0358 (10)
H120.18891.13460.07390.043*
C130.2287 (4)0.9925 (4)0.0998 (4)0.0287 (9)
H130.29180.94050.08260.034*
O140.0730 (3)0.9825 (4)0.3471 (3)0.0443 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.0160 (17)0.0218 (18)0.0012 (15)0.0144 (16)0.0009 (14)
C20.0280 (19)0.0172 (17)0.0262 (19)0.0026 (14)0.0117 (15)0.0053 (15)
C30.0294 (19)0.0227 (19)0.0217 (17)0.0043 (15)0.0106 (15)0.0028 (15)
C40.038 (2)0.0189 (19)0.033 (2)0.0065 (17)0.0124 (18)0.0023 (17)
C50.044 (2)0.025 (2)0.031 (2)0.0021 (19)0.0101 (19)0.0028 (18)
C60.0303 (19)0.0221 (17)0.026 (2)0.0011 (16)0.0116 (16)0.0001 (16)
S70.0373 (5)0.0247 (5)0.0282 (5)0.0039 (4)0.0160 (4)0.0041 (4)
C80.028 (2)0.0183 (18)0.0265 (19)0.0018 (15)0.0065 (16)0.0063 (15)
N90.0308 (17)0.0260 (17)0.0300 (17)0.0000 (14)0.0102 (14)0.0034 (14)
C100.030 (2)0.025 (2)0.038 (2)0.0035 (16)0.0031 (18)0.0069 (18)
C110.035 (2)0.0224 (19)0.037 (2)0.0048 (18)0.0027 (17)0.0011 (19)
C120.039 (2)0.031 (2)0.034 (2)0.0059 (18)0.0102 (18)0.0004 (18)
C130.035 (2)0.0233 (19)0.0249 (19)0.0011 (16)0.0086 (17)0.0008 (16)
O140.055 (2)0.0477 (19)0.0421 (18)0.0125 (16)0.0316 (16)0.0064 (15)
Geometric parameters (Å, º) top
C1—C21.398 (5)C11—C121.384 (6)
C1—C31.412 (5)C12—C131.379 (6)
C1—C61.520 (5)C4—H4A0.98
C2—C3i1.389 (5)C4—H4B0.98
C2—C41.514 (5)C4—H4C0.98
C3—C2i1.389 (5)C5—H5A0.98
C3—C51.511 (5)C5—H5B0.98
C6—S71.822 (4)C5—H5C0.98
S7—C81.752 (4)C6—H6A0.99
C8—N91.364 (5)C6—H6B0.99
C8—C131.384 (5)C10—H100.95
N9—O141.303 (4)C11—H110.95
N9—C101.355 (5)C12—H120.95
C10—C111.369 (6)C13—H130.95
C2—C1—C3120.1 (3)C2—C4—H4C109
C2—C1—C6120.8 (3)H4A—C4—H4B109
C3—C1—C6119.2 (3)H4A—C4—H4C109
C3i—C2—C1120.2 (3)H4B—C4—H4C109
C3i—C2—C4120.1 (3)C3—C5—H5A109
C1—C2—C4119.7 (3)C3—C5—H5B110
C2i—C3—C1119.7 (3)C3—C5—H5C109
C2i—C3—C5121.2 (3)H5A—C5—H5B109
C1—C3—C5119.1 (3)H5A—C5—H5C109
C1—C6—S7107.5 (2)H5B—C5—H5C110
C8—S7—C6101.51 (18)S7—C6—H6A110
N9—C8—C13119.9 (4)S7—C6—H6B110
N9—C8—S7111.4 (3)C1—C6—H6A110
C13—C8—S7128.7 (3)C1—C6—H6B110
O14—N9—C10121.4 (4)H6A—C6—H6B108
O14—N9—C8118.4 (3)N9—C10—H10119
C10—N9—C8120.2 (4)C11—C10—H10119
N9—C10—C11121.2 (4)C10—C11—H11120
C10—C11—C12119.1 (4)C12—C11—H11120
C13—C12—C11119.9 (4)C11—C12—H12120
C12—C13—C8119.6 (4)C13—C12—H12120
C2—C4—H4A109C8—C13—H13120
C2—C4—H4B109C12—C13—H13120
C3—C1—C2—C3i2.0 (6)C6—S7—C8—C135.8 (4)
C6—C1—C2—C3i178.3 (3)C13—C8—N9—O14177.6 (3)
C3—C1—C2—C4177.7 (3)S7—C8—N9—O141.6 (4)
C6—C1—C2—C41.9 (5)C13—C8—N9—C103.5 (5)
C2—C1—C3—C2i2.0 (6)S7—C8—N9—C10177.3 (3)
C6—C1—C3—C2i178.3 (3)O14—N9—C10—C11177.9 (4)
C2—C1—C3—C5176.5 (3)C8—N9—C10—C113.2 (6)
C6—C1—C3—C53.1 (5)N9—C10—C11—C120.4 (6)
C2—C1—C6—S786.0 (4)C10—C11—C12—C132.1 (6)
C3—C1—C6—S793.6 (4)C11—C12—C13—C81.8 (6)
C1—C6—S7—C8178.8 (2)N9—C8—C13—C121.0 (6)
C6—S7—C8—N9175.2 (3)S7—C8—C13—C12180.0 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H24N2O2S2
Mr412.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.8431 (13), 9.0108 (9), 9.7551 (10)
β (°) 112.611 (9)
V3)961.01 (17)
Z2
Radiation typeCu Kα
µ (mm1)2.68
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.80, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
1929, 1813, 1200
Rint0.077
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.170, 0.99
No. of reflections1813
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst. C52, 2841–2844.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans., pp. 379–381.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds