metal-organic compounds
Aquabis(2-chloroacetato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)
aDepartment of Materials Science, and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com
In the title complex, [Cu(C2H2ClO2)2(C12H8N2)(H2O)], the CuII ion is five-coordinated by two N atoms [Cu—N = 2.005 (2) and 2.029 (2) Å] from the 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.943 (2)–1.966 (2) Å] from two 2-chloroacetate ligands and one water molecule [Cu—O = 2.253 (2) Å] in a distorted square-pyramidal geometry. The exhibits intermolecular O—H⋯O hydrogen bonds, short Cl⋯Cl contacts [3.334 (1) Å] and π–π interactions [centroid–centroid distance 3.621 (11) Å].
Related literature
For related crystal structures, see: Sieroń (2007); Czylkowska et al. (2004); Chen et al. (1996); Overgaard et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808000044/cv2370sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808000044/cv2370Isup2.hkl
The reaction was carried out by the solvothermal method. 2-Chloroacetic acid (0.188 g, 2 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.
The yield is 81% and elemental analysis: calc. for C16H14Cl2CuN2O5: C 42.82, H 3.14, N 6.24; found: C 42.55, H 3.39, N 6.32. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.
All H atoms were found in Fourier difference map, but placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.85 Å), with Uiso(H)=1.2Ueq of the parent atom.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL(Sheldrick, 1997.Fig. 1. The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids. |
[Cu(C2H2ClO2)2(C12H8N2)(H2O)] | Z = 2 |
Mr = 448.73 | F(000) = 454 |
Triclinic, P1 | Dx = 1.714 Mg m−3 |
a = 8.7730 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2382 (7) Å | Cell parameters from 3430 reflections |
c = 11.4492 (8) Å | θ = 2.5–28.2° |
α = 96.218 (1)° | µ = 1.59 mm−1 |
β = 106.676 (1)° | T = 273 K |
γ = 97.919 (1)° | Block, blue |
V = 869.66 (11) Å3 | 0.38 × 0.25 × 0.19 mm |
Bruker SMART CCD area detector diffractometer | 3057 independent reflections |
Radiation source: fine-focus sealed tube | 2837 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
phi and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.583, Tmax = 0.752 | k = −8→10 |
4610 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.4807P] where P = (Fo2 + 2Fc2)/3 |
3057 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.30 e Å−3 |
3 restraints | Δρmin = −0.29 e Å−3 |
[Cu(C2H2ClO2)2(C12H8N2)(H2O)] | γ = 97.919 (1)° |
Mr = 448.73 | V = 869.66 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.7730 (6) Å | Mo Kα radiation |
b = 9.2382 (7) Å | µ = 1.59 mm−1 |
c = 11.4492 (8) Å | T = 273 K |
α = 96.218 (1)° | 0.38 × 0.25 × 0.19 mm |
β = 106.676 (1)° |
Bruker SMART CCD area detector diffractometer | 3057 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2837 reflections with I > 2σ(I) |
Tmin = 0.583, Tmax = 0.752 | Rint = 0.015 |
4610 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 3 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.30 e Å−3 |
3057 reflections | Δρmin = −0.29 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.23816 (3) | 0.68495 (3) | 0.71095 (2) | 0.03304 (10) | |
Cl1 | −0.22927 (8) | 0.98116 (9) | 0.83337 (8) | 0.0671 (2) | |
Cl2 | 0.40479 (7) | 0.93989 (7) | 0.62804 (6) | 0.04661 (16) | |
O1 | 0.14841 (19) | 0.84228 (17) | 0.77963 (15) | 0.0421 (4) | |
O2 | −0.1084 (2) | 0.7271 (2) | 0.7366 (2) | 0.0635 (5) | |
O3 | 0.11593 (19) | 0.68927 (16) | 0.53849 (14) | 0.0408 (4) | |
O4 | 0.0053 (2) | 0.7855 (2) | 0.37496 (17) | 0.0622 (5) | |
O5 | 0.06637 (19) | 0.50494 (17) | 0.74928 (15) | 0.0430 (4) | |
H15 | 0.0312 | 0.4180 | 0.7091 | 0.052* | |
H16 | −0.0123 | 0.5517 | 0.7385 | 0.052* | |
N1 | 0.4251 (2) | 0.70913 (19) | 0.86886 (16) | 0.0328 (4) | |
N2 | 0.3550 (2) | 0.53104 (19) | 0.65745 (16) | 0.0334 (4) | |
C1 | 0.0003 (3) | 0.8353 (2) | 0.77567 (19) | 0.0365 (5) | |
C2 | −0.0300 (3) | 0.9841 (3) | 0.8242 (2) | 0.0400 (5) | |
H2A | −0.0099 | 1.0543 | 0.7708 | 0.048* | |
H2B | 0.0464 | 1.0189 | 0.9057 | 0.048* | |
C3 | 0.1023 (3) | 0.7947 (2) | 0.4784 (2) | 0.0366 (5) | |
C4 | 0.2075 (3) | 0.9464 (3) | 0.5315 (2) | 0.0488 (6) | |
H4A | 0.1539 | 1.0031 | 0.5788 | 0.059* | |
H4B | 0.2171 | 0.9981 | 0.4639 | 0.059* | |
C5 | 0.4552 (3) | 0.7987 (3) | 0.9743 (2) | 0.0404 (5) | |
H5A | 0.3851 | 0.8640 | 0.9805 | 0.049* | |
C6 | 0.5887 (3) | 0.7988 (3) | 1.0767 (2) | 0.0486 (6) | |
H6 | 0.6071 | 0.8642 | 1.1490 | 0.058* | |
C7 | 0.6915 (3) | 0.7028 (3) | 1.0699 (2) | 0.0469 (6) | |
H7 | 0.7797 | 0.7014 | 1.1380 | 0.056* | |
C8 | 0.6639 (3) | 0.6057 (3) | 0.9596 (2) | 0.0388 (5) | |
C9 | 0.7622 (3) | 0.4983 (3) | 0.9421 (2) | 0.0479 (6) | |
H9 | 0.8521 | 0.4911 | 1.0067 | 0.057* | |
C10 | 0.7268 (3) | 0.4079 (3) | 0.8339 (3) | 0.0477 (6) | |
H10 | 0.7934 | 0.3401 | 0.8249 | 0.057* | |
C11 | 0.5883 (3) | 0.4140 (2) | 0.7322 (2) | 0.0387 (5) | |
C12 | 0.5395 (3) | 0.3200 (3) | 0.6177 (2) | 0.0453 (6) | |
H12 | 0.6011 | 0.2500 | 0.6028 | 0.054* | |
C13 | 0.4019 (3) | 0.3317 (3) | 0.5290 (2) | 0.0460 (6) | |
H13 | 0.3688 | 0.2690 | 0.4537 | 0.055* | |
C14 | 0.3111 (3) | 0.4378 (2) | 0.5512 (2) | 0.0390 (5) | |
H14 | 0.2168 | 0.4439 | 0.4901 | 0.047* | |
C15 | 0.4909 (2) | 0.5181 (2) | 0.74641 (19) | 0.0319 (4) | |
C16 | 0.5289 (2) | 0.6148 (2) | 0.86151 (19) | 0.0317 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03296 (16) | 0.03095 (16) | 0.03298 (16) | 0.00803 (11) | 0.00661 (11) | 0.00203 (10) |
Cl1 | 0.0439 (4) | 0.0748 (5) | 0.0858 (5) | 0.0241 (3) | 0.0227 (3) | 0.0012 (4) |
Cl2 | 0.0413 (3) | 0.0447 (3) | 0.0484 (3) | −0.0015 (2) | 0.0122 (3) | −0.0006 (3) |
O1 | 0.0360 (8) | 0.0378 (8) | 0.0516 (9) | 0.0094 (7) | 0.0135 (7) | −0.0010 (7) |
O2 | 0.0409 (10) | 0.0442 (10) | 0.0972 (16) | 0.0042 (8) | 0.0163 (10) | −0.0071 (10) |
O3 | 0.0474 (9) | 0.0287 (8) | 0.0373 (8) | 0.0040 (7) | −0.0002 (7) | 0.0058 (6) |
O4 | 0.0747 (13) | 0.0462 (10) | 0.0453 (10) | 0.0019 (9) | −0.0113 (9) | 0.0129 (8) |
O5 | 0.0435 (9) | 0.0342 (8) | 0.0493 (9) | 0.0040 (7) | 0.0130 (7) | 0.0051 (7) |
N1 | 0.0344 (9) | 0.0302 (9) | 0.0328 (9) | 0.0031 (7) | 0.0105 (7) | 0.0032 (7) |
N2 | 0.0359 (9) | 0.0312 (9) | 0.0328 (9) | 0.0052 (7) | 0.0109 (8) | 0.0037 (7) |
C1 | 0.0357 (12) | 0.0380 (12) | 0.0352 (11) | 0.0099 (10) | 0.0078 (9) | 0.0069 (9) |
C2 | 0.0376 (12) | 0.0416 (12) | 0.0415 (12) | 0.0122 (10) | 0.0117 (10) | 0.0041 (10) |
C3 | 0.0399 (12) | 0.0330 (11) | 0.0340 (11) | 0.0085 (9) | 0.0069 (9) | 0.0025 (9) |
C4 | 0.0540 (15) | 0.0334 (12) | 0.0501 (14) | 0.0061 (11) | 0.0024 (12) | 0.0077 (10) |
C5 | 0.0457 (13) | 0.0362 (12) | 0.0372 (12) | 0.0049 (10) | 0.0129 (10) | −0.0011 (9) |
C6 | 0.0548 (15) | 0.0482 (14) | 0.0327 (12) | −0.0027 (12) | 0.0063 (11) | −0.0022 (10) |
C7 | 0.0418 (13) | 0.0490 (14) | 0.0390 (12) | −0.0038 (11) | −0.0005 (10) | 0.0114 (11) |
C8 | 0.0344 (11) | 0.0398 (12) | 0.0409 (12) | 0.0010 (9) | 0.0090 (9) | 0.0142 (10) |
C9 | 0.0337 (12) | 0.0546 (15) | 0.0570 (15) | 0.0110 (11) | 0.0099 (11) | 0.0230 (12) |
C10 | 0.0400 (13) | 0.0467 (14) | 0.0657 (16) | 0.0188 (11) | 0.0217 (12) | 0.0192 (12) |
C11 | 0.0396 (12) | 0.0326 (11) | 0.0516 (13) | 0.0075 (9) | 0.0231 (10) | 0.0129 (10) |
C12 | 0.0530 (15) | 0.0319 (12) | 0.0609 (15) | 0.0109 (10) | 0.0316 (13) | 0.0060 (10) |
C13 | 0.0582 (15) | 0.0329 (12) | 0.0474 (14) | 0.0002 (11) | 0.0247 (12) | −0.0048 (10) |
C14 | 0.0436 (12) | 0.0339 (11) | 0.0363 (11) | 0.0008 (9) | 0.0121 (10) | 0.0005 (9) |
C15 | 0.0326 (11) | 0.0288 (10) | 0.0370 (11) | 0.0040 (8) | 0.0145 (9) | 0.0080 (8) |
C16 | 0.0302 (10) | 0.0313 (10) | 0.0341 (11) | 0.0024 (8) | 0.0107 (9) | 0.0091 (8) |
Cu1—O1 | 1.9427 (15) | C4—H4A | 0.9700 |
Cu1—O3 | 1.9657 (15) | C4—H4B | 0.9700 |
Cu1—N2 | 2.0052 (18) | C5—C6 | 1.399 (3) |
Cu1—N1 | 2.0294 (18) | C5—H5A | 0.9300 |
Cu1—O5 | 2.2531 (16) | C6—C7 | 1.361 (4) |
Cl1—C2 | 1.778 (2) | C6—H6 | 0.9300 |
Cl1—Cl2i | 3.3340 (10) | C7—C8 | 1.406 (3) |
Cl2—C4 | 1.779 (3) | C7—H7 | 0.9300 |
O1—C1 | 1.279 (3) | C8—C16 | 1.398 (3) |
O2—C1 | 1.226 (3) | C8—C9 | 1.435 (3) |
O3—C3 | 1.251 (3) | C9—C10 | 1.346 (4) |
O4—C3 | 1.231 (3) | C9—H9 | 0.9300 |
O5—H15 | 0.8498 | C10—C11 | 1.434 (3) |
O5—H16 | 0.8498 | C10—H10 | 0.9300 |
N1—C5 | 1.324 (3) | C11—C15 | 1.398 (3) |
N1—C16 | 1.357 (3) | C11—C12 | 1.408 (3) |
N2—C14 | 1.336 (3) | C12—C13 | 1.363 (4) |
N2—C15 | 1.357 (3) | C12—H12 | 0.9300 |
C1—C2 | 1.514 (3) | C13—C14 | 1.392 (3) |
C2—H2A | 0.9700 | C13—H13 | 0.9300 |
C2—H2B | 0.9700 | C14—H14 | 0.9300 |
C3—C4 | 1.524 (3) | C15—C16 | 1.434 (3) |
Cl1···Cl2i | 3.334 (1) | Cg1···Cg2ii | 3.621 (11) |
O1—Cu1—O3 | 94.93 (7) | H4A—C4—H4B | 107.7 |
O1—Cu1—N2 | 173.08 (7) | N1—C5—C6 | 122.4 (2) |
O3—Cu1—N2 | 91.04 (7) | N1—C5—H5A | 118.8 |
O1—Cu1—N1 | 91.67 (7) | C6—C5—H5A | 118.8 |
O3—Cu1—N1 | 160.92 (7) | C7—C6—C5 | 119.7 (2) |
N2—Cu1—N1 | 81.58 (7) | C7—C6—H6 | 120.2 |
O1—Cu1—O5 | 93.30 (6) | C5—C6—H6 | 120.2 |
O3—Cu1—O5 | 98.18 (6) | C6—C7—C8 | 119.7 (2) |
N2—Cu1—O5 | 89.32 (7) | C6—C7—H7 | 120.1 |
N1—Cu1—O5 | 99.28 (7) | C8—C7—H7 | 120.1 |
C1—O1—Cu1 | 125.47 (14) | C16—C8—C7 | 116.6 (2) |
C3—O3—Cu1 | 130.63 (14) | C16—C8—C9 | 118.6 (2) |
Cu1—O5—H15 | 127.2 | C7—C8—C9 | 124.8 (2) |
Cu1—O5—H16 | 95.7 | C10—C9—C8 | 121.3 (2) |
H15—O5—H16 | 108.2 | C10—C9—H9 | 119.3 |
C5—N1—C16 | 117.97 (19) | C8—C9—H9 | 119.3 |
C5—N1—Cu1 | 129.49 (16) | C9—C10—C11 | 121.2 (2) |
C16—N1—Cu1 | 112.52 (13) | C9—C10—H10 | 119.4 |
C14—N2—C15 | 118.05 (19) | C11—C10—H10 | 119.4 |
C14—N2—Cu1 | 128.50 (16) | C15—C11—C12 | 116.5 (2) |
C15—N2—Cu1 | 113.32 (13) | C15—C11—C10 | 118.7 (2) |
O2—C1—O1 | 127.3 (2) | C12—C11—C10 | 124.8 (2) |
O2—C1—C2 | 121.8 (2) | C13—C12—C11 | 119.9 (2) |
O1—C1—C2 | 110.88 (19) | C13—C12—H12 | 120.0 |
C1—C2—Cl1 | 113.88 (16) | C11—C12—H12 | 120.0 |
C1—C2—H2A | 108.8 | C12—C13—C14 | 119.9 (2) |
Cl1—C2—H2A | 108.8 | C12—C13—H13 | 120.0 |
C1—C2—H2B | 108.8 | C14—C13—H13 | 120.0 |
Cl1—C2—H2B | 108.8 | N2—C14—C13 | 122.0 (2) |
H2A—C2—H2B | 107.7 | N2—C14—H14 | 119.0 |
O4—C3—O3 | 123.8 (2) | C13—C14—H14 | 119.0 |
O4—C3—C4 | 115.3 (2) | N2—C15—C11 | 123.6 (2) |
O3—C3—C4 | 120.9 (2) | N2—C15—C16 | 116.28 (18) |
C3—C4—Cl2 | 113.92 (17) | C11—C15—C16 | 120.1 (2) |
C3—C4—H4A | 108.8 | N1—C16—C8 | 123.6 (2) |
Cl2—C4—H4A | 108.8 | N1—C16—C15 | 116.28 (18) |
C3—C4—H4B | 108.8 | C8—C16—C15 | 120.1 (2) |
Cl2—C4—H4B | 108.8 | ||
O3—Cu1—O1—C1 | 65.71 (18) | C5—C6—C7—C8 | 0.8 (4) |
N2—Cu1—O1—C1 | −144.9 (5) | C6—C7—C8—C16 | 0.0 (3) |
N1—Cu1—O1—C1 | −132.21 (18) | C6—C7—C8—C9 | −179.0 (2) |
O5—Cu1—O1—C1 | −32.81 (18) | C16—C8—C9—C10 | 0.2 (3) |
O1—Cu1—O3—C3 | 52.0 (2) | C7—C8—C9—C10 | 179.2 (2) |
N2—Cu1—O3—C3 | −124.4 (2) | C8—C9—C10—C11 | −0.7 (4) |
N1—Cu1—O3—C3 | −57.7 (3) | C9—C10—C11—C15 | 1.0 (3) |
O5—Cu1—O3—C3 | 146.1 (2) | C9—C10—C11—C12 | −177.6 (2) |
O1—Cu1—N1—C5 | 2.6 (2) | C15—C11—C12—C13 | −1.2 (3) |
O3—Cu1—N1—C5 | 112.9 (2) | C10—C11—C12—C13 | 177.4 (2) |
N2—Cu1—N1—C5 | −178.9 (2) | C11—C12—C13—C14 | 0.7 (4) |
O5—Cu1—N1—C5 | −91.01 (19) | C15—N2—C14—C13 | −1.5 (3) |
O1—Cu1—N1—C16 | −179.12 (14) | Cu1—N2—C14—C13 | −177.15 (17) |
O3—Cu1—N1—C16 | −68.8 (3) | C12—C13—C14—N2 | 0.7 (4) |
N2—Cu1—N1—C16 | −0.65 (14) | C14—N2—C15—C11 | 0.9 (3) |
O5—Cu1—N1—C16 | 87.26 (14) | Cu1—N2—C15—C11 | 177.24 (16) |
O1—Cu1—N2—C14 | −170.8 (5) | C14—N2—C15—C16 | −176.64 (18) |
O3—Cu1—N2—C14 | −21.29 (19) | Cu1—N2—C15—C16 | −0.3 (2) |
N1—Cu1—N2—C14 | 176.37 (19) | C12—C11—C15—N2 | 0.4 (3) |
O5—Cu1—N2—C14 | 76.88 (19) | C10—C11—C15—N2 | −178.3 (2) |
O1—Cu1—N2—C15 | 13.4 (6) | C12—C11—C15—C16 | 177.90 (19) |
O3—Cu1—N2—C15 | 162.87 (14) | C10—C11—C15—C16 | −0.8 (3) |
N1—Cu1—N2—C15 | 0.53 (14) | C5—N1—C16—C8 | 1.0 (3) |
O5—Cu1—N2—C15 | −98.96 (14) | Cu1—N1—C16—C8 | −177.50 (16) |
Cu1—O1—C1—O2 | 5.6 (3) | C5—N1—C16—C15 | 179.16 (18) |
Cu1—O1—C1—C2 | −172.99 (14) | Cu1—N1—C16—C15 | 0.7 (2) |
O2—C1—C2—Cl1 | 6.1 (3) | C7—C8—C16—N1 | −1.0 (3) |
O1—C1—C2—Cl1 | −175.31 (16) | C9—C8—C16—N1 | 178.1 (2) |
Cu1—O3—C3—O4 | −170.39 (19) | C7—C8—C16—C15 | −179.08 (19) |
Cu1—O3—C3—C4 | 9.1 (3) | C9—C8—C16—C15 | 0.0 (3) |
O4—C3—C4—Cl2 | −147.4 (2) | N2—C15—C16—N1 | −0.2 (3) |
O3—C3—C4—Cl2 | 33.1 (3) | C11—C15—C16—N1 | −177.89 (18) |
C16—N1—C5—C6 | −0.1 (3) | N2—C15—C16—C8 | 178.01 (18) |
Cu1—N1—C5—C6 | 178.14 (17) | C11—C15—C16—C8 | 0.3 (3) |
N1—C5—C6—C7 | −0.8 (4) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H15···O4iii | 0.85 | 1.96 | 2.796 (2) | 169 |
Symmetry code: (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H2ClO2)2(C12H8N2)(H2O)] |
Mr | 448.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 8.7730 (6), 9.2382 (7), 11.4492 (8) |
α, β, γ (°) | 96.218 (1), 106.676 (1), 97.919 (1) |
V (Å3) | 869.66 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.59 |
Crystal size (mm) | 0.38 × 0.25 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.583, 0.752 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4610, 3057, 2837 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.074, 1.00 |
No. of reflections | 3057 |
No. of parameters | 235 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.29 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 1997), SHELXTL(Sheldrick, 1997.
Cl1···Cl2i | 3.334 (1) | Cg1···Cg2ii | 3.621 (11) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H15···O4iii | 0.85 | 1.96 | 2.796 (2) | 168.8 |
Symmetry code: (iii) −x, −y+1, −z+1. |
Acknowledgements
The authors thank the Postgraduate Foundation of Taishan University for financial support.
References
Chen, X. M., Tong, M. L., Wu, Y. L. & Luo, Y. J. (1996). J. Chem. Soc. Dalton Trans. pp. 2181–2182. CSD CrossRef Web of Science Google Scholar
Czylkowska, A., Kruszynski, R., Czakis-Sulikowska, D. & Bartczak, T. J. (2004). J. Coord. Chem. 57, 239–249. CrossRef CAS Google Scholar
Overgaard, J., Larsen, F. K., Schiott, B. & Lversen, B. B. (2003). J. Am. Chem. Soc. 125, 11088–11098. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Google Scholar
Sieroń, L. (2007). Acta Cryst. E63, m1659–m1661. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Chloroacetic acid and its derivatives are often used in the synthesis of mononuclear monomeric (Sieroń, 2007; Czylkowska et al., 2004) and polymeric compounds (Chen et al., 1996; Overgaard et al., 2003). In our search for new topogical structures, we selected the copper(II) ion with 2-chloroacetic acid in the presence of 1,10-phenanthroline as a co-ligand, and obtained the title compound, (I).
In (I) (Fig. 1), Cu1 exhibits a five-coordinated square-pyramidal environment, formed by two O atoms from two carboxyl ligands (Cu1—O1 1.943 (2) Å, Cu1—O3 1.966 (2) Å), one water molecule (Cu1—O5 2.243 (5) Å) and two N atoms (Cu1—N1 2.029 (2) Å, Cu1—N2 2.005 (2) Å) from 1,10-phenanthroline ligand.
In the crystal structure, there exist short intermolecular Cl···Cl contacts (Table 1), π···π stacking interactions between the aromatic rings from neighbouring molecules (Table 1), and intermolecular O—H···O hydrogen bonds (Table 2), which link the molecules into centrosymmetric dimers.