metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(5-phenyl-1H-pyrazole-3-carboxyl­ato)copper(II)

aSchool of Materials Science and Engineering, Chongqing University, Chongqing 400045, People's Republic of China, and bDepartment of Chemistry, Zunyi Normal College, Zunyi 563002, People's Republic of China
*Correspondence e-mail: yhwull@126.com

(Received 1 January 2008; accepted 9 January 2008; online 16 January 2008)

In the centrosymmetric title compound, [Cu(C10H7N2O2)2(H2O)2], the CuII ion occupies an inversion centre and exhibits a distorted octa­hedral geometry. The phenyl and pyrazole rings of the ligand are twisted by an angle of 11.36 (8)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the (010) plane by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For ligand preparation, see: Crane et al. (1999[Crane, J. D., Fox, O. D. & Sinn, E. (1999). J. Chem. Soc. Dalton Trans. pp. 1461-1465.]); Gharbaoui et al. (2007[Gharbaoui, T., Skinner, P. J., Shin, Y.-J. & Averbuj, C. (2007). Bioorg. Med. Chem. Lett. 17, 4914-4919.]). For general background, see: van Herk et al. (2003[Herk, T. V. van, Brussee, J., van den Nieuwendijk, A. M. C. H. & van Klein, P. A. M. (2003). J. Med. Chem. 46, 3945-3951.]); Knopp (1999[Knopp, R. H. (1999). N. Engl. J. Med. 341, 498-511.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H7N2O2)2(H2O)2]

  • Mr = 473.92

  • Monoclinic, P 21 /n

  • a = 5.0443 (6) Å

  • b = 32.161 (4) Å

  • c = 6.3234 (8) Å

  • β = 106.293 (1)°

  • V = 984.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 292 (2) K

  • 0.35 × 0.25 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.829

  • 8611 measured reflections

  • 2254 independent reflections

  • 1907 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.084

  • S = 1.08

  • 2254 reflections

  • 150 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.9572 (17)
Cu1—O1 1.9968 (14)
Cu1—O3 2.5400 (19)
N1—Cu1—N1i 180
N1—Cu1—O1i 98.56 (6)
N1—Cu1—O1 81.44 (6)
O1i—Cu1—O1 180
N1—Cu1—O3 87.85 (7)
N1i—Cu1—O3 92.15 (7)
O1i—Cu1—O3 91.56 (6)
O1—Cu1—O3 88.44 (6)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O2ii 0.83 (3) 1.88 (3) 2.679 (3) 161 (3)
N2—H2⋯O3iii 0.86 1.93 2.719 (3) 152
O3—H2W⋯O1iv 0.83 (3) 2.04 (3) 2.773 (3) 149 (3)
Symmetry codes: (ii) x, y, z-1; (iii) x+1, y, z; (iv) -x, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nicotinic acid as a hypolipidemic agent appears to have good potential to increase HDL cholesterol levels to a greater extent (Knopp, 1999). However, it has severe skin flushing side effect. In the search for novel agonists for nicotinic acid receptor, substituted pyrazole-3-carboxylic acids were found have substantial affinity for cloned G protein-coupled nicotinic acid receptor (van Herk et al., 2003). We report here the crystal structure of the title CuII complex with 5-phenyl-1H-pyrazole-3-carboxylic acid.

The asymmetric unit contains one-half of a formula unit (Fig. 1). The CuII ion occupies an inversion centre and exhibits a distorted octahedral geometry. The phenyl (C5—C10) and pyrazole (N1/N2/C2/C3/C4) rings form a dihedral angle of 11.36 (8)°. The dihedral angle between the Cu1/O1/C1/C2/N1 and N1/N2/C2/C3/C4 planes is 3.8 (1)°.

The molecules are linked into a two-dimensional network parallel to the (0 1 0) plane by O—H···O and N—H···O hydrogen bonds (Table 2).

Related literature top

For ligand preparation, see: Crane et al. (1999); Gharbaoui et al. (2007). For general background, see: van Herk et al. (2003); Knopp (1999).

Experimental top

5-Phenyl-1H-pyrazole-3-carboxylic acid was synthesized according to the reported procedure (Gharbaoui et al., 2007;Crane et al., 1999). 5-Phenyl-1H-pyrazole-3-carboxylic acid (1.0 g, 5.3 mmol) and Cu(OAc)2.2H2O (0.75 g, 2.7 mmol) were heated in H2O (200 ml) for 4 h with stirring. The resulting precipitate was filtered off to obtain the title compound (1.0 g, 80%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from dimethylformamide-water (1:1 v/v) solution.

Refinement top

The water H atoms were located and isotropically refined, with the O—H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1, -y, -z).
Diaquabis(5-phenyl-1H-pyrazole-3-carboxylato)copper(II) top
Crystal data top
[Cu(C10H7N2O2)2(H2O)2]F(000) = 486
Mr = 473.92Dx = 1.599 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2772 reflections
a = 5.0443 (6) Åθ = 2.5–26.6°
b = 32.161 (4) ŵ = 1.16 mm1
c = 6.3234 (8) ÅT = 292 K
β = 106.293 (1)°Block, blue
V = 984.6 (2) Å30.35 × 0.25 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.690, Tmax = 0.829k = 4139
8611 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.72P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C10H7N2O2)2(H2O)2]V = 984.6 (2) Å3
Mr = 473.92Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.0443 (6) ŵ = 1.16 mm1
b = 32.161 (4) ÅT = 292 K
c = 6.3234 (8) Å0.35 × 0.25 × 0.17 mm
β = 106.293 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1907 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.829Rint = 0.027
8611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.34 e Å3
2254 reflectionsΔρmin = 0.32 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.03166 (13)
O10.3462 (3)0.01796 (5)0.2440 (2)0.0325 (3)
O20.3301 (4)0.07235 (5)0.4604 (3)0.0404 (4)
O30.0850 (4)0.03336 (6)0.2706 (3)0.0380 (4)
N10.6670 (4)0.05536 (5)0.0513 (3)0.0294 (4)
N20.8212 (4)0.08034 (5)0.0348 (3)0.0301 (4)
H20.89560.07300.13590.036*
C10.4084 (4)0.05525 (7)0.3144 (3)0.0288 (5)
C20.5895 (4)0.07783 (7)0.2015 (3)0.0277 (4)
C30.6964 (4)0.11779 (7)0.2111 (4)0.0302 (5)
H30.67320.13950.30170.036*
C40.8454 (4)0.11852 (6)0.0569 (4)0.0282 (4)
C51.0091 (5)0.15138 (7)0.0085 (4)0.0328 (5)
C61.0740 (6)0.18727 (8)0.1155 (5)0.0473 (6)
H61.00670.19110.23680.057*
C71.2389 (7)0.21770 (9)0.0605 (6)0.0641 (9)
H71.28210.24170.14540.077*
C81.3376 (6)0.21240 (9)0.1183 (6)0.0642 (9)
H81.44820.23280.15430.077*
C91.2744 (6)0.17720 (10)0.2448 (5)0.0565 (8)
H91.34190.17380.36630.068*
C101.1097 (5)0.14664 (8)0.1918 (4)0.0438 (6)
H101.06620.12290.27860.053*
H1W0.138 (6)0.0417 (9)0.376 (4)0.069 (10)*
H2W0.041 (5)0.0163 (8)0.312 (5)0.075 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0386 (2)0.0297 (2)0.0341 (2)0.00911 (17)0.02227 (17)0.00583 (17)
O10.0365 (9)0.0338 (8)0.0339 (8)0.0071 (7)0.0207 (7)0.0019 (7)
O20.0523 (11)0.0407 (9)0.0388 (9)0.0031 (8)0.0301 (8)0.0036 (7)
O30.0416 (10)0.0443 (10)0.0361 (9)0.0093 (8)0.0239 (8)0.0051 (8)
N10.0332 (10)0.0304 (10)0.0301 (9)0.0060 (7)0.0177 (8)0.0028 (7)
N20.0334 (10)0.0325 (10)0.0311 (10)0.0064 (8)0.0203 (8)0.0029 (8)
C10.0276 (11)0.0349 (12)0.0264 (11)0.0006 (9)0.0115 (9)0.0032 (9)
C20.0286 (11)0.0311 (11)0.0260 (10)0.0004 (8)0.0119 (9)0.0003 (8)
C30.0315 (11)0.0298 (11)0.0320 (12)0.0002 (9)0.0133 (9)0.0033 (9)
C40.0282 (10)0.0277 (11)0.0296 (11)0.0005 (8)0.0094 (9)0.0016 (9)
C50.0285 (11)0.0303 (11)0.0402 (12)0.0008 (9)0.0108 (9)0.0071 (10)
C60.0478 (15)0.0366 (14)0.0641 (18)0.0063 (11)0.0264 (13)0.0051 (12)
C70.0610 (19)0.0357 (15)0.104 (3)0.0135 (13)0.0363 (19)0.0046 (15)
C80.0521 (18)0.0476 (17)0.101 (3)0.0060 (14)0.0345 (18)0.0248 (17)
C90.0530 (17)0.0655 (19)0.0588 (18)0.0018 (14)0.0287 (14)0.0232 (15)
C100.0481 (15)0.0462 (15)0.0411 (14)0.0060 (11)0.0189 (12)0.0055 (11)
Geometric parameters (Å, º) top
Cu1—N11.9572 (17)C3—C41.388 (3)
Cu1—N1i1.9573 (17)C3—H30.93
Cu1—O1i1.9968 (14)C4—C51.470 (3)
Cu1—O11.9968 (14)C5—C61.382 (3)
Cu1—O32.5400 (19)C5—C101.398 (3)
O1—C11.287 (3)C6—C71.390 (4)
O2—C11.231 (3)C6—H60.93
O3—H1W0.827 (10)C7—C81.368 (5)
O3—H2W0.825 (10)C7—H70.93
N1—C21.336 (3)C8—C91.371 (5)
N1—N21.336 (2)C8—H80.93
N2—C41.349 (3)C9—C101.387 (3)
N2—H20.86C9—H90.93
C1—C21.496 (3)C10—H100.93
C2—C31.388 (3)
N1—Cu1—N1i180C3—C2—C1135.23 (19)
N1—Cu1—O1i98.56 (6)C4—C3—C2105.36 (19)
N1i—Cu1—O1i81.44 (6)C4—C3—H3127.3
N1—Cu1—O181.44 (6)C2—C3—H3127.3
N1i—Cu1—O198.56 (6)N2—C4—C3106.56 (18)
O1i—Cu1—O1180N2—C4—C5121.60 (19)
N1—Cu1—O387.85 (7)C3—C4—C5131.8 (2)
N1i—Cu1—O392.15 (7)C6—C5—C10118.6 (2)
O1i—Cu1—O391.56 (6)C6—C5—C4120.2 (2)
O1—Cu1—O388.44 (6)C10—C5—C4121.2 (2)
C1—O1—Cu1115.29 (13)C5—C6—C7120.6 (3)
Cu1—O3—H1W107 (2)C5—C6—H6119.7
Cu1—O3—H2W110 (2)C7—C6—H6119.7
H1W—O3—H2W111 (2)C8—C7—C6120.1 (3)
C2—N1—N2106.51 (17)C8—C7—H7120.0
C2—N1—Cu1114.33 (14)C6—C7—H7120.0
N2—N1—Cu1138.77 (14)C7—C8—C9120.4 (3)
N1—N2—C4111.41 (17)C7—C8—H8119.8
N1—N2—H2124.3C9—C8—H8119.8
C4—N2—H2124.3C8—C9—C10120.1 (3)
O2—C1—O1125.27 (19)C8—C9—H9120.0
O2—C1—C2120.58 (19)C10—C9—H9120.0
O1—C1—C2114.14 (18)C9—C10—C5120.3 (3)
N1—C2—C3110.16 (18)C9—C10—H10119.9
N1—C2—C1114.60 (18)C5—C10—H10119.9
N1—Cu1—O1—C12.75 (15)O1—C1—C2—C3176.1 (2)
N1i—Cu1—O1—C1177.25 (15)N1—C2—C3—C40.0 (2)
O3—Cu1—O1—C185.31 (15)C1—C2—C3—C4178.6 (2)
O1i—Cu1—N1—C2175.94 (15)N1—N2—C4—C30.1 (2)
O1—Cu1—N1—C24.06 (15)N1—N2—C4—C5179.06 (19)
O3—Cu1—N1—C284.69 (16)C2—C3—C4—N20.1 (2)
O1i—Cu1—N1—N24.4 (2)C2—C3—C4—C5179.0 (2)
O1—Cu1—N1—N2175.6 (2)N2—C4—C5—C6167.6 (2)
O3—Cu1—N1—N286.8 (2)C3—C4—C5—C611.3 (4)
C2—N1—N2—C40.1 (2)N2—C4—C5—C1010.3 (3)
Cu1—N1—N2—C4172.02 (17)C3—C4—C5—C10170.8 (2)
Cu1—O1—C1—O2178.61 (18)C10—C5—C6—C70.8 (4)
Cu1—O1—C1—C21.0 (2)C4—C5—C6—C7177.2 (3)
N2—N1—C2—C30.0 (2)C5—C6—C7—C80.3 (5)
Cu1—N1—C2—C3174.22 (15)C6—C7—C8—C90.2 (5)
N2—N1—C2—C1178.84 (17)C7—C8—C9—C100.1 (5)
Cu1—N1—C2—C14.7 (2)C8—C9—C10—C50.5 (4)
O2—C1—C2—N1178.0 (2)C6—C5—C10—C90.9 (4)
O1—C1—C2—N12.4 (3)C4—C5—C10—C9177.1 (2)
O2—C1—C2—C33.5 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O2ii0.83 (3)1.88 (3)2.679 (3)161 (3)
N2—H2···O3iii0.861.932.719 (3)152
O3—H2W···O1iv0.83 (3)2.04 (3)2.773 (3)149 (3)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H7N2O2)2(H2O)2]
Mr473.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)5.0443 (6), 32.161 (4), 6.3234 (8)
β (°) 106.293 (1)
V3)984.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.35 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.690, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
8611, 2254, 1907
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.08
No. of reflections2254
No. of parameters150
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.9572 (17)Cu1—O32.5400 (19)
Cu1—O11.9968 (14)
N1—Cu1—N1i180N1—Cu1—O387.85 (7)
N1—Cu1—O1i98.56 (6)N1i—Cu1—O392.15 (7)
N1—Cu1—O181.44 (6)O1i—Cu1—O391.56 (6)
O1i—Cu1—O1180O1—Cu1—O388.44 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O2ii0.83 (3)1.88 (3)2.679 (3)161 (3)
N2—H2···O3iii0.861.932.719 (3)152
O3—H2W···O1iv0.83 (3)2.04 (3)2.773 (3)149 (3)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z; (iv) x, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Gui Zhou Province Education Commission (grant No. 2005118) for supporting this work.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, J. D., Fox, O. D. & Sinn, E. (1999). J. Chem. Soc. Dalton Trans. pp. 1461–1465.  Web of Science CSD CrossRef Google Scholar
First citationGharbaoui, T., Skinner, P. J., Shin, Y.-J. & Averbuj, C. (2007). Bioorg. Med. Chem. Lett. 17, 4914–4919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerk, T. V. van, Brussee, J., van den Nieuwendijk, A. M. C. H. & van Klein, P. A. M. (2003). J. Med. Chem. 46, 3945–3951.  Web of Science CrossRef PubMed Google Scholar
First citationKnopp, R. H. (1999). N. Engl. J. Med. 341, 498–511.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds