organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-2,4-Di­chloro­benzyl­­idene]-1-methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 18 January 2008; accepted 22 January 2008; online 25 January 2008)

The piperidine ring of the title compound, C13H13Cl2NO, adopts an envelope conformation. Inter­molecular C—H⋯O inter­actions link the mol­ecules into a C(7) chain running along the b axis.

Related literature

For biological activities of 4-piperidones, see: Badorrey et al. (1999[Badorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601-7612.]); Grishina et al. (1994[Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd. 30, 401-1426.]); Nalanishi et al. (1974a[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974a). Jpn Patent 74-03987.],b[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974b). Chem. Abstr. 81, 12085.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13Cl2NO

  • Mr = 270.14

  • Monoclinic, P 21 /n

  • a = 12.2013 (9) Å

  • b = 8.5901 (6) Å

  • c = 12.6391 (9) Å

  • β = 92.997 (1)°

  • V = 1322.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 (2) K

  • 0.24 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 14377 measured reflections

  • 3071 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 0.97

  • 3071 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.46 3.366 (2) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Synthesis of 4-piperidones is of current interest due to their potential medical applications (Grishina et al., 1994). 4-Piperidones have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974a,b). Various piperidones and piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). As the title compound is of biological significance, the crystal structure of the title compound has been determined by X-ray diffraction.

The sum of the bond angles around atom N1 (330 °) indicates sp3hybridization. Atoms Cl1 and Cl2 deviate from the plane of the attached benzene ring by 0.075 (1) and -0.094 (1) Å, respectively. The piperidine ring adopts an envelope conformation, with puckering parameters (Cremer & Pople, 1975) and smallest displacement asymmetry parameters (Nardelli, 1983) of Q = 0.504 (2) Å, θ = 141.1 (2)°, ϕ = 193.7 (4)° and ΔCs[N1] = 8.7 (2)°.

In the crystal structure, the C—H···O intermolecular interactions generate a C(7) chain running along the b axis.

Related literature top

For biological activities of 4-piperidones, see: Badorrey et al. (1999); Grishina et al. (1994); Nalanishi et al. (1974a,b). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of 1-methyl-4-piperidone (1 mmol) and pyrrolidine (1.2 mmol) was taken in a glass tube, mixed well and kept aside for 5 min at ambient temperature. To this mixture, 2,4-dichlorobenzaldehyde (1 mmol) was added, mixed thoroughly and the tube containing the mixture was partially immersed in a silica bath placed in a microwave oven and irradiated at 4 power level for 7 minutes. The progress of the reaction was monitored after every 1 min of irradiation by TLC with petroleum ether:ethyl acetate (1:2 v/v mixture) as eluent. fter each irradiation, the reaction mixture was cooled to room temperature and mixed well. The maximum temperature of the silica bath, measured immediately after each irradiation was over by stirring the silica bath with the thermometer, was found to be 338 K. After completion of the reaction as evident from the TLC, the product was purified by column chromatography using petroleum ether:ethyl acetate (7:2 v/v) mixture and crystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing in the title compound, viewed approximately down the a axis.
3-[(E)-2,4-Dichlorobenzylidene]-1-methylpiperidin-4-one top
Crystal data top
C13H13Cl2NOF(000) = 560
Mr = 270.14Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1509 reflections
a = 12.2013 (9) Åθ = 2.3–25.0°
b = 8.5901 (6) ŵ = 0.47 mm1
c = 12.6391 (9) ÅT = 293 K
β = 92.997 (1)°Block, pale yellow
V = 1322.90 (16) Å30.24 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.1°, θmin = 2.3°
ω scansh = 1515
14377 measured reflectionsk = 1011
3071 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.3356P]
where P = (Fo2 + 2Fc2)/3
3071 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H13Cl2NOV = 1322.90 (16) Å3
Mr = 270.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2013 (9) ŵ = 0.47 mm1
b = 8.5901 (6) ÅT = 293 K
c = 12.6391 (9) Å0.24 × 0.23 × 0.20 mm
β = 92.997 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2654 reflections with I > 2σ(I)
14377 measured reflectionsRint = 0.019
3071 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.97Δρmax = 0.34 e Å3
3071 reflectionsΔρmin = 0.28 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53390 (18)0.5088 (2)1.24853 (18)0.0781 (5)
H1A0.55180.50791.17550.117*
H1B0.59660.54211.29170.117*
H1C0.47400.57921.25760.117*
C20.47091 (17)0.3512 (2)1.38999 (14)0.0700 (5)
H2A0.40380.41041.39590.084*
H2B0.52800.40041.43460.084*
C30.4536 (2)0.1860 (3)1.42729 (13)0.0791 (6)
H3A0.52480.13741.44030.095*
H3B0.41820.18961.49420.095*
C40.38604 (15)0.0855 (2)1.35183 (13)0.0660 (5)
C50.37681 (12)0.1336 (2)1.23733 (11)0.0524 (3)
C60.41053 (13)0.29745 (19)1.21048 (12)0.0532 (3)
H6A0.43170.30081.13760.064*
H6B0.34840.36671.21680.064*
C70.34326 (12)0.0240 (2)1.16663 (12)0.0545 (4)
H70.32570.07281.19390.065*
C80.33134 (11)0.04126 (18)1.05058 (11)0.0486 (3)
C90.35991 (12)0.08015 (17)0.98306 (12)0.0489 (3)
C100.35760 (12)0.06504 (17)0.87383 (12)0.0496 (3)
H100.37910.14650.83110.059*
C110.32225 (13)0.07535 (18)0.83036 (11)0.0500 (3)
C120.28628 (14)0.19534 (19)0.89226 (13)0.0565 (4)
H120.25920.28670.86130.068*
C130.29116 (13)0.17732 (19)1.00152 (13)0.0557 (4)
H130.26700.25811.04340.067*
N10.50222 (11)0.35202 (16)1.28025 (10)0.0539 (3)
O10.34393 (15)0.0325 (2)1.38258 (12)0.1014 (6)
Cl10.40318 (5)0.25836 (5)1.03652 (4)0.07721 (18)
Cl20.32208 (5)0.09909 (5)0.69335 (3)0.07158 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0843 (13)0.0546 (10)0.0934 (14)0.0057 (9)0.0158 (11)0.0027 (10)
C20.0752 (11)0.0799 (12)0.0544 (9)0.0079 (9)0.0035 (8)0.0182 (9)
C30.0949 (14)0.1009 (15)0.0412 (8)0.0155 (12)0.0012 (8)0.0010 (9)
C40.0617 (9)0.0896 (13)0.0472 (8)0.0133 (9)0.0065 (7)0.0089 (8)
C50.0465 (7)0.0672 (9)0.0437 (7)0.0049 (6)0.0037 (6)0.0033 (6)
C60.0523 (8)0.0595 (9)0.0475 (7)0.0023 (7)0.0001 (6)0.0007 (7)
C70.0509 (8)0.0625 (9)0.0501 (8)0.0084 (7)0.0038 (6)0.0046 (7)
C80.0424 (7)0.0541 (8)0.0493 (7)0.0043 (6)0.0011 (5)0.0007 (6)
C90.0473 (7)0.0448 (7)0.0543 (8)0.0020 (6)0.0011 (6)0.0045 (6)
C100.0512 (7)0.0460 (7)0.0513 (8)0.0012 (6)0.0016 (6)0.0035 (6)
C110.0535 (8)0.0504 (7)0.0455 (7)0.0036 (6)0.0018 (6)0.0003 (6)
C120.0639 (9)0.0483 (8)0.0563 (8)0.0069 (7)0.0084 (7)0.0006 (7)
C130.0561 (8)0.0555 (8)0.0549 (8)0.0071 (7)0.0032 (6)0.0090 (7)
N10.0546 (7)0.0524 (7)0.0540 (7)0.0017 (5)0.0029 (5)0.0036 (5)
O10.1116 (12)0.1262 (13)0.0654 (8)0.0543 (11)0.0048 (8)0.0325 (9)
Cl10.1059 (4)0.0545 (3)0.0708 (3)0.0144 (2)0.0005 (3)0.01340 (19)
Cl20.1041 (4)0.0622 (3)0.0482 (2)0.0037 (2)0.0024 (2)0.00406 (17)
Geometric parameters (Å, º) top
C1—N11.463 (2)C6—H6A0.97
C1—H1A0.96C6—H6B0.97
C1—H1B0.96C7—C81.474 (2)
C1—H1C0.96C7—H70.93
C2—N11.458 (2)C8—C131.400 (2)
C2—C31.514 (3)C8—C91.403 (2)
C2—H2A0.97C9—C101.385 (2)
C2—H2B0.97C9—Cl11.7440 (15)
C3—C41.501 (3)C10—C111.385 (2)
C3—H3A0.97C10—H100.93
C3—H3B0.97C11—C121.380 (2)
C4—O11.209 (2)C11—Cl21.7435 (15)
C4—C51.504 (2)C12—C131.388 (2)
C5—C71.346 (2)C12—H120.93
C5—C61.510 (2)C13—H130.93
C6—N11.465 (2)
N1—C1—H1A109.5N1—C6—H6B109.3
N1—C1—H1B109.5C5—C6—H6B109.3
H1A—C1—H1B109.5H6A—C6—H6B107.9
N1—C1—H1C109.5C5—C7—C8126.95 (15)
H1A—C1—H1C109.5C5—C7—H7116.5
H1B—C1—H1C109.5C8—C7—H7116.5
N1—C2—C3110.39 (15)C13—C8—C9116.34 (13)
N1—C2—H2A109.6C13—C8—C7122.59 (14)
C3—C2—H2A109.6C9—C8—C7121.07 (14)
N1—C2—H2B109.6C10—C9—C8122.94 (13)
C3—C2—H2B109.6C10—C9—Cl1117.27 (11)
H2A—C2—H2B108.1C8—C9—Cl1119.78 (12)
C4—C3—C2114.99 (16)C11—C10—C9117.82 (13)
C4—C3—H3A108.5C11—C10—H10121.1
C2—C3—H3A108.5C9—C10—H10121.1
C4—C3—H3B108.5C12—C11—C10121.83 (14)
C2—C3—H3B108.5C12—C11—Cl2119.47 (12)
H3A—C3—H3B107.5C10—C11—Cl2118.69 (12)
O1—C4—C5121.85 (17)C11—C12—C13118.85 (15)
O1—C4—C3120.41 (16)C11—C12—H12120.6
C5—C4—C3117.69 (16)C13—C12—H12120.6
C7—C5—C4116.86 (16)C12—C13—C8121.99 (14)
C7—C5—C6125.39 (14)C12—C13—H13119.0
C4—C5—C6117.70 (14)C8—C13—H13119.0
N1—C6—C5111.81 (13)C1—N1—C2110.56 (15)
N1—C6—H6A109.3C1—N1—C6109.51 (14)
C5—C6—H6A109.3C2—N1—C6109.96 (13)
N1—C2—C3—C446.3 (2)C13—C8—C9—Cl1176.27 (11)
C2—C3—C4—O1161.3 (2)C7—C8—C9—Cl13.54 (19)
C2—C3—C4—C521.1 (3)C8—C9—C10—C112.0 (2)
O1—C4—C5—C715.5 (3)Cl1—C9—C10—C11179.32 (11)
C3—C4—C5—C7162.09 (18)C9—C10—C11—C122.4 (2)
O1—C4—C5—C6167.14 (19)C9—C10—C11—Cl2178.30 (11)
C3—C4—C5—C615.2 (2)C10—C11—C12—C133.4 (2)
C7—C5—C6—N1142.95 (16)Cl2—C11—C12—C13177.33 (13)
C4—C5—C6—N134.12 (19)C11—C12—C13—C80.0 (2)
C4—C5—C7—C8177.87 (14)C9—C8—C13—C124.0 (2)
C6—C5—C7—C80.8 (3)C7—C8—C13—C12176.22 (14)
C5—C7—C8—C1338.6 (2)C3—C2—N1—C1172.10 (17)
C5—C7—C8—C9141.58 (17)C3—C2—N1—C666.9 (2)
C13—C8—C9—C105.0 (2)C5—C6—N1—C1178.07 (14)
C7—C8—C9—C10175.16 (13)C5—C6—N1—C260.26 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.463.366 (2)163
Symmetry code: (i) x+1/2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC13H13Cl2NO
Mr270.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.2013 (9), 8.5901 (6), 12.6391 (9)
β (°) 92.997 (1)
V3)1322.90 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.24 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14377, 3071, 2654
Rint0.019
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 0.97
No. of reflections3071
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.463.366 (2)163
Symmetry code: (i) x+1/2, y+1/2, z+5/2.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationBadorrey, R., Cativiela, C., Díaz-de-Villegas, M. D. & Gálvez, J. A. (1999). Tetrahedron, 55, 7601–7612.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGrishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd. 30, 401–1426.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974a). Jpn Patent 74-03987.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974b). Chem. Abstr. 81, 12085.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds