organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-N′-(2-hy­droxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China
*Correspondence e-mail: lihebing07@163.com

(Received 12 January 2008; accepted 13 January 2008; online 18 January 2008)

The title mol­ecule, C14H11BrN2O2, displays a trans configuration about the C=N and C—N bonds. The dihedral angle between the two benzene rings is 18.5 (3)°. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, the mol­ecules are linked into a chain along the c axis by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Li (2007a[Li, H.-B. (2007a). Acta Cryst. E63, o972-o973.],b[Li, H.-B. (2007b). Acta Cryst. E63, o4246.]); Qian et al. (2006[Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623-o3624.]); Qiu et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o3792-o3793.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]); Zhao (2006[Zhao, L.-F. (2006). Acta Cryst. E62, o3970-o3971.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O2

  • Mr = 319.16

  • Monoclinic, P 21 /c

  • a = 10.9397 (17) Å

  • b = 13.672 (2) Å

  • c = 8.8915 (14) Å

  • β = 95.882 (2)°

  • V = 1322.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 298 (2) K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.436, Tmax = 0.456 (expected range = 0.377–0.394)

  • 7853 measured reflections

  • 3029 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.03

  • 3029 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.93 2.639 (3) 145
N2—H2⋯O2i 0.89 (1) 1.934 (15) 2.806 (3) 165 (4)
C7—H7⋯O2i 0.93 2.45 3.206 (3) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compounds derived from the condensation reaction of aromatic carbaldehydes with hydrazides exhibit a wide range of biological activities and applications (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). Herein the author reports the crystal structure of the title compound.

The bond lengths and bond angles in the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987) and comprable with those observed in similar compounds(Qiu et al., 2006; Yang and Guo, 2006; Yang, 2006). The C7?N1 double bond length of 1.284 (3) Å is comparable with that in other Schiff bases (Li, 2007b; Qian et al., 2006; Zhao, 2006). The C8—N2 bond length of 1.348 (3) Å is intermediate between a C–N single bond and a C?N double bond, because of conjugation. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 18.5 (3)°. The molecule adopts a trans configuration about the C7?N1 and C8–N2 bonds.

There is an intramolecular O1—H1···N1 hydrogen bond (Table 1) in the title molecule, as observed in a similar compound (Li, 2007a). In the crystal structure, the molecules are linked into a chain along the c axis by N—H···O and C—H···O hydrogen bonds (Table 2 and Fig.2).

Related literature top

For related literature, see: Ali et al. (2002); Allen et al. (1987); Cukurovali et al. (2002); Li (2007a,b); Qian et al. (2006); Qiu et al. (2006); Tarafder et al. (2002); Yang (2006); Yang & Guo (2006); Zhao (2006).

Experimental top

Salicylaldehyde (0.1 mmol, 12.2 mg) and 3-bromobenzoic acid hydrazide (0.1 mmol, 21.5 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent over 12 d at room temperature (yield 71.2%). Analysis found: C 52.45, H 3.53, N 8.86%; calculated for C14H11BrN2O2: C 52.69, H 3.47, N 8.78%.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
3-Bromo-N'-(2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H11BrN2O2F(000) = 640
Mr = 319.16Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2541 reflections
a = 10.9397 (17) Åθ = 2.3–25.8°
b = 13.672 (2) ŵ = 3.11 mm1
c = 8.8915 (14) ÅT = 298 K
β = 95.882 (2)°Block, yellow
V = 1322.8 (4) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Radiation source: fine-focus sealed tube1997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1411
Tmin = 0.436, Tmax = 0.456k = 1717
7853 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8938P]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.73 e Å3
1 restraintΔρmin = 0.76 e Å3
Crystal data top
C14H11BrN2O2V = 1322.8 (4) Å3
Mr = 319.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9397 (17) ŵ = 3.11 mm1
b = 13.672 (2) ÅT = 298 K
c = 8.8915 (14) Å0.32 × 0.30 × 0.30 mm
β = 95.882 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1997 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 0.456Rint = 0.022
7853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.73 e Å3
3029 reflectionsΔρmin = 0.76 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84586 (4)0.69664 (2)0.07515 (6)0.07832 (19)
O10.5849 (2)0.09555 (15)0.3004 (2)0.0534 (5)
H10.63050.13420.25160.080*
O20.7840 (2)0.33361 (14)0.1658 (2)0.0481 (5)
N10.7189 (2)0.16000 (16)0.0568 (2)0.0389 (5)
N20.7749 (2)0.23255 (16)0.0345 (3)0.0405 (5)
C10.6433 (2)0.00290 (19)0.0791 (3)0.0368 (6)
C20.5861 (3)0.0088 (2)0.2268 (3)0.0409 (6)
C30.5269 (3)0.0700 (2)0.3001 (4)0.0538 (8)
H30.48820.06200.39740.065*
C40.5246 (3)0.1593 (2)0.2315 (4)0.0587 (9)
H40.48530.21160.28310.070*
C50.5801 (3)0.1726 (2)0.0866 (4)0.0567 (9)
H50.57840.23360.04050.068*
C60.6378 (3)0.0954 (2)0.0110 (4)0.0491 (7)
H60.67400.10430.08730.059*
C70.7039 (3)0.07677 (19)0.0056 (3)0.0398 (6)
H70.73250.06760.10670.048*
C80.8024 (3)0.31817 (18)0.0293 (3)0.0365 (6)
C90.8582 (2)0.39488 (19)0.0755 (3)0.0359 (6)
C100.8331 (3)0.4917 (2)0.0361 (3)0.0416 (7)
H100.78290.50670.05180.050*
C110.8834 (3)0.5656 (2)0.1290 (4)0.0474 (7)
C120.9601 (3)0.5450 (2)0.2575 (4)0.0552 (8)
H120.99430.59540.31840.066*
C130.9855 (3)0.4493 (2)0.2948 (3)0.0572 (9)
H131.03770.43490.38110.069*
C140.9343 (3)0.3738 (2)0.2055 (3)0.0468 (7)
H140.95090.30910.23290.056*
H20.778 (4)0.223 (3)0.1343 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0724 (3)0.03681 (19)0.1239 (4)0.00291 (16)0.0012 (2)0.01230 (19)
O10.0719 (16)0.0428 (11)0.0428 (12)0.0081 (10)0.0072 (10)0.0057 (9)
O20.0717 (14)0.0422 (10)0.0285 (11)0.0023 (10)0.0047 (9)0.0005 (8)
N10.0472 (14)0.0350 (11)0.0338 (12)0.0024 (10)0.0004 (10)0.0045 (10)
N20.0559 (15)0.0350 (11)0.0292 (12)0.0041 (11)0.0022 (11)0.0036 (10)
C10.0382 (15)0.0318 (13)0.0409 (15)0.0024 (11)0.0057 (12)0.0011 (11)
C20.0441 (16)0.0392 (14)0.0397 (16)0.0023 (12)0.0052 (12)0.0023 (12)
C30.060 (2)0.0524 (18)0.0481 (18)0.0130 (15)0.0005 (15)0.0042 (14)
C40.060 (2)0.0435 (16)0.073 (2)0.0143 (15)0.0066 (18)0.0148 (16)
C50.060 (2)0.0345 (15)0.076 (2)0.0035 (14)0.0107 (18)0.0042 (15)
C60.0550 (18)0.0398 (15)0.0517 (18)0.0034 (13)0.0019 (14)0.0053 (13)
C70.0452 (16)0.0388 (14)0.0342 (15)0.0032 (12)0.0013 (12)0.0013 (11)
C80.0428 (16)0.0359 (14)0.0301 (15)0.0035 (11)0.0008 (11)0.0004 (11)
C90.0397 (15)0.0373 (14)0.0304 (14)0.0036 (11)0.0028 (11)0.0023 (11)
C100.0437 (16)0.0390 (15)0.0410 (16)0.0004 (12)0.0012 (12)0.0042 (12)
C110.0468 (17)0.0357 (14)0.061 (2)0.0029 (12)0.0098 (15)0.0069 (13)
C120.063 (2)0.0560 (19)0.0470 (19)0.0200 (16)0.0056 (16)0.0149 (15)
C130.066 (2)0.067 (2)0.0364 (17)0.0203 (17)0.0083 (15)0.0003 (15)
C140.0564 (19)0.0464 (16)0.0358 (16)0.0079 (14)0.0036 (14)0.0043 (12)
Geometric parameters (Å, º) top
Br1—C111.889 (3)C5—C61.371 (4)
O1—C21.354 (3)C5—H50.93
O1—H10.82C6—H60.93
O2—C81.228 (3)C7—H70.93
N1—C71.284 (3)C8—C91.491 (4)
N1—N21.384 (3)C9—C141.384 (4)
N2—C81.348 (3)C9—C101.390 (4)
N2—H20.89 (1)C10—C111.383 (4)
C1—C21.404 (4)C10—H100.93
C1—C61.406 (4)C11—C121.376 (5)
C1—C71.446 (4)C12—C131.372 (5)
C2—C31.385 (4)C12—H120.93
C3—C41.367 (5)C13—C141.385 (4)
C3—H30.93C13—H130.93
C4—C51.379 (5)C14—H140.93
C4—H40.93
C2—O1—H1109.5N1—C7—H7119.5
C7—N1—N2116.7 (2)C1—C7—H7119.5
C8—N2—N1118.6 (2)O2—C8—N2123.0 (2)
C8—N2—H2124 (3)O2—C8—C9120.8 (2)
N1—N2—H2117 (3)N2—C8—C9116.3 (2)
C2—C1—C6118.1 (3)C14—C9—C10119.7 (3)
C2—C1—C7122.5 (2)C14—C9—C8123.2 (2)
C6—C1—C7119.4 (3)C10—C9—C8117.0 (2)
O1—C2—C3118.2 (3)C11—C10—C9119.2 (3)
O1—C2—C1122.2 (2)C11—C10—H10120.4
C3—C2—C1119.5 (3)C9—C10—H10120.4
C4—C3—C2121.0 (3)C12—C11—C10121.3 (3)
C4—C3—H3119.5C12—C11—Br1120.1 (2)
C2—C3—H3119.5C10—C11—Br1118.6 (2)
C3—C4—C5120.5 (3)C13—C12—C11119.1 (3)
C3—C4—H4119.7C13—C12—H12120.5
C5—C4—H4119.7C11—C12—H12120.5
C6—C5—C4119.5 (3)C12—C13—C14120.9 (3)
C6—C5—H5120.2C12—C13—H13119.6
C4—C5—H5120.2C14—C13—H13119.6
C5—C6—C1121.3 (3)C9—C14—C13119.8 (3)
C5—C6—H6119.3C9—C14—H14120.1
C1—C6—H6119.3C13—C14—H14120.1
N1—C7—C1121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.639 (3)145
N2—H2···O2i0.89 (1)1.93 (2)2.806 (3)165 (4)
C7—H7···O2i0.932.453.206 (3)139
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O2
Mr319.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9397 (17), 13.672 (2), 8.8915 (14)
β (°) 95.882 (2)
V3)1322.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.436, 0.456
No. of measured, independent and
observed [I > 2σ(I)] reflections
7853, 3029, 1997
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.03
No. of reflections3029
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.76

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.639 (3)145
N2—H2···O2i0.89 (1)1.934 (15)2.806 (3)165 (4)
C7—H7···O2i0.932.453.206 (3)139
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges a research grant from Xiangnan University.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationLi, H.-B. (2007a). Acta Cryst. E63, o972–o973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-B. (2007b). Acta Cryst. E63, o4246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623–o3624.  CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L.-F. (2006). Acta Cryst. E62, o3970–o3971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds