organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-Nitro­phenyl 4-(tosyl­oxymeth­yl)cyclo­hexa­ne­carboxyl­ate

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and cThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: wcums416@yahoo.com.cn

(Received 18 December 2007; accepted 2 January 2008; online 9 January 2008)

The title compound, C21H23NO7S, is an important inter­mediate in the synthesis of poly(amido­amine) dendrimers. The cyclo­hexane ring adopts a chair conformation. The dihedral angle between the two aromatic rings is 69.5 (2)°. The mol­ecules are linked into a zigzag chain along the b axis by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Bucourt & Hainaut (1965[Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366-1378.]); Dunitz & Strickler (1966[Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290-291.]); Sewald & Jakubke (2002[Sewald, N. & Jakubke, H. D. (2002). Peptides: Chemistry and Biology, 1st ed. Weinheim: Wiley.]); Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]); van Koningsveld & Jansen (1984[Koningsveld, H. van & Jansen, J. C. (1984). Acta Cryst. B40, 420-424.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO7S

  • Mr = 433.46

  • Monoclinic, P 21 /c

  • a = 20.499 (5) Å

  • b = 6.111 (3) Å

  • c = 17.250 (4) Å

  • β = 102.04 (3)°

  • V = 2113.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 292 (2) K

  • 0.40 × 0.38 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4094 measured reflections

  • 3627 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 300 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.191

  • S = 1.06

  • 3627 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.49 3.290 (6) 144
Symmetry code: (i) [-x, y-{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Activated esters are commonly used in peptide synthesis to facilitate the reaction of carboxylic acid and amine to obtain amide. trans-Nitrophenyl ester of N-protected amino acid can react with amino group quickly at room temperature with fairly good yields (Sewald et al.,2002). In our work, cyclohexane derivatives were designed to be linked to poly(amidoamine)dendrimer[PAMAM] through the amide bond which could be formed by the reaction of terminal amino groups of PAMAM dendrimer and cyclohexanecarboxylic acid. So the title compound, a p-nitrophenyl ester of trans-4-(tosyloxymethyl) cyclohexanecarboxylic acid was synthesized. As expected, the modification of periphery of PAMAM dendrimer effectively is realised under mild conditions. We report here the crystal structure of the title compound.

The cyclohexane ring of the title compound adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.521 (5) Å, which is close to that of trans-1,4-cyclohexanedicarboxylic acid (1.523 (3) Å, Von Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 111.08 (3)°, which is close to that observed for cyclohexane rings (111.1°, Bucourt & Hainaut, 1965; 111.4 (4)°, Dunitz & Strickler, 1966; Von Luger et al., 1972).

The molecules are linked into a zigzag chain along the b axis by C—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Bucourt & Hainaut (1965); Dunitz & Strickler (1966); Sewald & Jakubke (2002); Luger et al. (1972); van Koningsveld & Jansen (1984).

Experimental top

trans-4-(Tosyloxymethyl)cyclohexanecarboxylic acid (10 mmol) and p-nitrophenol (11 mmol) were dissolved in ethyl acetate (10 ml) and the solution was cooled to 273 K in an ice bath. Then a solution of DCC (11 mmol) in ethyl acetate (5 ml) was added dropwsie with stirring. After the addition, the stirring was continued for 30 min at 273 K and for 24 h at room temperature. Then acetic acid (0.5 ml) was added and after 30 min the reaction solution was filtered and the filtrate was evaporated to leave a yellow solid. The title compound was recrystallized from acetone. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a acetone-water solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids drawn at the 30% probability level.
trans-4-Nitrophenyl 4-(tosyloxymethyl)cyclohexanecarboxylate top
Crystal data top
C21H23NO7SF(000) = 912
Mr = 433.46Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33 reflections
a = 20.499 (5) Åθ = 4.5–7.6°
b = 6.111 (3) ŵ = 0.20 mm1
c = 17.250 (4) ÅT = 292 K
β = 102.04 (3)°Block, colourless
V = 2113.4 (13) Å30.40 × 0.38 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.0°
Graphite monochromatorh = 824
ω/2θ scansk = 70
4094 measured reflectionsl = 2019
3627 independent reflections3 standard reflections every 300 reflections
1850 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
3627 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C21H23NO7SV = 2113.4 (13) Å3
Mr = 433.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.499 (5) ŵ = 0.20 mm1
b = 6.111 (3) ÅT = 292 K
c = 17.250 (4) Å0.40 × 0.38 × 0.30 mm
β = 102.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
4094 measured reflections3 standard reflections every 300 reflections
3627 independent reflections intensity decay: 2.1%
1850 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3627 reflectionsΔρmin = 0.53 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30112 (5)0.15510 (18)0.17299 (7)0.0556 (4)
O10.30040 (14)0.0770 (6)0.09454 (16)0.0702 (9)
O20.30099 (14)0.3830 (5)0.1871 (2)0.0763 (10)
O30.23652 (12)0.0742 (5)0.19982 (18)0.0632 (8)
O40.09447 (15)0.2718 (6)0.1532 (2)0.0885 (12)
O50.08914 (13)0.5252 (5)0.06303 (18)0.0686 (9)
O60.39478 (15)0.7233 (6)0.0126 (2)0.0813 (11)
O70.36075 (17)0.9887 (7)0.0674 (2)0.0936 (12)
N10.35100 (18)0.8235 (8)0.0323 (2)0.0635 (10)
C10.39156 (18)0.1686 (7)0.2212 (2)0.0500 (10)
H10.37400.23670.17320.060*
C20.44258 (19)0.2665 (7)0.2753 (2)0.0536 (11)
H20.45890.40160.26330.064*
C30.46966 (18)0.1673 (8)0.3465 (2)0.0526 (10)
C40.4444 (2)0.0304 (9)0.3636 (3)0.0650 (13)
H40.46180.09730.41190.078*
C50.3931 (2)0.1337 (8)0.3100 (2)0.0593 (12)
H50.37690.26900.32200.071*
C60.36691 (17)0.0320 (6)0.2393 (2)0.0440 (9)
C70.5248 (2)0.2787 (10)0.4050 (3)0.0811 (16)
H7A0.51250.42790.41210.122*
H7B0.56520.27530.38520.122*
H7C0.53160.20370.45500.122*
C80.21871 (19)0.1584 (7)0.1883 (3)0.0657 (12)
H8A0.22860.21040.13890.079*
H8B0.24420.24480.23130.079*
C90.14546 (17)0.1807 (7)0.1864 (2)0.0507 (10)
H90.13700.12300.23640.061*
C100.10207 (18)0.0551 (7)0.1192 (2)0.0527 (10)
H10A0.11310.09920.12490.063*
H10B0.11150.10460.06920.063*
C110.02817 (18)0.0850 (8)0.1176 (2)0.0564 (11)
H11A0.01780.02380.16550.068*
H11B0.00230.00670.07260.068*
C120.00917 (18)0.3266 (7)0.1115 (2)0.0525 (11)
H120.01750.38360.06140.063*
C130.05248 (19)0.4533 (7)0.1792 (3)0.0614 (12)
H13A0.04260.40500.22910.074*
H13B0.04180.60780.17320.074*
C140.1265 (2)0.4210 (7)0.1814 (3)0.0648 (12)
H14A0.13740.48390.13400.078*
H14B0.15230.49750.22690.078*
C150.0628 (2)0.3620 (8)0.1128 (2)0.0545 (11)
C160.1560 (2)0.5894 (8)0.0600 (2)0.0574 (12)
C170.2075 (2)0.4605 (8)0.0214 (3)0.0662 (13)
H170.19940.32490.00080.079*
C180.2720 (2)0.5386 (8)0.0140 (3)0.0631 (13)
H180.30800.45540.01200.076*
C190.28246 (19)0.7380 (8)0.0449 (2)0.0509 (10)
C200.2310 (2)0.8667 (8)0.0847 (2)0.0623 (12)
H200.23921.00130.10590.075*
C210.1658 (2)0.7874 (9)0.0920 (3)0.0665 (13)
H210.12970.86900.11850.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0444 (6)0.0441 (7)0.0734 (8)0.0019 (5)0.0014 (5)0.0017 (6)
O10.068 (2)0.082 (2)0.0556 (18)0.0010 (16)0.0017 (14)0.0056 (17)
O20.0633 (19)0.041 (2)0.114 (3)0.0006 (15)0.0060 (17)0.0007 (19)
O30.0386 (15)0.053 (2)0.096 (2)0.0042 (13)0.0114 (14)0.0135 (17)
O40.0562 (19)0.106 (3)0.108 (3)0.0247 (18)0.0286 (18)0.052 (2)
O50.0447 (16)0.079 (2)0.082 (2)0.0155 (15)0.0136 (14)0.0340 (19)
O60.0471 (18)0.101 (3)0.091 (2)0.0097 (18)0.0021 (17)0.007 (2)
O70.082 (2)0.105 (3)0.095 (3)0.027 (2)0.0196 (19)0.024 (3)
N10.060 (2)0.073 (3)0.059 (2)0.018 (2)0.0138 (19)0.000 (2)
C10.050 (2)0.047 (3)0.054 (2)0.0062 (19)0.0105 (18)0.002 (2)
C20.052 (2)0.047 (3)0.062 (3)0.0082 (19)0.012 (2)0.003 (2)
C30.043 (2)0.063 (3)0.054 (2)0.004 (2)0.0146 (18)0.001 (2)
C40.064 (3)0.078 (4)0.050 (2)0.004 (2)0.006 (2)0.011 (2)
C50.061 (3)0.057 (3)0.062 (3)0.006 (2)0.016 (2)0.009 (2)
C60.043 (2)0.034 (2)0.056 (2)0.0020 (16)0.0105 (17)0.0054 (19)
C70.063 (3)0.106 (5)0.070 (3)0.017 (3)0.003 (2)0.013 (3)
C80.043 (2)0.045 (3)0.109 (4)0.0012 (19)0.015 (2)0.001 (3)
C90.041 (2)0.047 (3)0.064 (3)0.0016 (17)0.0104 (18)0.005 (2)
C100.050 (2)0.041 (3)0.068 (3)0.0056 (18)0.0142 (19)0.006 (2)
C110.047 (2)0.059 (3)0.061 (3)0.0058 (19)0.0077 (19)0.011 (2)
C120.042 (2)0.063 (3)0.053 (2)0.008 (2)0.0124 (17)0.010 (2)
C130.048 (2)0.042 (3)0.095 (3)0.0063 (19)0.016 (2)0.008 (2)
C140.050 (2)0.046 (3)0.098 (3)0.004 (2)0.013 (2)0.006 (3)
C150.050 (2)0.056 (3)0.057 (2)0.006 (2)0.010 (2)0.012 (2)
C160.047 (2)0.067 (3)0.057 (3)0.008 (2)0.0088 (19)0.019 (2)
C170.059 (3)0.056 (3)0.079 (3)0.014 (2)0.005 (2)0.014 (3)
C180.045 (2)0.071 (4)0.067 (3)0.001 (2)0.001 (2)0.004 (3)
C190.048 (2)0.054 (3)0.049 (2)0.005 (2)0.0060 (18)0.001 (2)
C200.062 (3)0.059 (3)0.063 (3)0.007 (2)0.007 (2)0.004 (2)
C210.056 (3)0.069 (4)0.068 (3)0.005 (2)0.003 (2)0.000 (3)
Geometric parameters (Å, º) top
S1—O21.414 (3)C9—C101.515 (5)
S1—O11.432 (3)C9—C141.517 (6)
S1—O31.571 (3)C9—H90.98
S1—C61.747 (4)C10—C111.520 (5)
O3—C81.471 (5)C10—H10A0.97
O4—C151.184 (5)C10—H10B0.97
O5—C151.353 (5)C11—C121.525 (6)
O5—C161.416 (5)C11—H11A0.97
O6—N11.221 (5)C11—H11B0.97
O7—N11.214 (5)C12—C151.495 (5)
N1—C191.472 (5)C12—C131.523 (6)
C1—C21.383 (5)C12—H120.98
C1—C61.386 (6)C13—C141.523 (5)
C1—H10.93C13—H13A0.97
C2—C31.379 (6)C13—H13B0.97
C2—H20.93C14—H14A0.97
C3—C41.371 (6)C14—H14B0.97
C3—C71.511 (6)C16—C211.362 (6)
C4—C51.399 (6)C16—C171.374 (6)
C4—H40.93C17—C181.386 (6)
C5—C61.373 (5)C17—H170.93
C5—H50.93C18—C191.365 (6)
C7—H7A0.96C18—H180.93
C7—H7B0.96C19—C201.379 (6)
C7—H7C0.96C20—C211.402 (6)
C8—C91.501 (5)C20—H200.93
C8—H8A0.97C21—H210.93
C8—H8B0.97
O2—S1—O1119.4 (2)C11—C10—H10A109.2
O2—S1—O3103.13 (18)C9—C10—H10B109.2
O1—S1—O3109.29 (18)C11—C10—H10B109.2
O2—S1—C6109.87 (18)H10A—C10—H10B107.9
O1—S1—C6109.28 (19)C10—C11—C12110.9 (3)
O3—S1—C6104.74 (18)C10—C11—H11A109.5
C8—O3—S1117.7 (3)C12—C11—H11A109.5
C15—O5—C16118.9 (3)C10—C11—H11B109.5
O7—N1—O6123.9 (4)C12—C11—H11B109.5
O7—N1—C19118.2 (4)H11A—C11—H11B108.0
O6—N1—C19117.9 (4)C15—C12—C13109.5 (3)
C2—C1—C6119.4 (4)C15—C12—C11112.2 (4)
C2—C1—H1120.3C13—C12—C11109.9 (3)
C6—C1—H1120.3C15—C12—H12108.4
C3—C2—C1121.2 (4)C13—C12—H12108.4
C3—C2—H2119.4C11—C12—H12108.4
C1—C2—H2119.4C12—C13—C14111.8 (4)
C4—C3—C2118.6 (4)C12—C13—H13A109.3
C4—C3—C7121.1 (4)C14—C13—H13A109.3
C2—C3—C7120.2 (4)C12—C13—H13B109.3
C3—C4—C5121.4 (4)C14—C13—H13B109.3
C3—C4—H4119.3H13A—C13—H13B107.9
C5—C4—H4119.3C9—C14—C13111.6 (3)
C6—C5—C4118.9 (4)C9—C14—H14A109.3
C6—C5—H5120.5C13—C14—H14A109.3
C4—C5—H5120.5C9—C14—H14B109.3
C5—C6—C1120.4 (4)C13—C14—H14B109.3
C5—C6—S1119.5 (3)H14A—C14—H14B108.0
C1—C6—S1120.1 (3)O4—C15—O5121.4 (4)
C3—C7—H7A109.5O4—C15—C12127.3 (4)
C3—C7—H7B109.5O5—C15—C12111.2 (4)
H7A—C7—H7B109.5C21—C16—C17122.9 (4)
C3—C7—H7C109.5C21—C16—O5117.0 (4)
H7A—C7—H7C109.5C17—C16—O5120.0 (4)
H7B—C7—H7C109.5C16—C17—C18118.0 (5)
O3—C8—C9108.0 (3)C16—C17—H17121.0
O3—C8—H8A110.1C18—C17—H17121.0
C9—C8—H8A110.1C19—C18—C17119.7 (4)
O3—C8—H8B110.1C19—C18—H18120.1
C9—C8—H8B110.1C17—C18—H18120.1
H8A—C8—H8B108.4C18—C19—C20122.6 (4)
C8—C9—C10113.3 (4)C18—C19—N1118.8 (4)
C8—C9—C14109.4 (3)C20—C19—N1118.6 (4)
C10—C9—C14110.1 (3)C19—C20—C21117.6 (5)
C8—C9—H9107.9C19—C20—H20121.2
C10—C9—H9107.9C21—C20—H20121.2
C14—C9—H9107.9C16—C21—C20119.3 (4)
C9—C10—C11112.2 (3)C16—C21—H21120.4
C9—C10—H10A109.2C20—C21—H21120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.493.290 (6)144
Symmetry code: (i) x, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H23NO7S
Mr433.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)20.499 (5), 6.111 (3), 17.250 (4)
β (°) 102.04 (3)
V3)2113.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.38 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4094, 3627, 1850
Rint0.004
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.191, 1.06
No. of reflections3627
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.53

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.493.290 (6)144
Symmetry code: (i) x, y3/2, z+1/2.
 

References

First citationBucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. 5, 1366–1378.  Google Scholar
First citationDunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationKoningsveld, H. van & Jansen, J. C. (1984). Acta Cryst. B40, 420–424.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSewald, N. & Jakubke, H. D. (2002). Peptides: Chemistry and Biology, 1st ed. Weinheim: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds