organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-amino-1-cyclo­propyl-6-fluoro-8-meth­­oxy-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ate monohydrate

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: lingling.weng@yahoo.com.cn

(Received 17 January 2008; accepted 23 January 2008; online 30 January 2008)

In the title compound, C16H17FN2O4·H2O, the dihedral angle between the heterocyclic ring and the benzene ring is 5.77 (9)°, that between the heterocycle and the ethoxy­carbonyl plane is 15.5 (1)°, and that between the heterocyclic ring and the cyclopropane ring is 67.75 (13)°. In the crystal structure, mol­ecules are linked into a ribbon-like structure along the c axis by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Fujita & Chiba (1998[Fujita, M. & Chiba, K. (1998). Chem. Pharm. Bull. 46, 631-638.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17FN2O4·H2O

  • Mr = 338.33

  • Monoclinic, P 21 /n

  • a = 10.096 (4) Å

  • b = 14.699 (5) Å

  • c = 11.028 (6) Å

  • β = 94.26 (4)°

  • V = 1632.0 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 (2) K

  • 0.45 × 0.42 × 0.39 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3157 measured reflections

  • 3009 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 300 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.04

  • 3009 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.91 (3) 2.15 (3) 2.930 (3) 143 (2)
N1—H2N1⋯O4ii 0.85 (3) 2.33 (3) 3.061 (3) 144 (2)
O1W—H1W⋯O2iii 0.84 (3) 2.13 (3) 2.916 (3) 155 (3)
O1W—H2W⋯O2 0.91 (3) 1.96 (3) 2.864 (3) 171 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meeting Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolone antibacterials were found several decades ago, and some excellent antibacterials have been developed and used widely now (Fujita & Chiba, 1998). An interest in search of more potent antibacterial agents led us to design and synthesis a new type of quinoline derivatives. The title compound is one of the key intermediates and we report here its crystal structure.

The pyridinone ring is planar to within ±0.057 (2) Å (Fig. 1). The dihedral angle between the pyridine and benzene rings is 5.77 (9)°, and that between the pyridine and carboxylate plane is 15.5 (1)°. In the crystal structure, the molecules are linked into a ribbon like structure along the c axis (Fig. 2) by N—H···O and O—H···O hydrogen bonds (Table 1).

Related literature top

For general background, see: Fujita & Chiba (1998).

Experimental top

Ethyl 7-azido-1-cyclopropyl-6-fluoro-8-methoxyl-4-oxo-1,4-dihydroquinoline-3- carboxylate (2 g, 5.8 mmol), 5% Pd/C (0.4 g) were suspended in methanol (20 ml) and the mixture was hydrogenated at 303 K for 6 h. The reaction mixture was then filtered and concentrated under vacuum. The residue obtained was purified by silica gel chromatography. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a acetyl acetate-chloroform (1.2:1 v/v) solution at room temperature.

Refinement top

The water H atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were placed in the calculated positions [C—H = 0.93 (aromatic) and 0.96 Å (methyl)] and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(aromatic-C) and 1.5Ueq(methyl-C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound, viwed down the a axis. Hydrogen bonds are shown as dashed lines.
Ethyl 7-amino-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline- 3-carboxylate monohydrate top
Crystal data top
C16H17FN2O4·H2OF(000) = 712
Mr = 338.33Dx = 1.377 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24 reflections
a = 10.096 (4) Åθ = 4.5–7.4°
b = 14.699 (5) ŵ = 0.11 mm1
c = 11.028 (6) ÅT = 291 K
β = 94.26 (4)°Block, yellow
V = 1632.0 (12) Å30.45 × 0.42 × 0.39 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 2.3°
Graphite monochromatorh = 1212
ω/2θ scansk = 017
3157 measured reflectionsl = 413
3009 independent reflections3 standard reflections every 300 reflections
1741 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.1314P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H17FN2O4·H2OV = 1632.0 (12) Å3
Mr = 338.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.096 (4) ŵ = 0.11 mm1
b = 14.699 (5) ÅT = 291 K
c = 11.028 (6) Å0.45 × 0.42 × 0.39 mm
β = 94.26 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
3157 measured reflections3 standard reflections every 300 reflections
3009 independent reflections intensity decay: 0.8%
1741 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3009 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.51891 (13)0.59935 (11)1.01305 (12)0.0667 (4)
O10.07128 (14)0.68291 (10)1.03507 (12)0.0451 (4)
O20.33328 (14)0.56826 (12)0.58213 (13)0.0519 (4)
O30.04405 (16)0.62649 (11)0.41364 (13)0.0552 (5)
O40.16963 (18)0.62837 (18)0.37733 (15)0.1007 (9)
N10.3174 (3)0.65375 (16)1.14712 (18)0.0514 (5)
H1N10.385 (3)0.6210 (17)1.184 (2)0.068 (9)*
H2N10.248 (3)0.6504 (18)1.186 (2)0.071 (9)*
N20.01966 (16)0.64366 (12)0.77689 (13)0.0374 (4)
C10.3794 (2)0.59542 (15)0.83243 (19)0.0436 (5)
H10.45070.57740.78940.052*
C20.3970 (2)0.61005 (15)0.95442 (19)0.0433 (5)
C30.2938 (2)0.63708 (14)1.02489 (17)0.0397 (5)
C40.1693 (2)0.65127 (13)0.96495 (17)0.0352 (5)
C50.1457 (2)0.63418 (13)0.83915 (17)0.0333 (5)
C60.2533 (2)0.60753 (13)0.77155 (17)0.0358 (5)
C70.0710 (3)0.78037 (18)1.0445 (3)0.0786 (9)
H7A0.15640.80081.07780.118*
H7B0.00410.79901.09680.118*
H7C0.05230.80640.96530.118*
C80.2389 (2)0.59719 (14)0.63888 (17)0.0378 (5)
C90.1107 (2)0.62227 (14)0.58234 (17)0.0401 (5)
C100.0092 (2)0.64129 (14)0.65419 (17)0.0397 (5)
H100.07380.65360.61520.048*
C110.1031 (2)0.65083 (17)0.83913 (18)0.0449 (6)
H110.12330.71090.87160.054*
C120.2192 (2)0.5947 (2)0.7935 (2)0.0723 (9)
H12A0.20860.55540.72420.087*
H12B0.30700.62080.79710.087*
C130.1436 (2)0.5712 (2)0.9108 (2)0.0627 (7)
H13A0.18570.58300.98540.075*
H13B0.08730.51770.91260.075*
C140.0853 (2)0.62535 (17)0.44863 (19)0.0508 (6)
C150.0802 (3)0.6314 (2)0.28436 (19)0.0693 (8)
H15A0.05280.57630.24490.083*
H15B0.03600.68260.24930.083*
C160.2257 (2)0.64228 (17)0.2653 (2)0.0589 (7)
H16A0.26870.59040.29790.088*
H16B0.25060.64710.17980.088*
H16C0.25230.69640.30580.088*
O1W0.5509 (2)0.44950 (16)0.65115 (16)0.0715 (6)
H1W0.606 (3)0.446 (2)0.598 (3)0.091 (11)*
H2W0.486 (3)0.488 (2)0.621 (3)0.097 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0396 (8)0.1032 (12)0.0559 (8)0.0081 (7)0.0058 (6)0.0147 (8)
O10.0457 (9)0.0567 (10)0.0346 (7)0.0092 (8)0.0143 (6)0.0021 (7)
O20.0422 (9)0.0766 (11)0.0388 (8)0.0138 (8)0.0163 (7)0.0026 (7)
O30.0469 (10)0.0891 (13)0.0303 (8)0.0030 (9)0.0083 (7)0.0013 (7)
O40.0523 (12)0.215 (3)0.0373 (10)0.0254 (13)0.0193 (9)0.0150 (12)
N10.0482 (13)0.0683 (15)0.0378 (11)0.0021 (11)0.0036 (10)0.0036 (10)
N20.0332 (10)0.0504 (11)0.0298 (9)0.0072 (8)0.0109 (7)0.0037 (7)
C10.0340 (12)0.0527 (14)0.0451 (13)0.0016 (10)0.0109 (10)0.0051 (10)
C20.0337 (12)0.0528 (14)0.0428 (12)0.0019 (10)0.0008 (10)0.0034 (10)
C30.0449 (13)0.0402 (12)0.0344 (11)0.0043 (10)0.0063 (9)0.0002 (9)
C40.0364 (12)0.0368 (11)0.0340 (10)0.0013 (9)0.0121 (9)0.0001 (9)
C50.0331 (11)0.0336 (11)0.0341 (10)0.0011 (9)0.0075 (8)0.0031 (8)
C60.0337 (12)0.0373 (12)0.0373 (11)0.0026 (9)0.0085 (9)0.0001 (8)
C70.097 (2)0.0622 (18)0.0805 (19)0.0211 (17)0.0311 (17)0.0148 (15)
C80.0384 (12)0.0414 (12)0.0355 (11)0.0007 (10)0.0145 (9)0.0008 (9)
C90.0378 (12)0.0518 (14)0.0315 (11)0.0038 (10)0.0093 (9)0.0018 (9)
C100.0350 (12)0.0519 (14)0.0327 (10)0.0079 (10)0.0069 (9)0.0078 (9)
C110.0320 (12)0.0659 (15)0.0385 (11)0.0082 (11)0.0129 (9)0.0041 (10)
C120.0403 (15)0.130 (3)0.0480 (14)0.0086 (15)0.0124 (12)0.0057 (15)
C130.0492 (15)0.094 (2)0.0469 (13)0.0127 (14)0.0168 (11)0.0119 (13)
C140.0444 (14)0.0763 (17)0.0331 (11)0.0094 (12)0.0123 (10)0.0023 (11)
C150.0627 (18)0.114 (2)0.0311 (12)0.0122 (16)0.0048 (12)0.0030 (13)
C160.0602 (17)0.0649 (17)0.0508 (14)0.0107 (13)0.0012 (12)0.0041 (12)
O1W0.0600 (13)0.1157 (18)0.0396 (9)0.0301 (12)0.0077 (9)0.0035 (10)
Geometric parameters (Å, º) top
F1—C21.356 (2)C7—H7B0.96
O1—C41.381 (2)C7—H7C0.96
O1—C71.436 (3)C8—C91.442 (3)
O2—C81.252 (2)C9—C101.371 (3)
O3—C141.334 (3)C9—C141.479 (3)
O3—C151.447 (3)C10—H100.93
O4—C141.202 (3)C11—C131.486 (3)
N1—C31.373 (3)C11—C121.490 (3)
N1—H1N10.91 (3)C11—H110.98
N1—H2N10.85 (3)C12—C131.492 (4)
N2—C101.350 (2)C12—H12A0.97
N2—C51.408 (3)C12—H12B0.97
N2—C111.465 (3)C13—H13A0.97
C1—C21.361 (3)C13—H13B0.97
C1—C61.405 (3)C15—C161.477 (3)
C1—H10.9300C15—H15A0.97
C2—C31.403 (3)C15—H15B0.97
C3—C41.391 (3)C16—H16A0.96
C4—C51.413 (3)C16—H16B0.96
C5—C61.418 (3)C16—H16C0.96
C6—C81.467 (3)O1W—H1W0.84 (3)
C7—H7A0.96O1W—H2W0.91 (3)
C4—O1—C7112.45 (17)N2—C10—C9125.34 (19)
C14—O3—C15117.11 (18)N2—C10—H10117.3
C3—N1—H1N1114.2 (16)C9—C10—H10117.3
C3—N1—H2N1113.3 (18)N2—C11—C13117.9 (2)
H1N1—N1—H2N1112 (2)N2—C11—C12118.3 (2)
C10—N2—C5119.16 (17)C13—C11—C1260.20 (17)
C10—N2—C11117.75 (17)N2—C11—H11116.3
C5—N2—C11123.00 (15)C13—C11—H11116.3
C2—C1—C6119.99 (19)C12—C11—H11116.3
C2—C1—H1120.0C11—C12—C1359.79 (16)
C6—C1—H1120.0C11—C12—H12A117.8
F1—C2—C1120.05 (19)C13—C12—H12A117.8
F1—C2—C3117.01 (18)C11—C12—H12B117.8
C1—C2—C3122.9 (2)C13—C12—H12B117.8
N1—C3—C4121.6 (2)H12A—C12—H12B114.9
N1—C3—C2120.8 (2)C11—C13—C1260.01 (16)
C4—C3—C2117.47 (18)C11—C13—H13A117.8
O1—C4—C3116.36 (17)C12—C13—H13A117.8
O1—C4—C5122.29 (18)C11—C13—H13B117.8
C3—C4—C5121.36 (18)C12—C13—H13B117.8
N2—C5—C4122.81 (18)H13A—C13—H13B114.9
N2—C5—C6118.12 (17)O4—C14—O3122.4 (2)
C4—C5—C6119.06 (18)O4—C14—C9125.0 (2)
C1—C6—C5119.07 (18)O3—C14—C9112.52 (18)
C1—C6—C8118.85 (18)O3—C15—C16108.7 (2)
C5—C6—C8121.99 (18)O3—C15—H15A109.9
O1—C7—H7A109.5C16—C15—H15A109.9
O1—C7—H7B109.5O3—C15—H15B109.9
H7A—C7—H7B109.5C16—C15—H15B109.9
O1—C7—H7C109.5H15A—C15—H15B108.3
H7A—C7—H7C109.5C15—C16—H16A109.5
H7B—C7—H7C109.5C15—C16—H16B109.5
O2—C8—C9124.20 (18)H16A—C16—H16B109.5
O2—C8—C6120.70 (19)C15—C16—H16C109.5
C9—C8—C6115.09 (17)H16A—C16—H16C109.5
C10—C9—C8119.22 (18)H16B—C16—H16C109.5
C10—C9—C14119.2 (2)H1W—O1W—H2W107 (3)
C8—C9—C14121.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.91 (3)2.15 (3)2.930 (3)143 (2)
N1—H2N1···O4ii0.85 (3)2.33 (3)3.061 (3)144 (2)
O1W—H1W···O2iii0.84 (3)2.13 (3)2.916 (3)155 (3)
O1W—H2W···O20.91 (3)1.96 (3)2.864 (3)171 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17FN2O4·H2O
Mr338.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)10.096 (4), 14.699 (5), 11.028 (6)
β (°) 94.26 (4)
V3)1632.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.42 × 0.39
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3157, 3009, 1741
Rint0.007
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.04
No. of reflections3009
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.91 (3)2.15 (3)2.930 (3)143 (2)
N1—H2N1···O4ii0.85 (3)2.33 (3)3.061 (3)144 (2)
O1W—H1W···O2iii0.84 (3)2.13 (3)2.916 (3)155 (3)
O1W—H2W···O20.91 (3)1.96 (3)2.864 (3)171 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujita, M. & Chiba, K. (1998). Chem. Pharm. Bull. 46, 631–638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meeting Abstract PA 104.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds