metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m416-m417

Bis[benzyl N′-(3-phenyl­prop-2-enyl­­idene)hydrazinecarbodi­thio­ato-κ2N′,S]copper(II)

aDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, bDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6205, Bangladesh, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 18 January 2008; accepted 22 January 2008; online 25 January 2008)

The CuII atom of the title complex, [Cu(C17H15N2S2)2], lies on a twofold rotation axis, and is in a distorted tetra­hedral geometry with the two bidentate N2S2 Schiff bases. In the crystal structure, the mol­ecules are inter­connected into chains along the c axis by weak C—H⋯S inter­molecular inter­actions. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the synthesis and structures of S-benzyl­dithio­carbaza­tes, see: Ali & Tarafder (1977[Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785-1788.]); Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236-1237.]). For related CuII complexes, see: Ali et al. (2008[Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71-79.]); Castiñeiras et al. (1998[Castiñeiras, A., Bermejo, E., West, D. X., El-Sawaf, A. K. & Swearingen, K. (1998). Polyhedron, 17, 2751-2757.]); Goswami & Eichhorn (2000[Goswami, N. & Eichhorn, M. (2000). Inorg. Chim. Acta, 303, 271-276.]). For bioactivities of S-benzyl­dithio­carbazate metal complexes, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & Manaf, A. (2002). J. Inorg. Biochem. 92, 141-148.], 2008[Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71-79.]); Tarafder et al. (2001[Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363-2370.], 2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H15N2S2)2]

  • Mr = 686.45

  • Orthorhombic, P b c n

  • a = 36.1410 (7) Å

  • b = 9.9372 (2) Å

  • c = 8.7598 (2) Å

  • V = 3146.00 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.29 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.603, Tmax = 0.906

  • 84850 measured reflections

  • 6922 independent reflections

  • 5675 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.083

  • S = 1.04

  • 6922 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0663 (10)
Cu1—S1 2.2649 (3)
N1i—Cu1—N1 104.29 (5)
N1—Cu1—S1i 86.94 (3)
N1—Cu1—S1 121.90 (3)
S1i—Cu1—S1 134.452 (19)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯S2ii 0.93 2.76 3.6698 (15) 167
C11—H11ACg1iii 0.97 2.98 3.5806 (14) 121
Symmetry codes: (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Synthesis (Ali & Tarafder, 1977) and crystal structure (Shanmuga Sundara Raj et al., 2000) of S-benzyldithiocarbazate (SBDTC) have been reported. We have been greatly involved in the chemistry of Schiff bases derived from SBDTC, and also on their metal complexes because of their interesting physico-chemical properties and potentially useful biological activities (Ali et al., 2002, 2008; Tarafder et al., 2001, 2002). In continuation of our interests, we report herein the syntheses of the cinnamaldehyde Schiff base of SBDTC and its copper complex, along with the x-ray structural analysis of the four-coordinated CuII complex.

The CuII atom of the title complex, lies on a twofold rotation axis and the asymmetric unit therefore contains one-half of a molecule (Fig. 1). Based on other thiosemicarbazones (Ali et al., 2002; Tarafder et al., 2001, 2002), the coordination mode of the CuII complex is as expected, i.e bis-chelated through the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The CuII center is in a distorted tetrahedral geometry with the N2S2 donor atoms of the two Schiff base ligands (Fig. 1). Both nitrogen atoms (N1 and N1A) and sulfur atoms (S1 and S1A) from the two ligands are coordinated at opposite positions. The N—Cu—N and S—Cu—S bond angles are 104.29 (5)° and 134.452 (14)°, respectively, and reflective of the elongation of the Cu—S bond length [ca 0.19 Å] over the Cu—N bond length. The Cu1—N1 and Cu1—S1 distances of 2.0663 (10) Å and 2.2648 (3) Å, respectively, are in the same range as those in other four coordination CuII complexes of the related Schiff base ligands (Ali et al., 2008; Castiñeiras et al., 1998; Goswami & Eichhorn, 2000). The CuII-bidentate rings are slightly non-planar. The Cu1—S1—N1A—N2A—C10 ring has a maximum deviation of 0.085 (1) Å for the N1A atom. The mean plane of the propenyl moiety (C7/C8/C9) makes a dihedral angle of 12.15 (9)° with mean plane of the attached C1–C6 benzene ring. The dihedral angle between the C1–C6 and C12–C17 phenyl rings of the two ligands is 8.73 (7)°. Bond lengths and angles observed in the Schiff base ligand are of normal values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are interconnected by weak C—H···S intermolecular interactions (Table 1) into chains along the c axis. The crystal structure is further stabilized by C—H···π interactions (Table 2) involving the C1—C6 benzene ring (centroid Cg1).

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthesis and structures of S-benzyldithiocarbazates, see: Ali & Tarafder (1977); Shanmuga Sundara Raj et al. (2000). For related CuII complexes, see: Ali et al. (2008); Castiñeiras et al. (1998); Goswami & Eichhorn (2000). For bioactivities of S-benzyldithiocarbazate metal complexes, see: Ali et al. (2002, 2008); Tarafder et al. (2001, 2002).

Experimental top

The Schiff base ligand was prepared by adding cinamaldehyde (1.32 g, 10 mmol) to a hot solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (40 ml), as reported previously (Ali & Tarafder, 1977). The mixture was refluxed for 10 min. The yellow precipitate which formed was isolated and washed with hot ethanol. The yellow solid product was recrystallized from absolute ethanol (yield: 1.52 g, 46%). The copper complex was synthesized by adding the copper nitrate trihydrate (0.31 g, 0.5 mmol) in ethanol (10 ml) to a hot solution of the above Schiff base ligand (0.31 g, 1 mmol) in ethanol (80 ml) and the reaction mixture was refluxed for 5 min when a brownish precipitate was formed. The product was separated and washed with hot ethanol (yield: 0.32 g, 74%). Green single crystals of the title complex were recrystallized from a chloroform-absolute ethanol (10:3 V/V) solution after 20 d at room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom. The highest residual density peak is located 0.38 Å from Cu1 and the deepest hole is located 0.46 Å from S2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (-x, y, 3/2 - z).
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···S weak interactions are shown as dashed lines.
Bis[benzyl N'-(3-phenylprop-2-enylidene)hydrazinecarbodithioato- κ2N',S]copper(II) top
Crystal data top
[Cu(C17H15N2S2)2]F(000) = 1420
Mr = 686.45Dx = 1.449 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6922 reflections
a = 36.1410 (7) Åθ = 2.1–35.0°
b = 9.9372 (2) ŵ = 0.99 mm1
c = 8.7598 (2) ÅT = 100 K
V = 3146.00 (11) Å3Plate, green
Z = 40.57 × 0.29 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6922 independent reflections
Radiation source: fine-focus sealed tube5675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 35.0°, θmin = 2.1°
ω scansh = 5857
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.603, Tmax = 0.906l = 1314
84850 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0303P)2 + 2.083P]
where P = (Fo2 + 2Fc2)/3
6922 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C17H15N2S2)2]V = 3146.00 (11) Å3
Mr = 686.45Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 36.1410 (7) ŵ = 0.99 mm1
b = 9.9372 (2) ÅT = 100 K
c = 8.7598 (2) Å0.57 × 0.29 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5675 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.906Rint = 0.047
84850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
6922 reflectionsΔρmin = 0.43 e Å3
196 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.07778 (2)0.75000.01578 (5)
S10.056798 (8)0.01045 (3)0.70614 (4)0.02194 (6)
S20.126264 (8)0.09538 (4)0.81392 (4)0.02454 (7)
N10.02535 (3)0.20538 (10)0.59588 (11)0.01718 (17)
N20.06393 (3)0.20720 (10)0.59855 (12)0.01796 (17)
C10.10931 (3)0.28518 (12)0.39861 (14)0.0206 (2)
H1A0.10060.21480.45860.025*
C20.14653 (3)0.29131 (13)0.36079 (15)0.0229 (2)
H2A0.16260.22520.39610.027*
C30.15998 (3)0.39565 (14)0.27034 (15)0.0239 (2)
H3A0.18500.39980.24620.029*
C40.13588 (4)0.49338 (15)0.21640 (16)0.0251 (2)
H4A0.14470.56250.15480.030*
C50.09847 (3)0.48806 (13)0.25450 (15)0.0222 (2)
H5A0.08250.55390.21810.027*
C60.08476 (3)0.38468 (12)0.34685 (13)0.01828 (19)
C70.04535 (3)0.38225 (12)0.38369 (14)0.0192 (2)
H7A0.03050.44680.33740.023*
C80.02862 (3)0.29470 (12)0.47880 (14)0.0194 (2)
H8A0.04330.23410.53250.023*
C90.01065 (3)0.29035 (12)0.50134 (13)0.01849 (19)
H9A0.02580.34930.44740.022*
C100.07825 (3)0.11156 (12)0.81865 (13)0.01794 (19)
C110.14240 (3)0.20513 (14)0.96662 (15)0.0230 (2)
H11A0.12950.18521.06110.028*
H11B0.13810.29870.94050.028*
C120.18327 (3)0.17791 (13)0.98351 (14)0.0210 (2)
C130.19556 (4)0.07096 (16)1.07276 (17)0.0295 (3)
H13A0.17840.01661.12230.035*
C140.23304 (4)0.04438 (17)1.08878 (18)0.0326 (3)
H14A0.24090.02661.14990.039*
C150.25879 (3)0.12346 (16)1.01385 (16)0.0282 (3)
H15A0.28390.10591.02460.034*
C160.24696 (4)0.22864 (16)0.92307 (19)0.0318 (3)
H16A0.26420.28130.87170.038*
C170.20935 (4)0.25621 (15)0.90804 (18)0.0284 (3)
H17A0.20160.32750.84710.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01427 (8)0.01721 (9)0.01586 (8)0.0000.00375 (6)0.000
S10.02087 (12)0.02213 (13)0.02284 (13)0.00456 (10)0.00520 (10)0.00534 (10)
S20.01540 (12)0.03281 (16)0.02541 (15)0.00349 (11)0.00031 (10)0.00859 (12)
N10.0146 (4)0.0197 (4)0.0172 (4)0.0005 (3)0.0006 (3)0.0007 (3)
N20.0132 (4)0.0216 (4)0.0190 (4)0.0009 (3)0.0002 (3)0.0003 (3)
C10.0179 (5)0.0216 (5)0.0222 (5)0.0011 (4)0.0005 (4)0.0008 (4)
C20.0181 (5)0.0250 (5)0.0254 (6)0.0006 (4)0.0010 (4)0.0017 (5)
C30.0180 (5)0.0302 (6)0.0236 (6)0.0046 (4)0.0021 (4)0.0034 (5)
C40.0225 (5)0.0287 (6)0.0242 (6)0.0055 (5)0.0033 (4)0.0034 (5)
C50.0213 (5)0.0231 (5)0.0222 (5)0.0013 (4)0.0004 (4)0.0031 (4)
C60.0165 (4)0.0205 (5)0.0178 (5)0.0017 (4)0.0001 (4)0.0009 (4)
C70.0169 (4)0.0209 (5)0.0199 (5)0.0002 (4)0.0008 (4)0.0006 (4)
C80.0153 (4)0.0224 (5)0.0203 (5)0.0004 (4)0.0006 (4)0.0016 (4)
C90.0161 (4)0.0213 (5)0.0181 (5)0.0003 (4)0.0005 (4)0.0009 (4)
C100.0159 (4)0.0213 (5)0.0167 (5)0.0014 (4)0.0009 (3)0.0001 (4)
C110.0153 (5)0.0284 (6)0.0254 (6)0.0008 (4)0.0003 (4)0.0058 (5)
C120.0149 (4)0.0257 (5)0.0223 (5)0.0001 (4)0.0014 (4)0.0032 (4)
C130.0198 (5)0.0381 (7)0.0308 (7)0.0006 (5)0.0043 (5)0.0095 (6)
C140.0224 (6)0.0428 (8)0.0326 (7)0.0063 (5)0.0008 (5)0.0105 (6)
C150.0159 (5)0.0398 (7)0.0290 (6)0.0030 (5)0.0005 (4)0.0015 (6)
C160.0171 (5)0.0363 (7)0.0419 (8)0.0034 (5)0.0039 (5)0.0057 (6)
C170.0190 (5)0.0294 (6)0.0370 (7)0.0005 (5)0.0012 (5)0.0070 (5)
Geometric parameters (Å, º) top
Cu1—N1i2.0663 (10)C6—C71.4606 (16)
Cu1—N12.0663 (10)C7—C81.3478 (17)
Cu1—S1i2.2648 (3)C7—H7A0.93
Cu1—S12.2649 (3)C8—C91.4335 (16)
S1—C101.7442 (12)C8—H8A0.93
S2—C101.7432 (11)C9—H9A0.93
S2—C111.8217 (13)C10—N2i1.3027 (15)
N1—C91.2965 (15)C11—C121.5088 (16)
N1—N21.3949 (13)C11—H11A0.97
N2—C10i1.3027 (15)C11—H11B0.97
C1—C21.3866 (16)C12—C171.3897 (18)
C1—C61.4037 (17)C12—C131.3922 (19)
C1—H1A0.93C13—C141.3871 (19)
C2—C31.3926 (19)C13—H13A0.93
C2—H2A0.93C14—C151.384 (2)
C3—C41.388 (2)C14—H14A0.93
C3—H3A0.93C15—C161.381 (2)
C4—C51.3937 (17)C15—H15A0.93
C4—H4A0.93C16—C171.3927 (19)
C5—C61.3983 (17)C16—H16A0.93
C5—H5A0.93C17—H17A0.93
N1i—Cu1—N1104.29 (5)C7—C8—C9123.27 (11)
N1i—Cu1—S1i121.90 (3)C7—C8—H8A118.4
N1—Cu1—S1i86.94 (3)C9—C8—H8A118.4
N1i—Cu1—S186.94 (3)N1—C9—C8120.88 (11)
N1—Cu1—S1121.90 (3)N1—C9—H9A119.6
S1i—Cu1—S1134.452 (19)C8—C9—H9A119.6
C10—S1—Cu192.17 (4)N2i—C10—S2118.41 (9)
C10—S2—C11104.25 (6)N2i—C10—S1130.18 (9)
C9—N1—N2114.32 (10)S2—C10—S1111.41 (6)
C9—N1—Cu1129.45 (8)C12—C11—S2106.15 (8)
N2—N1—Cu1116.12 (7)C12—C11—H11A110.5
C10i—N2—N1113.39 (10)S2—C11—H11A110.5
C2—C1—C6120.33 (11)C12—C11—H11B110.5
C2—C1—H1A119.8S2—C11—H11B110.5
C6—C1—H1A119.8H11A—C11—H11B108.7
C1—C2—C3120.49 (12)C17—C12—C13118.55 (11)
C1—C2—H2A119.8C17—C12—C11121.14 (12)
C3—C2—H2A119.8C13—C12—C11120.29 (11)
C4—C3—C2119.71 (11)C14—C13—C12120.92 (13)
C4—C3—H3A120.1C14—C13—H13A119.5
C2—C3—H3A120.1C12—C13—H13A119.5
C3—C4—C5120.07 (12)C15—C14—C13120.04 (14)
C3—C4—H4A120.0C15—C14—H14A120.0
C5—C4—H4A120.0C13—C14—H14A120.0
C4—C5—C6120.68 (12)C16—C15—C14119.66 (12)
C4—C5—H5A119.7C16—C15—H15A120.2
C6—C5—H5A119.7C14—C15—H15A120.2
C5—C6—C1118.71 (11)C15—C16—C17120.35 (13)
C5—C6—C7119.04 (11)C15—C16—H16A119.8
C1—C6—C7122.23 (11)C17—C16—H16A119.8
C8—C7—C6125.77 (11)C12—C17—C16120.46 (13)
C8—C7—H7A117.1C12—C17—H17A119.8
C6—C7—H7A117.1C16—C17—H17A119.8
N1i—Cu1—S1—C106.84 (5)C1—C6—C7—C85.87 (19)
N1—Cu1—S1—C1098.11 (5)C6—C7—C8—C9174.88 (11)
S1i—Cu1—S1—C10140.38 (4)N2—N1—C9—C8176.16 (10)
N1i—Cu1—N1—C964.62 (10)Cu1—N1—C9—C87.90 (17)
S1i—Cu1—N1—C9173.21 (11)C7—C8—C9—N1179.00 (12)
S1—Cu1—N1—C930.76 (12)C11—S2—C10—N2i11.46 (12)
N1i—Cu1—N1—N2111.27 (8)C11—S2—C10—S1168.25 (7)
S1i—Cu1—N1—N210.91 (7)Cu1—S1—C10—N2i4.35 (12)
S1—Cu1—N1—N2153.36 (7)Cu1—S1—C10—S2175.98 (6)
C9—N1—N2—C10i172.92 (11)C10—S2—C11—C12171.27 (9)
Cu1—N1—N2—C10i10.56 (12)S2—C11—C12—C1794.14 (13)
C6—C1—C2—C30.38 (19)S2—C11—C12—C1384.28 (14)
C1—C2—C3—C40.7 (2)C17—C12—C13—C141.3 (2)
C2—C3—C4—C50.9 (2)C11—C12—C13—C14179.71 (14)
C3—C4—C5—C60.1 (2)C12—C13—C14—C150.9 (2)
C4—C5—C6—C10.94 (19)C13—C14—C15—C160.1 (2)
C4—C5—C6—C7179.73 (12)C14—C15—C16—C170.7 (2)
C2—C1—C6—C51.18 (18)C13—C12—C17—C160.6 (2)
C2—C1—C6—C7179.93 (11)C11—C12—C17—C16179.09 (13)
C5—C6—C7—C8175.39 (12)C15—C16—C17—C120.3 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···S2ii0.932.763.6698 (15)167
C11—H11A···Cg1iii0.972.983.5806 (14)121
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C17H15N2S2)2]
Mr686.45
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)36.1410 (7), 9.9372 (2), 8.7598 (2)
V3)3146.00 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.57 × 0.29 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.603, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
84850, 6922, 5675
Rint0.047
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.04
No. of reflections6922
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—N12.0663 (10)Cu1—S12.2649 (3)
N1i—Cu1—N1104.29 (5)N1—Cu1—S1121.90 (3)
N1—Cu1—S1i86.94 (3)S1i—Cu1—S1134.452 (19)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···S2ii0.932.763.6698 (15)167
C11—H11A···Cg1iii0.972.983.5806 (14)121
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y, z+1.
 

Footnotes

Additional correspondence author, email: suchada.c@psu.ac.th.

§Additional correspondence author, email: hkfun@usm.my.

Acknowledgements

MTHT and MTI thank Rajshahi University for financial support. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

References

First citationAli, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.  PubMed Google Scholar
First citationAli, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1788.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastiñeiras, A., Bermejo, E., West, D. X., El-Sawaf, A. K. & Swearingen, K. (1998). Polyhedron, 17, 2751–2757.  Google Scholar
First citationGoswami, N. & Eichhorn, M. (2000). Inorg. Chim. Acta, 303, 271–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationShanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m416-m417
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds