metal-organic compounds
Diaquabis(5-phenyl-1H-pyrazole-3-carboxylato)copper(II)
aSchool of Materials Science and Engineering, Chongqing University, Chongqing 400045, People's Republic of China, and bDepartment of Chemistry, Zunyi Normal College, Zunyi 563002, People's Republic of China
*Correspondence e-mail: yhwull@126.com
In the centrosymmetric title compound, [Cu(C10H7N2O2)2(H2O)2], the CuII ion occupies an inversion centre and exhibits a distorted octahedral geometry. The phenyl and pyrazole rings of the ligand are twisted by an angle of 11.36 (8)°. In the molecules are linked into a two-dimensional network parallel to the (010) plane by O—H⋯O and N—H⋯O hydrogen bonds.
Related literature
For ligand preparation, see: Crane et al. (1999); Gharbaoui et al. (2007). For general background, see: van Herk et al. (2003); Knopp (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808000810/ci2551sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808000810/ci2551Isup2.hkl
5-Phenyl-1H-pyrazole-3-carboxylic acid was synthesized according to the reported procedure (Gharbaoui et al., 2007;Crane et al., 1999). 5-Phenyl-1H-pyrazole-3-carboxylic acid (1.0 g, 5.3 mmol) and Cu(OAc)2.2H2O (0.75 g, 2.7 mmol) were heated in H2O (200 ml) for 4 h with stirring. The resulting precipitate was filtered off to obtain the title compound (1.0 g, 80%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from dimethylformamide-water (1:1 v/v) solution.
The water H atoms were located and isotropically refined, with the O—H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1, -y, -z). |
[Cu(C10H7N2O2)2(H2O)2] | F(000) = 486 |
Mr = 473.92 | Dx = 1.599 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2772 reflections |
a = 5.0443 (6) Å | θ = 2.5–26.6° |
b = 32.161 (4) Å | µ = 1.16 mm−1 |
c = 6.3234 (8) Å | T = 292 K |
β = 106.293 (1)° | Block, blue |
V = 984.6 (2) Å3 | 0.35 × 0.25 × 0.17 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2254 independent reflections |
Radiation source: fine-focus sealed tube | 1907 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→6 |
Tmin = 0.690, Tmax = 0.829 | k = −41→39 |
8611 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0302P)2 + 0.72P] where P = (Fo2 + 2Fc2)/3 |
2254 reflections | (Δ/σ)max = 0.001 |
150 parameters | Δρmax = 0.34 e Å−3 |
3 restraints | Δρmin = −0.32 e Å−3 |
[Cu(C10H7N2O2)2(H2O)2] | V = 984.6 (2) Å3 |
Mr = 473.92 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.0443 (6) Å | µ = 1.16 mm−1 |
b = 32.161 (4) Å | T = 292 K |
c = 6.3234 (8) Å | 0.35 × 0.25 × 0.17 mm |
β = 106.293 (1)° |
Bruker SMART CCD area-detector diffractometer | 2254 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1907 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.829 | Rint = 0.027 |
8611 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 3 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.34 e Å−3 |
2254 reflections | Δρmin = −0.32 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.0000 | 0.03166 (13) | |
O1 | 0.3462 (3) | 0.01796 (5) | 0.2440 (2) | 0.0325 (3) | |
O2 | 0.3301 (4) | 0.07235 (5) | 0.4604 (3) | 0.0404 (4) | |
O3 | 0.0850 (4) | 0.03336 (6) | −0.2706 (3) | 0.0380 (4) | |
N1 | 0.6670 (4) | 0.05536 (5) | 0.0513 (3) | 0.0294 (4) | |
N2 | 0.8212 (4) | 0.08034 (5) | −0.0348 (3) | 0.0301 (4) | |
H2 | 0.8956 | 0.0730 | −0.1359 | 0.036* | |
C1 | 0.4084 (4) | 0.05525 (7) | 0.3144 (3) | 0.0288 (5) | |
C2 | 0.5895 (4) | 0.07783 (7) | 0.2015 (3) | 0.0277 (4) | |
C3 | 0.6964 (4) | 0.11779 (7) | 0.2111 (4) | 0.0302 (5) | |
H3 | 0.6732 | 0.1395 | 0.3017 | 0.036* | |
C4 | 0.8454 (4) | 0.11852 (6) | 0.0569 (4) | 0.0282 (4) | |
C5 | 1.0091 (5) | 0.15138 (7) | −0.0085 (4) | 0.0328 (5) | |
C6 | 1.0740 (6) | 0.18727 (8) | 0.1155 (5) | 0.0473 (6) | |
H6 | 1.0067 | 0.1911 | 0.2368 | 0.057* | |
C7 | 1.2389 (7) | 0.21770 (9) | 0.0605 (6) | 0.0641 (9) | |
H7 | 1.2821 | 0.2417 | 0.1454 | 0.077* | |
C8 | 1.3376 (6) | 0.21240 (9) | −0.1183 (6) | 0.0642 (9) | |
H8 | 1.4482 | 0.2328 | −0.1543 | 0.077* | |
C9 | 1.2744 (6) | 0.17720 (10) | −0.2448 (5) | 0.0565 (8) | |
H9 | 1.3419 | 0.1738 | −0.3663 | 0.068* | |
C10 | 1.1097 (5) | 0.14664 (8) | −0.1918 (4) | 0.0438 (6) | |
H10 | 1.0662 | 0.1229 | −0.2786 | 0.053* | |
H1W | 0.138 (6) | 0.0417 (9) | −0.376 (4) | 0.069 (10)* | |
H2W | −0.041 (5) | 0.0163 (8) | −0.312 (5) | 0.075 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0386 (2) | 0.0297 (2) | 0.0341 (2) | −0.00911 (17) | 0.02227 (17) | −0.00583 (17) |
O1 | 0.0365 (9) | 0.0338 (8) | 0.0339 (8) | −0.0071 (7) | 0.0207 (7) | −0.0019 (7) |
O2 | 0.0523 (11) | 0.0407 (9) | 0.0388 (9) | −0.0031 (8) | 0.0301 (8) | −0.0036 (7) |
O3 | 0.0416 (10) | 0.0443 (10) | 0.0361 (9) | −0.0093 (8) | 0.0239 (8) | −0.0051 (8) |
N1 | 0.0332 (10) | 0.0304 (10) | 0.0301 (9) | −0.0060 (7) | 0.0177 (8) | −0.0028 (7) |
N2 | 0.0334 (10) | 0.0325 (10) | 0.0311 (10) | −0.0064 (8) | 0.0203 (8) | −0.0029 (8) |
C1 | 0.0276 (11) | 0.0349 (12) | 0.0264 (11) | 0.0006 (9) | 0.0115 (9) | 0.0032 (9) |
C2 | 0.0286 (11) | 0.0311 (11) | 0.0260 (10) | 0.0004 (8) | 0.0119 (9) | −0.0003 (8) |
C3 | 0.0315 (11) | 0.0298 (11) | 0.0320 (12) | 0.0002 (9) | 0.0133 (9) | −0.0033 (9) |
C4 | 0.0282 (10) | 0.0277 (11) | 0.0296 (11) | 0.0005 (8) | 0.0094 (9) | 0.0016 (9) |
C5 | 0.0285 (11) | 0.0303 (11) | 0.0402 (12) | 0.0008 (9) | 0.0108 (9) | 0.0071 (10) |
C6 | 0.0478 (15) | 0.0366 (14) | 0.0641 (18) | −0.0063 (11) | 0.0264 (13) | −0.0051 (12) |
C7 | 0.0610 (19) | 0.0357 (15) | 0.104 (3) | −0.0135 (13) | 0.0363 (19) | −0.0046 (15) |
C8 | 0.0521 (18) | 0.0476 (17) | 0.101 (3) | −0.0060 (14) | 0.0345 (18) | 0.0248 (17) |
C9 | 0.0530 (17) | 0.0655 (19) | 0.0588 (18) | −0.0018 (14) | 0.0287 (14) | 0.0232 (15) |
C10 | 0.0481 (15) | 0.0462 (15) | 0.0411 (14) | −0.0060 (11) | 0.0189 (12) | 0.0055 (11) |
Cu1—N1 | 1.9572 (17) | C3—C4 | 1.388 (3) |
Cu1—N1i | 1.9573 (17) | C3—H3 | 0.93 |
Cu1—O1i | 1.9968 (14) | C4—C5 | 1.470 (3) |
Cu1—O1 | 1.9968 (14) | C5—C6 | 1.382 (3) |
Cu1—O3 | 2.5400 (19) | C5—C10 | 1.398 (3) |
O1—C1 | 1.287 (3) | C6—C7 | 1.390 (4) |
O2—C1 | 1.231 (3) | C6—H6 | 0.93 |
O3—H1W | 0.827 (10) | C7—C8 | 1.368 (5) |
O3—H2W | 0.825 (10) | C7—H7 | 0.93 |
N1—C2 | 1.336 (3) | C8—C9 | 1.371 (5) |
N1—N2 | 1.336 (2) | C8—H8 | 0.93 |
N2—C4 | 1.349 (3) | C9—C10 | 1.387 (3) |
N2—H2 | 0.86 | C9—H9 | 0.93 |
C1—C2 | 1.496 (3) | C10—H10 | 0.93 |
C2—C3 | 1.388 (3) | ||
N1—Cu1—N1i | 180 | C3—C2—C1 | 135.23 (19) |
N1—Cu1—O1i | 98.56 (6) | C4—C3—C2 | 105.36 (19) |
N1i—Cu1—O1i | 81.44 (6) | C4—C3—H3 | 127.3 |
N1—Cu1—O1 | 81.44 (6) | C2—C3—H3 | 127.3 |
N1i—Cu1—O1 | 98.56 (6) | N2—C4—C3 | 106.56 (18) |
O1i—Cu1—O1 | 180 | N2—C4—C5 | 121.60 (19) |
N1—Cu1—O3 | 87.85 (7) | C3—C4—C5 | 131.8 (2) |
N1i—Cu1—O3 | 92.15 (7) | C6—C5—C10 | 118.6 (2) |
O1i—Cu1—O3 | 91.56 (6) | C6—C5—C4 | 120.2 (2) |
O1—Cu1—O3 | 88.44 (6) | C10—C5—C4 | 121.2 (2) |
C1—O1—Cu1 | 115.29 (13) | C5—C6—C7 | 120.6 (3) |
Cu1—O3—H1W | 107 (2) | C5—C6—H6 | 119.7 |
Cu1—O3—H2W | 110 (2) | C7—C6—H6 | 119.7 |
H1W—O3—H2W | 111 (2) | C8—C7—C6 | 120.1 (3) |
C2—N1—N2 | 106.51 (17) | C8—C7—H7 | 120.0 |
C2—N1—Cu1 | 114.33 (14) | C6—C7—H7 | 120.0 |
N2—N1—Cu1 | 138.77 (14) | C7—C8—C9 | 120.4 (3) |
N1—N2—C4 | 111.41 (17) | C7—C8—H8 | 119.8 |
N1—N2—H2 | 124.3 | C9—C8—H8 | 119.8 |
C4—N2—H2 | 124.3 | C8—C9—C10 | 120.1 (3) |
O2—C1—O1 | 125.27 (19) | C8—C9—H9 | 120.0 |
O2—C1—C2 | 120.58 (19) | C10—C9—H9 | 120.0 |
O1—C1—C2 | 114.14 (18) | C9—C10—C5 | 120.3 (3) |
N1—C2—C3 | 110.16 (18) | C9—C10—H10 | 119.9 |
N1—C2—C1 | 114.60 (18) | C5—C10—H10 | 119.9 |
N1—Cu1—O1—C1 | 2.75 (15) | O1—C1—C2—C3 | 176.1 (2) |
N1i—Cu1—O1—C1 | −177.25 (15) | N1—C2—C3—C4 | 0.0 (2) |
O3—Cu1—O1—C1 | −85.31 (15) | C1—C2—C3—C4 | −178.6 (2) |
O1i—Cu1—N1—C2 | 175.94 (15) | N1—N2—C4—C3 | −0.1 (2) |
O1—Cu1—N1—C2 | −4.06 (15) | N1—N2—C4—C5 | 179.06 (19) |
O3—Cu1—N1—C2 | 84.69 (16) | C2—C3—C4—N2 | 0.1 (2) |
O1i—Cu1—N1—N2 | 4.4 (2) | C2—C3—C4—C5 | −179.0 (2) |
O1—Cu1—N1—N2 | −175.6 (2) | N2—C4—C5—C6 | −167.6 (2) |
O3—Cu1—N1—N2 | −86.8 (2) | C3—C4—C5—C6 | 11.3 (4) |
C2—N1—N2—C4 | 0.1 (2) | N2—C4—C5—C10 | 10.3 (3) |
Cu1—N1—N2—C4 | 172.02 (17) | C3—C4—C5—C10 | −170.8 (2) |
Cu1—O1—C1—O2 | 178.61 (18) | C10—C5—C6—C7 | −0.8 (4) |
Cu1—O1—C1—C2 | −1.0 (2) | C4—C5—C6—C7 | 177.2 (3) |
N2—N1—C2—C3 | 0.0 (2) | C5—C6—C7—C8 | 0.3 (5) |
Cu1—N1—C2—C3 | −174.22 (15) | C6—C7—C8—C9 | 0.2 (5) |
N2—N1—C2—C1 | 178.84 (17) | C7—C8—C9—C10 | −0.1 (5) |
Cu1—N1—C2—C1 | 4.7 (2) | C8—C9—C10—C5 | −0.5 (4) |
O2—C1—C2—N1 | 178.0 (2) | C6—C5—C10—C9 | 0.9 (4) |
O1—C1—C2—N1 | −2.4 (3) | C4—C5—C10—C9 | −177.1 (2) |
O2—C1—C2—C3 | −3.5 (4) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1W···O2ii | 0.83 (3) | 1.88 (3) | 2.679 (3) | 161 (3) |
N2—H2···O3iii | 0.86 | 1.93 | 2.719 (3) | 152 |
O3—H2W···O1iv | 0.83 (3) | 2.04 (3) | 2.773 (3) | 149 (3) |
Symmetry codes: (ii) x, y, z−1; (iii) x+1, y, z; (iv) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H7N2O2)2(H2O)2] |
Mr | 473.92 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 292 |
a, b, c (Å) | 5.0443 (6), 32.161 (4), 6.3234 (8) |
β (°) | 106.293 (1) |
V (Å3) | 984.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.35 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.690, 0.829 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8611, 2254, 1907 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.084, 1.08 |
No. of reflections | 2254 |
No. of parameters | 150 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.32 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.9572 (17) | Cu1—O3 | 2.5400 (19) |
Cu1—O1 | 1.9968 (14) | ||
N1—Cu1—N1i | 180 | N1—Cu1—O3 | 87.85 (7) |
N1—Cu1—O1i | 98.56 (6) | N1i—Cu1—O3 | 92.15 (7) |
N1—Cu1—O1 | 81.44 (6) | O1i—Cu1—O3 | 91.56 (6) |
O1i—Cu1—O1 | 180 | O1—Cu1—O3 | 88.44 (6) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1W···O2ii | 0.83 (3) | 1.88 (3) | 2.679 (3) | 161 (3) |
N2—H2···O3iii | 0.86 | 1.93 | 2.719 (3) | 152 |
O3—H2W···O1iv | 0.83 (3) | 2.04 (3) | 2.773 (3) | 149 (3) |
Symmetry codes: (ii) x, y, z−1; (iii) x+1, y, z; (iv) −x, −y, −z. |
Acknowledgements
The authors thank the Natural Science Foundation of Gui Zhou Province Education Commission (grant No. 2005118) for supporting this work.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crane, J. D., Fox, O. D. & Sinn, E. (1999). J. Chem. Soc. Dalton Trans. pp. 1461–1465. Web of Science CSD CrossRef Google Scholar
Gharbaoui, T., Skinner, P. J., Shin, Y.-J. & Averbuj, C. (2007). Bioorg. Med. Chem. Lett. 17, 4914–4919. Web of Science CrossRef PubMed CAS Google Scholar
Herk, T. V. van, Brussee, J., van den Nieuwendijk, A. M. C. H. & van Klein, P. A. M. (2003). J. Med. Chem. 46, 3945–3951. Web of Science CrossRef PubMed Google Scholar
Knopp, R. H. (1999). N. Engl. J. Med. 341, 498–511. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nicotinic acid as a hypolipidemic agent appears to have good potential to increase HDL cholesterol levels to a greater extent (Knopp, 1999). However, it has severe skin flushing side effect. In the search for novel agonists for nicotinic acid receptor, substituted pyrazole-3-carboxylic acids were found have substantial affinity for cloned G protein-coupled nicotinic acid receptor (van Herk et al., 2003). We report here the crystal structure of the title CuII complex with 5-phenyl-1H-pyrazole-3-carboxylic acid.
The asymmetric unit contains one-half of a formula unit (Fig. 1). The CuII ion occupies an inversion centre and exhibits a distorted octahedral geometry. The phenyl (C5—C10) and pyrazole (N1/N2/C2/C3/C4) rings form a dihedral angle of 11.36 (8)°. The dihedral angle between the Cu1/O1/C1/C2/N1 and N1/N2/C2/C3/C4 planes is 3.8 (1)°.
The molecules are linked into a two-dimensional network parallel to the (0 1 0) plane by O—H···O and N—H···O hydrogen bonds (Table 2).