organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′,7,7′-Tetra­meth­­oxy-2,2′-ethano-1,1′-spiro­biindane

aSchool of Chemistry and Materials Science, Shannxi Normal University, Xi'an 710062, People's Republic of China
*Correspondence e-mail: weijf@snnu.edu.cn

(Received 21 November 2007; accepted 8 January 2008; online 16 January 2008)

In the title compound, C23H26O4, there is a dihedral angle of 83.7 (6)° between the two benzene rings. The five-membered rings have chair conformations.

Related literature

For related literature, see: Bandin et al. (2000[Bandin, M., Casolari, S., Cozzi, P. G., Proni, G., Schmohel, E. & Spada, G. P. (2000). J. Org. Chem. 491, 494-497.]); Birman et al. (1999[Birman, V. B., Rheingold, A. L. & Lam, K. C. (1999). Tetrahedron Asymmetry, 10, 125-131.]); Lan et al. (2006[Lan, K., Shan, Z. X. & Fan, S. (2006). Tetrahedron Lett. 47, 4343-4345.]); Zhu et al. (2005[Zhu, S.-F., Yang, Y., Wang, L.-X., Liu, B. & Zhou, Q.-L. (2005). Org. Lett. 7, 2333-2335.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O4

  • Mr = 366.44

  • Monoclinic, P 21 /c

  • a = 12.7089 (11) Å

  • b = 10.0905 (8) Å

  • c = 16.1664 (13) Å

  • β = 104.306 (2)°

  • V = 2008.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.33 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.988

  • 9884 measured reflections

  • 3576 independent reflections

  • 2013 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.08

  • 3576 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The symmetric chiral ligands, such as BINOL (1,1'-binaphthalene-2,2'-diol), BINAP [2,2'-bis(diphenylphosphino)-1,1'-binaphthyl], SPINOL (1,1'-spirobiindane-7,7'-diol), etc, are widely used in catalytic asymmetric synthesis (Lan et al., 2006; Birman et al., 1999; Zhu et al., 2005). Even minor modifications of the chiral ligands were found to enhance manifold functional capability of these ligands in asymmetric catalysis (Bandin et al., 2000). We also report the synthesis of the title compound here.

The title compound (Fig. 1) was obtained in three steps (experimental section). The molecule has an approximate C2 symmetry. Two phenyl groups make a dihedral angle of 83.7 (6)°.

Related literature top

For related literature, see: Bandin et al. (2000); Birman et al. (1999); Lan et al. (2006); Zhu et al. (2005).

Experimental top

A solution of 3,5-dimethoxybenzaldehyde (7.9 g, 47.6 mmol) and cyclopentanone (2 g, 23.8 mmol) in 20 ml of ethanol was added to a solution of 0.8 g of NaOH in 30 ml 50% aqueous ethanol over a period of 30 min and stirred for 8 h at room temperature. The yellow solid obtained was filtered and washed with water and the product vacuum dried (7.2 g, 85%). The yellow product is 2,6-bis(3,5-dimethoxybenzylidene)cyclopentanone, which was dissolveed in 30 ml of acetone and then stirred with Raney nickel (3 g) under hydrogen atmosphere at room temperature and the reaction progress monitored by TLC. Upon disappearance of the starting material in TLC (ca 12 h, rotary evaporator), the reaction mixture was carefully filtered off without allowing the Raney nickel to become dry by washing with acetone and the filtrate was concentrated in a rotary evaporator. The crude product was crystallized from 95% ethanol to yield 2,6-bis(3,5-dimethoxybenzyl)cyclopentanone (2.8 g, 92.4%). This compound (2 g, 5.56 mmol) and H3PW12O40 (2.57 g, 0.834 mmol) in 20 ml toluene were charged in a 50 ml flask with water segregator and reflux condenser, followed by reflux and dehydration until no water was separated for 12 h when the solution turned red slowly, then cooled, filtered and washed with CHCl3. The organic phase was combined, evaporated and the residue was recrystallized from a hexane–ethyl acetate (3:1) mixture to give 1.8 g of the title compound (88.7% yield).

1H NMR: (CDCl3) 1.23–1.29 (m, 2H), 1.96–2.00 (m, 2H), 2.61–2.66 (m, 4H), 3.36–3.44 (m, 2H), 3.55 (s, 6H), 3.77 (s, 6H), 6.20 (s, 2H), 6.34 (s,2H).

Refinement top

The H atoms (pyridine ring) were placed in calculated positions [Csp2—H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
5,5',7,7'-Tetramethoxy-2,2'-ethano-1,1'-spirobiindane top
Crystal data top
C23H26O4F(000) = 784
Mr = 366.44Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3576 reflections
a = 12.7089 (11) Åθ = 1.7–25.1°
b = 10.0905 (8) ŵ = 0.08 mm1
c = 16.1664 (13) ÅT = 298 K
β = 104.306 (2)°Block, colourless
V = 2008.9 (3) Å30.33 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3576 independent reflections
Radiation source: fine-focus sealed tube2013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.974, Tmax = 0.988k = 1211
9884 measured reflectionsl = 1119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3576 reflectionsΔρmax = 0.13 e Å3
249 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (8)
Crystal data top
C23H26O4V = 2008.9 (3) Å3
Mr = 366.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7089 (11) ŵ = 0.08 mm1
b = 10.0905 (8) ÅT = 298 K
c = 16.1664 (13) Å0.33 × 0.21 × 0.15 mm
β = 104.306 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2013 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.988Rint = 0.028
9884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
3576 reflectionsΔρmin = 0.11 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01787 (11)0.00651 (13)0.11905 (9)0.0934 (5)
O20.11557 (9)0.45860 (11)0.10743 (7)0.0615 (3)
O30.26734 (10)0.31122 (11)0.09967 (7)0.0720 (4)
O40.21271 (10)0.76096 (12)0.18685 (8)0.0753 (4)
C10.48840 (15)0.4601 (2)0.18491 (13)0.0857 (6)
H1A0.52800.50930.15080.103*
H1B0.51610.48370.24450.103*
C20.49705 (15)0.3121 (2)0.17181 (13)0.0844 (6)
H2A0.47160.26250.21450.101*
H2B0.57130.28650.17430.101*
C30.42396 (14)0.28916 (18)0.08308 (11)0.0666 (5)
H30.46210.31180.03920.080*
C40.37550 (15)0.14983 (17)0.06805 (12)0.0730 (6)
H4A0.37000.12140.00980.088*
H4B0.41980.08660.10680.088*
C50.26458 (14)0.16203 (17)0.08514 (10)0.0574 (5)
C60.19459 (17)0.06072 (17)0.09508 (11)0.0671 (5)
H60.21430.02770.09300.081*
C70.09506 (15)0.09546 (18)0.10816 (11)0.0641 (5)
C80.06579 (14)0.22698 (17)0.11182 (10)0.0597 (5)
H80.00190.24830.12040.072*
C90.13625 (13)0.32636 (15)0.10281 (10)0.0505 (4)
C100.23758 (13)0.29369 (15)0.08937 (9)0.0496 (4)
C110.32709 (12)0.38749 (16)0.07973 (9)0.0514 (4)
C120.29743 (12)0.47861 (16)0.00341 (10)0.0503 (4)
C130.26767 (13)0.44407 (16)0.08266 (10)0.0517 (4)
C140.24065 (13)0.54127 (17)0.14428 (10)0.0566 (5)
H140.22070.51840.20180.068*
C150.24339 (13)0.67340 (17)0.11997 (11)0.0571 (5)
C160.27449 (13)0.71002 (16)0.03510 (12)0.0604 (5)
H160.27740.79880.01920.072*
C170.30128 (13)0.61047 (17)0.02569 (10)0.0543 (4)
C180.33526 (15)0.62685 (17)0.12096 (11)0.0685 (5)
H18A0.27580.66100.14250.082*
H18B0.39640.68700.13730.082*
C190.36713 (14)0.48682 (17)0.15539 (10)0.0619 (5)
H190.33210.46650.20150.074*
C200.03804 (18)0.13115 (18)0.11287 (13)0.0989 (7)
H20A0.05850.14850.06060.148*
H20B0.02650.18010.11350.148*
H20C0.09570.15780.16040.148*
C210.01061 (14)0.49516 (17)0.11711 (13)0.0794 (6)
H21A0.04420.46000.07040.119*
H21B0.00490.59000.11760.119*
H21C0.00060.46000.16980.119*
C220.2423 (2)0.27137 (19)0.18592 (13)0.1168 (9)
H22A0.16920.29700.21320.175*
H22B0.24910.17690.18900.175*
H22C0.29150.31310.21430.175*
C230.22177 (17)0.89829 (17)0.16809 (13)0.0850 (6)
H23A0.17520.92080.13160.127*
H23B0.20060.94800.22020.127*
H23C0.29560.91900.13980.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0960 (11)0.0534 (9)0.1336 (13)0.0154 (7)0.0338 (9)0.0010 (8)
O20.0575 (8)0.0496 (8)0.0802 (8)0.0036 (6)0.0222 (6)0.0009 (6)
O30.1176 (11)0.0527 (8)0.0469 (8)0.0052 (7)0.0223 (7)0.0020 (6)
O40.0980 (10)0.0589 (9)0.0687 (9)0.0035 (7)0.0202 (7)0.0151 (7)
C10.0645 (14)0.1059 (18)0.0789 (15)0.0058 (12)0.0033 (11)0.0021 (12)
C20.0551 (12)0.1137 (18)0.0815 (15)0.0141 (11)0.0117 (11)0.0149 (13)
C30.0684 (13)0.0810 (14)0.0559 (12)0.0144 (10)0.0260 (10)0.0110 (10)
C40.0853 (15)0.0739 (14)0.0629 (12)0.0268 (11)0.0244 (10)0.0095 (10)
C50.0708 (13)0.0570 (12)0.0452 (10)0.0114 (10)0.0158 (9)0.0050 (8)
C60.0936 (15)0.0490 (11)0.0570 (12)0.0103 (11)0.0150 (10)0.0018 (9)
C70.0725 (14)0.0558 (13)0.0621 (12)0.0061 (10)0.0130 (10)0.0008 (9)
C80.0612 (12)0.0526 (12)0.0639 (12)0.0025 (9)0.0129 (9)0.0014 (9)
C90.0619 (12)0.0422 (11)0.0453 (10)0.0049 (9)0.0093 (8)0.0016 (8)
C100.0590 (11)0.0530 (11)0.0365 (9)0.0064 (8)0.0114 (8)0.0041 (7)
C110.0552 (10)0.0601 (11)0.0411 (10)0.0052 (9)0.0160 (8)0.0031 (8)
C120.0525 (10)0.0556 (11)0.0446 (10)0.0001 (8)0.0152 (8)0.0001 (8)
C130.0617 (11)0.0474 (11)0.0487 (11)0.0002 (8)0.0188 (8)0.0004 (8)
C140.0679 (12)0.0579 (12)0.0459 (10)0.0014 (9)0.0178 (8)0.0029 (9)
C150.0644 (12)0.0541 (12)0.0558 (12)0.0005 (9)0.0208 (9)0.0129 (10)
C160.0721 (12)0.0498 (11)0.0639 (13)0.0045 (9)0.0256 (10)0.0033 (10)
C170.0582 (11)0.0578 (12)0.0496 (11)0.0054 (8)0.0183 (9)0.0032 (9)
C180.0790 (13)0.0717 (13)0.0561 (12)0.0113 (10)0.0190 (10)0.0101 (9)
C190.0584 (12)0.0783 (13)0.0483 (10)0.0052 (10)0.0119 (9)0.0031 (9)
C200.1240 (19)0.0513 (14)0.1129 (18)0.0128 (12)0.0132 (15)0.0006 (11)
C210.0659 (13)0.0621 (13)0.1158 (17)0.0110 (10)0.0329 (12)0.0006 (11)
C220.235 (3)0.0622 (14)0.0548 (14)0.0128 (15)0.0381 (16)0.0153 (10)
C230.1083 (17)0.0570 (14)0.0975 (16)0.0083 (11)0.0403 (13)0.0200 (11)
Geometric parameters (Å, º) top
O1—C71.373 (2)C10—C111.517 (2)
O1—C201.420 (2)C11—C121.510 (2)
O2—C91.3656 (17)C11—C191.566 (2)
O2—C211.4294 (18)C12—C171.376 (2)
O3—C131.3682 (18)C12—C131.393 (2)
O3—C221.410 (2)C13—C141.380 (2)
O4—C151.3759 (19)C14—C151.388 (2)
O4—C231.4171 (19)C14—H140.9300
C1—C21.516 (3)C15—C161.381 (2)
C1—C191.521 (2)C16—C171.388 (2)
C1—H1A0.9700C16—H160.9300
C1—H1B0.9700C17—C181.502 (2)
C2—C31.522 (2)C18—C191.536 (2)
C2—H2A0.9700C18—H18A0.9700
C2—H2B0.9700C18—H18B0.9700
C3—C41.530 (2)C19—H190.9800
C3—C111.572 (2)C20—H20A0.9600
C3—H30.9800C20—H20B0.9600
C4—C51.507 (2)C20—H20C0.9600
C4—H4A0.9700C21—H21A0.9600
C4—H4B0.9700C21—H21B0.9600
C5—C101.378 (2)C21—H21C0.9600
C5—C61.390 (2)C22—H22A0.9600
C6—C71.378 (2)C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
C7—C81.383 (2)C23—H23A0.9600
C8—C91.376 (2)C23—H23B0.9600
C8—H80.9300C23—H23C0.9600
C9—C101.397 (2)
C7—O1—C20118.91 (16)C17—C12—C11112.92 (14)
C9—O2—C21117.11 (13)C13—C12—C11127.96 (15)
C13—O3—C22117.84 (13)O3—C13—C14124.30 (15)
C15—O4—C23117.87 (15)O3—C13—C12115.63 (14)
C2—C1—C19103.52 (16)C14—C13—C12120.07 (15)
C2—C1—H1A111.1C13—C14—C15119.61 (15)
C19—C1—H1A111.1C13—C14—H14120.2
C2—C1—H1B111.1C15—C14—H14120.2
C19—C1—H1B111.1O4—C15—C16124.39 (16)
H1A—C1—H1B109.0O4—C15—C14114.33 (16)
C1—C2—C3103.46 (15)C16—C15—C14121.29 (15)
C1—C2—H2A111.1C15—C16—C17118.02 (15)
C3—C2—H2A111.1C15—C16—H16121.0
C1—C2—H2B111.1C17—C16—H16121.0
C3—C2—H2B111.1C12—C17—C16121.87 (15)
H2A—C2—H2B109.0C12—C17—C18110.93 (15)
C2—C3—C4114.65 (15)C16—C17—C18127.19 (16)
C2—C3—C11103.13 (14)C17—C18—C19104.68 (14)
C4—C3—C11107.07 (14)C17—C18—H18A110.8
C2—C3—H3110.6C19—C18—H18A110.8
C4—C3—H3110.6C17—C18—H18B110.8
C11—C3—H3110.6C19—C18—H18B110.8
C5—C4—C3104.71 (14)H18A—C18—H18B108.9
C5—C4—H4A110.8C1—C19—C18115.66 (15)
C3—C4—H4A110.8C1—C19—C11103.89 (14)
C5—C4—H4B110.8C18—C19—C11107.47 (13)
C3—C4—H4B110.8C1—C19—H19109.9
H4A—C4—H4B108.9C18—C19—H19109.9
C10—C5—C6121.93 (16)C11—C19—H19109.9
C10—C5—C4110.09 (16)O1—C20—H20A109.5
C6—C5—C4127.97 (16)O1—C20—H20B109.5
C7—C6—C5117.93 (16)H20A—C20—H20B109.5
C7—C6—H6121.0O1—C20—H20C109.5
C5—C6—H6121.0H20A—C20—H20C109.5
O1—C7—C6124.43 (17)H20B—C20—H20C109.5
O1—C7—C8114.43 (17)O2—C21—H21A109.5
C6—C7—C8121.14 (17)O2—C21—H21B109.5
C9—C8—C7120.37 (16)H21A—C21—H21B109.5
C9—C8—H8119.8O2—C21—H21C109.5
C7—C8—H8119.8H21A—C21—H21C109.5
O2—C9—C8124.55 (15)H21B—C21—H21C109.5
O2—C9—C10115.87 (14)O3—C22—H22A109.5
C8—C9—C10119.57 (15)O3—C22—H22B109.5
C5—C10—C9119.04 (15)H22A—C22—H22B109.5
C5—C10—C11113.21 (14)O3—C22—H22C109.5
C9—C10—C11127.74 (14)H22A—C22—H22C109.5
C12—C11—C10114.94 (13)H22B—C22—H22C109.5
C12—C11—C19102.46 (13)O4—C23—H23A109.5
C10—C11—C19115.23 (12)O4—C23—H23B109.5
C12—C11—C3116.61 (12)H23A—C23—H23B109.5
C10—C11—C3101.74 (13)O4—C23—H23C109.5
C19—C11—C3106.06 (13)H23A—C23—H23C109.5
C17—C12—C13119.12 (14)H23B—C23—H23C109.5
C19—C1—C2—C345.85 (18)C10—C11—C12—C17117.93 (15)
C1—C2—C3—C4153.35 (15)C19—C11—C12—C177.82 (17)
C1—C2—C3—C1137.33 (18)C3—C11—C12—C17123.13 (16)
C2—C3—C4—C595.86 (17)C10—C11—C12—C1361.8 (2)
C11—C3—C4—C517.87 (17)C19—C11—C12—C13172.49 (15)
C3—C4—C5—C1012.87 (18)C3—C11—C12—C1357.2 (2)
C3—C4—C5—C6167.74 (16)C22—O3—C13—C142.9 (2)
C10—C5—C6—C71.0 (2)C22—O3—C13—C12177.36 (17)
C4—C5—C6—C7178.31 (17)C17—C12—C13—O3179.06 (14)
C20—O1—C7—C63.0 (3)C11—C12—C13—O31.3 (2)
C20—O1—C7—C8177.41 (15)C17—C12—C13—C141.2 (2)
C5—C6—C7—O1179.96 (16)C11—C12—C13—C14178.52 (15)
C5—C6—C7—C80.4 (3)O3—C13—C14—C15179.81 (15)
O1—C7—C8—C9179.30 (14)C12—C13—C14—C150.0 (2)
C6—C7—C8—C90.3 (3)C23—O4—C15—C165.2 (2)
C21—O2—C9—C84.0 (2)C23—O4—C15—C14174.92 (14)
C21—O2—C9—C10177.12 (14)C13—C14—C15—O4178.73 (14)
C7—C8—C9—O2178.43 (15)C13—C14—C15—C161.1 (2)
C7—C8—C9—C100.4 (2)O4—C15—C16—C17178.73 (15)
C6—C5—C10—C90.9 (2)C14—C15—C16—C171.1 (2)
C4—C5—C10—C9178.50 (14)C13—C12—C17—C161.2 (2)
C6—C5—C10—C11178.08 (14)C11—C12—C17—C16178.55 (14)
C4—C5—C10—C112.48 (18)C13—C12—C17—C18179.81 (14)
O2—C9—C10—C5179.15 (13)C11—C12—C17—C180.47 (19)
C8—C9—C10—C50.2 (2)C15—C16—C17—C120.1 (2)
O2—C9—C10—C110.3 (2)C15—C16—C17—C18178.90 (16)
C8—C9—C10—C11178.65 (14)C12—C17—C18—C197.32 (19)
C5—C10—C11—C12118.32 (15)C16—C17—C18—C19173.73 (16)
C9—C10—C11—C1262.8 (2)C2—C1—C19—C18152.31 (15)
C5—C10—C11—C19122.85 (14)C2—C1—C19—C1134.81 (18)
C9—C10—C11—C1956.1 (2)C17—C18—C19—C1103.58 (17)
C5—C10—C11—C38.63 (16)C17—C18—C19—C1111.91 (17)
C9—C10—C11—C3170.29 (15)C12—C11—C19—C1111.14 (14)
C2—C3—C11—C12128.93 (16)C10—C11—C19—C1123.31 (15)
C4—C3—C11—C12109.76 (16)C3—C11—C19—C111.61 (17)
C2—C3—C11—C10105.22 (15)C12—C11—C19—C1811.92 (16)
C4—C3—C11—C1016.09 (16)C10—C11—C19—C18113.63 (15)
C2—C3—C11—C1915.64 (17)C3—C11—C19—C18134.67 (14)
C4—C3—C11—C19136.95 (13)

Experimental details

Crystal data
Chemical formulaC23H26O4
Mr366.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.7089 (11), 10.0905 (8), 16.1664 (13)
β (°) 104.306 (2)
V3)2008.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.974, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9884, 3576, 2013
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.09
No. of reflections3576
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2004).

 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (grant No. 20572066).

References

First citationBandin, M., Casolari, S., Cozzi, P. G., Proni, G., Schmohel, E. & Spada, G. P. (2000). J. Org. Chem. 491, 494–497.  Google Scholar
First citationBirman, V. B., Rheingold, A. L. & Lam, K. C. (1999). Tetrahedron Asymmetry, 10, 125–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationLan, K., Shan, Z. X. & Fan, S. (2006). Tetrahedron Lett. 47, 4343–4345.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S.-F., Yang, Y., Wang, L.-X., Liu, B. & Zhou, Q.-L. (2005). Org. Lett. 7, 2333–2335.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds