organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-Amino-1-(pyrrolidinium-2-ylmeth­yl)pyridinium dibromide

aState Key Laboratory Breeding Base of Green Chemistry – Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: yifengwang108@gmail.com

(Received 1 December 2007; accepted 11 January 2008; online 18 January 2008)

In the title compound, C10H17N32+·2Br, the pyrrolidinium ring displays an envelope conformation, with the flap N atom lying 0.564 (6) Å from the mean plane of the remaining four C atoms. The attached methyl­ene C atom, which connects the pyrrolidinium ring and the 2-amino­pyridine group, is displaced from the plane of the four pyrrolidinium C atoms by 0.811 (8) Å in the same direction as the pyrrolidinium N atom. The amine N lies on the opposite side of this plane.

Related literature

The synthesis of (S)-(+)-2-bromo­methyl­pyrrolidine hydro­bromide is described by Xu et al. (2006[Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569-2572.]). For related literature, see: Ishii et al. (2004[Ishii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc. 126, 9558-9559.]); Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17N32+·2Br

  • Mr = 339.07

  • Monoclinic, P 21

  • a = 10.5509 (5) Å

  • b = 6.1755 (3) Å

  • c = 10.8474 (6) Å

  • β = 107.4830 (14)°

  • V = 674.14 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.01 mm−1

  • T = 296 (1) K

  • 0.37 × 0.32 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.110, Tmax = 0.458

  • 6601 measured reflections

  • 2681 independent reflections

  • 1943 reflections with F2 > 2σ(F2)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.01

  • 2681 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1013 Friedel pairs

  • Flack parameter: 0.002 (5)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Proline and its derivatives have been extensively studied due to their abilities to catalyze a wide range of reactions as organocatalysts in recent years (Ishii et al., 2004; Xu et al., 2006). The title compound, which could be readily synthesized from commercially available L-proline and 2-aminopyridine, can act as organocatalyst in the Michael addition of ketones to nitrostyrenes. These reactions afford the desired Michael adducts in good yields and moderate enantioselectivities. The title salt (S)-2-amino-1-(pyrrolidinium-2-ylmethyl)-pyridinium dibromide crystal structure (Fig. 1) is built of pyrrolidinium cations and bromide anions. The pyrrolidinium ring displays a fair half-chair conformation, with the flap atom N1 lying 0.564 (6) Å from the mean plane of C1/C2/C3/C4. The methylene C5 atom, which connects the pyrrolidinium ring and the 2-aminopyridine group, is displaced from the plane of four pyrrolidinium carbons by 0.811 (8) Å in the same direction as the N1 atom. The atom N3 of the amino group of pyrrolidinium and the atom N1 are on the opposite sides of the mean plane of C1/C2/C3/C4.

Related literature top

The synthesis of (S)-(+)-2-bromomethylpyrrolidine hydrobromide is described by Xu et al. (2006). For related literature, see: Ishii et al. (2004); Larson (1970).

Experimental top

The title compound was synthesized by treating 2-aminopyridine (0.94 g,10 mmol) with (S)-(+)-2-bromomethylpyrrolidine hydrobromide (2.50 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 92%). The compound (S)-(+)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were placed in calculated position with N—H=0.86 Å, C—H=0.98 Å(sp), C—H=0.97 Å(sp2), C—H=0.93 Å(aromatic). All H atoms included in the final cycles of refinement as riding mode, with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the crystal structure of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
(S)-2-Amino-1-(pyrrolidinium-2-ylmethyl)pyridinium dibromide top
Crystal data top
C10H17N32+·2BrF(000) = 336.00
Mr = 339.07Dx = 1.670 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 5483 reflections
a = 10.5509 (5) Åθ = 3.2–27.5°
b = 6.1755 (3) ŵ = 6.01 mm1
c = 10.8474 (6) ÅT = 296 K
β = 107.4830 (14)°Platelet, colorless
V = 674.14 (6) Å30.37 × 0.32 × 0.13 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1943 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.052
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.110, Tmax = 0.458k = 78
6601 measured reflectionsl = 1414
2681 independent reflections
Refinement top
Refinement on F2(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.034Δρmax = 0.41 e Å3
wR(F2) = 0.094Δρmin = 0.61 e Å3
S = 1.01Extinction correction: Larson (1970), equation 22
2681 reflectionsExtinction coefficient: 48 (6)
138 parametersAbsolute structure: Flack (1983), 1013 Friedel pairs
H-atom parameters constrainedAbsolute structure parameter: 0.002 (5)
w = 1/[0.9800σ(Fo2)]/(4Fo2)
Crystal data top
C10H17N32+·2BrV = 674.14 (6) Å3
Mr = 339.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5509 (5) ŵ = 6.01 mm1
b = 6.1755 (3) ÅT = 296 K
c = 10.8474 (6) Å0.37 × 0.32 × 0.13 mm
β = 107.4830 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1943 reflections with F2 > 2σ(F2)
Tmin = 0.110, Tmax = 0.458Rint = 0.052
6601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.41 e Å3
S = 1.01Δρmin = 0.61 e Å3
2681 reflectionsAbsolute structure: Flack (1983), 1013 Friedel pairs
138 parametersAbsolute structure parameter: 0.002 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12426 (6)0.7373 (2)0.07481 (6)0.0544 (2)
Br20.36075 (6)0.4571 (2)0.62553 (6)0.0481 (2)
N10.2124 (4)0.2325 (8)0.0528 (4)0.0394 (13)
N20.2014 (4)0.1711 (7)0.3238 (4)0.0383 (14)
N30.3461 (4)0.1049 (8)0.4252 (5)0.0504 (17)
C10.3320 (5)0.2156 (10)0.1669 (5)0.0373 (16)
C20.4356 (6)0.3574 (10)0.1293 (7)0.050 (2)
C30.3902 (8)0.3654 (13)0.0157 (8)0.072 (3)
C40.2652 (7)0.2334 (12)0.0600 (6)0.058 (2)
C50.3056 (6)0.2905 (8)0.2915 (6)0.0396 (19)
C60.0744 (6)0.2588 (11)0.2846 (6)0.0473 (19)
C70.0286 (6)0.1613 (11)0.3117 (7)0.058 (2)
C80.0044 (5)0.0355 (14)0.3828 (6)0.054 (2)
C90.1193 (6)0.1204 (10)0.4205 (6)0.048 (2)
C100.2260 (5)0.0171 (10)0.3902 (5)0.0399 (16)
H50.36280.06500.17700.045*
H60.05990.38810.23840.057*
H70.11330.22140.28450.070*
H80.07340.10560.40330.065*
H90.13470.24910.46710.057*
H210.43780.50190.16500.060*
H220.52320.29270.16050.060*
H310.37250.51380.04500.087*
H320.45780.30460.04940.087*
H410.28470.08720.08170.070*
H420.20220.29980.13460.070*
H510.38710.27430.36220.048*
H520.28040.44200.28200.048*
H1110.16980.35020.05550.047*
H1120.16070.12340.04910.047*
H3010.41040.04120.40650.061*
H3020.35970.22570.46660.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0568 (4)0.0313 (3)0.0617 (4)0.0003 (3)0.0024 (3)0.0000 (3)
Br20.0345 (3)0.0652 (4)0.0452 (4)0.0024 (3)0.0130 (2)0.0014 (3)
N10.035 (2)0.038 (2)0.044 (3)0.003 (2)0.011 (2)0.000 (2)
N20.035 (2)0.047 (3)0.036 (3)0.005 (2)0.014 (2)0.000 (2)
N30.031 (2)0.060 (3)0.063 (4)0.008 (2)0.017 (2)0.015 (2)
C10.030 (2)0.042 (3)0.043 (3)0.001 (2)0.015 (2)0.008 (2)
C20.047 (4)0.057 (4)0.048 (4)0.004 (3)0.017 (3)0.007 (3)
C30.070 (5)0.088 (6)0.065 (6)0.003 (4)0.030 (4)0.016 (4)
C40.075 (4)0.071 (4)0.032 (3)0.012 (5)0.022 (3)0.003 (3)
C50.044 (3)0.040 (4)0.035 (3)0.002 (2)0.013 (3)0.002 (2)
C60.050 (3)0.053 (3)0.039 (3)0.009 (3)0.013 (3)0.006 (3)
C70.034 (3)0.084 (5)0.057 (4)0.004 (3)0.015 (3)0.004 (3)
C80.029 (2)0.088 (5)0.052 (4)0.006 (4)0.023 (2)0.001 (4)
C90.041 (3)0.064 (5)0.042 (4)0.004 (3)0.018 (3)0.004 (2)
C100.031 (2)0.047 (3)0.039 (3)0.003 (3)0.008 (2)0.003 (3)
Geometric parameters (Å, º) top
N1—C11.483 (6)N3—H3010.860
N1—C41.490 (9)N3—H3020.860
N2—C51.451 (8)C1—H50.980
N2—C61.388 (8)C2—H210.970
N2—C101.351 (7)C2—H220.970
N3—C101.325 (7)C3—H310.970
C1—C21.547 (9)C3—H320.970
C1—C51.532 (9)C4—H410.970
C2—C31.501 (9)C4—H420.970
C3—C41.501 (9)C5—H510.970
C6—C71.350 (9)C5—H520.970
C7—C81.421 (9)C6—H60.930
C8—C91.351 (9)C7—H70.930
C9—C101.415 (9)C8—H80.930
N1—H1110.860C9—H90.930
N1—H1120.860
C1—N1—C4104.6 (4)C1—C2—H21110.5
C5—N2—C6117.3 (4)C1—C2—H22110.5
C5—N2—C10121.8 (4)C3—C2—H21110.5
C6—N2—C10120.8 (5)C3—C2—H22110.5
N1—C1—C2103.4 (4)H21—C2—H22109.5
N1—C1—C5112.4 (4)C2—C3—H31110.1
C2—C1—C5113.1 (4)C2—C3—H32110.1
C1—C2—C3105.5 (5)C4—C3—H31110.1
C2—C3—C4106.9 (7)C4—C3—H32110.1
N1—C4—C3104.4 (5)H31—C3—H32109.5
N2—C5—C1114.3 (4)N1—C4—H41110.7
N2—C6—C7121.7 (6)N1—C4—H42110.7
C6—C7—C8118.3 (6)C3—C4—H41110.7
C7—C8—C9119.7 (6)C3—C4—H42110.7
C8—C9—C10121.2 (6)H41—C4—H42109.5
N2—C10—N3121.3 (5)N2—C5—H51108.3
N2—C10—C9118.2 (5)N2—C5—H52108.3
N3—C10—C9120.5 (5)C1—C5—H51108.3
C1—N1—H111110.7C1—C5—H52108.3
C1—N1—H112110.7H51—C5—H52109.5
C4—N1—H111110.7N2—C6—H6119.2
C4—N1—H112110.7C7—C6—H6119.2
H111—N1—H112109.5C6—C7—H7120.8
C10—N3—H301120.0C8—C7—H7120.8
C10—N3—H302120.0C7—C8—H8120.1
H301—N3—H302120.0C9—C8—H8120.1
N1—C1—H5109.3C8—C9—H9119.4
C2—C1—H5109.3C10—C9—H9119.4
C5—C1—H5109.3
C1—N1—C4—C338.1 (6)N1—C1—C2—C323.1 (6)
C4—N1—C1—C237.7 (6)N1—C1—C5—N258.8 (6)
C4—N1—C1—C5159.9 (5)C2—C1—C5—N2175.4 (4)
C5—N2—C6—C7179.0 (6)C5—C1—C2—C3144.9 (5)
C6—N2—C5—C195.2 (6)C1—C2—C3—C40.0 (6)
C5—N2—C10—N32.4 (8)C2—C3—C4—N123.0 (7)
C5—N2—C10—C9178.4 (5)N2—C6—C7—C80.3 (8)
C10—N2—C5—C185.4 (6)C6—C7—C8—C90.4 (9)
C6—N2—C10—N3178.2 (5)C7—C8—C9—C100.1 (8)
C6—N2—C10—C90.9 (8)C8—C9—C10—N20.8 (9)
C10—N2—C6—C70.4 (8)C8—C9—C10—N3178.4 (6)

Experimental details

Crystal data
Chemical formulaC10H17N32+·2Br
Mr339.07
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.5509 (5), 6.1755 (3), 10.8474 (6)
β (°) 107.4830 (14)
V3)674.14 (6)
Z2
Radiation typeMo Kα
µ (mm1)6.01
Crystal size (mm)0.37 × 0.32 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.110, 0.458
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6601, 2681, 1943
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.01
No. of reflections2681
No. of parameters138
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.61
Absolute structureFlack (1983), 1013 Friedel pairs
Absolute structure parameter0.002 (5)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), CRYSTALS (Watkin et al., 1996).

 

Acknowledgements

The authors are grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc. 126, 9558–9559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569–2572.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds