metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(2-chloro­acetato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aDepartment of Materials Science, and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 29 November 2007; accepted 1 January 2008; online 16 January 2008)

In the title complex, [Cu(C2H2ClO2)2(C12H8N2)(H2O)], the CuII ion is five-coordinated by two N atoms [Cu—N = 2.005 (2) and 2.029 (2) Å] from the 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.943 (2)–1.966 (2) Å] from two 2-chloro­acetate ligands and one water mol­ecule [Cu—O = 2.253 (2) Å] in a distorted square-pyramidal geometry. The crystal structure exhibits inter­molecular O—H⋯O hydrogen bonds, short Cl⋯Cl contacts [3.334 (1) Å] and ππ inter­actions [centroid–centroid distance 3.621 (11) Å].

Related literature

For related crystal structures, see: Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m1659-m1661.]); Czylkowska et al. (2004[Czylkowska, A., Kruszynski, R., Czakis-Sulikowska, D. & Bartczak, T. J. (2004). J. Coord. Chem. 57, 239-249.]); Chen et al. (1996[Chen, X. M., Tong, M. L., Wu, Y. L. & Luo, Y. J. (1996). J. Chem. Soc. Dalton Trans. pp. 2181-2182.]); Overgaard et al. (2003[Overgaard, J., Larsen, F. K., Schiott, B. & Lversen, B. B. (2003). J. Am. Chem. Soc. 125, 11088-11098.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H2ClO2)2(C12H8N2)(H2O)]

  • Mr = 448.73

  • Triclinic, [P \overline 1]

  • a = 8.7730 (6) Å

  • b = 9.2382 (7) Å

  • c = 11.4492 (8) Å

  • α = 96.2180 (10)°

  • β = 106.6760 (10)°

  • γ = 97.9190 (10)°

  • V = 869.66 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 273 (2) K

  • 0.38 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.583, Tmax = 0.752

  • 4610 measured reflections

  • 3057 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.00

  • 3057 reflections

  • 235 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H15⋯O4i 0.85 1.96 2.796 (2) 169
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Chloroacetic acid and its derivatives are often used in the synthesis of mononuclear monomeric (Sieroń, 2007; Czylkowska et al., 2004) and polymeric compounds (Chen et al., 1996; Overgaard et al., 2003). In our search for new topogical structures, we selected the copper(II) ion with 2-chloroacetic acid in the presence of 1,10-phenanthroline as a co-ligand, and obtained the title compound, (I).

In (I) (Fig. 1), Cu1 exhibits a five-coordinated square-pyramidal environment, formed by two O atoms from two carboxyl ligands (Cu1—O1 1.943 (2) Å, Cu1—O3 1.966 (2) Å), one water molecule (Cu1—O5 2.243 (5) Å) and two N atoms (Cu1—N1 2.029 (2) Å, Cu1—N2 2.005 (2) Å) from 1,10-phenanthroline ligand.

In the crystal structure, there exist short intermolecular Cl···Cl contacts (Table 1), π···π stacking interactions between the aromatic rings from neighbouring molecules (Table 1), and intermolecular O—H···O hydrogen bonds (Table 2), which link the molecules into centrosymmetric dimers.

Related literature top

For related crystal structures, see: Sieroń (2007); Czylkowska et al. (2004); Chen et al. (1996); Overgaard et al. (2003).

Experimental top

The reaction was carried out by the solvothermal method. 2-Chloroacetic acid (0.188 g, 2 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.

The yield is 81% and elemental analysis: calc. for C16H14Cl2CuN2O5: C 42.82, H 3.14, N 6.24; found: C 42.55, H 3.39, N 6.32. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement top

All H atoms were found in Fourier difference map, but placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.85 Å), with Uiso(H)=1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL(Sheldrick, 1997.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids.
Aquabis(2-chloroacetato-κO)(1,10-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C2H2ClO2)2(C12H8N2)(H2O)]Z = 2
Mr = 448.73F(000) = 454
Triclinic, P1Dx = 1.714 Mg m3
a = 8.7730 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2382 (7) ÅCell parameters from 3430 reflections
c = 11.4492 (8) Åθ = 2.5–28.2°
α = 96.218 (1)°µ = 1.59 mm1
β = 106.676 (1)°T = 273 K
γ = 97.919 (1)°Block, blue
V = 869.66 (11) Å30.38 × 0.25 × 0.19 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3057 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.583, Tmax = 0.752k = 810
4610 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.043P)2 + 0.4807P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C2H2ClO2)2(C12H8N2)(H2O)]γ = 97.919 (1)°
Mr = 448.73V = 869.66 (11) Å3
Triclinic, P1Z = 2
a = 8.7730 (6) ÅMo Kα radiation
b = 9.2382 (7) ŵ = 1.59 mm1
c = 11.4492 (8) ÅT = 273 K
α = 96.218 (1)°0.38 × 0.25 × 0.19 mm
β = 106.676 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2837 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.752Rint = 0.015
4610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
3057 reflectionsΔρmin = 0.29 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23816 (3)0.68495 (3)0.71095 (2)0.03304 (10)
Cl10.22927 (8)0.98116 (9)0.83337 (8)0.0671 (2)
Cl20.40479 (7)0.93989 (7)0.62804 (6)0.04661 (16)
O10.14841 (19)0.84228 (17)0.77963 (15)0.0421 (4)
O20.1084 (2)0.7271 (2)0.7366 (2)0.0635 (5)
O30.11593 (19)0.68927 (16)0.53849 (14)0.0408 (4)
O40.0053 (2)0.7855 (2)0.37496 (17)0.0622 (5)
O50.06637 (19)0.50494 (17)0.74928 (15)0.0430 (4)
H150.03120.41800.70910.052*
H160.01230.55170.73850.052*
N10.4251 (2)0.70913 (19)0.86886 (16)0.0328 (4)
N20.3550 (2)0.53104 (19)0.65745 (16)0.0334 (4)
C10.0003 (3)0.8353 (2)0.77567 (19)0.0365 (5)
C20.0300 (3)0.9841 (3)0.8242 (2)0.0400 (5)
H2A0.00991.05430.77080.048*
H2B0.04641.01890.90570.048*
C30.1023 (3)0.7947 (2)0.4784 (2)0.0366 (5)
C40.2075 (3)0.9464 (3)0.5315 (2)0.0488 (6)
H4A0.15391.00310.57880.059*
H4B0.21710.99810.46390.059*
C50.4552 (3)0.7987 (3)0.9743 (2)0.0404 (5)
H5A0.38510.86400.98050.049*
C60.5887 (3)0.7988 (3)1.0767 (2)0.0486 (6)
H60.60710.86421.14900.058*
C70.6915 (3)0.7028 (3)1.0699 (2)0.0469 (6)
H70.77970.70141.13800.056*
C80.6639 (3)0.6057 (3)0.9596 (2)0.0388 (5)
C90.7622 (3)0.4983 (3)0.9421 (2)0.0479 (6)
H90.85210.49111.00670.057*
C100.7268 (3)0.4079 (3)0.8339 (3)0.0477 (6)
H100.79340.34010.82490.057*
C110.5883 (3)0.4140 (2)0.7322 (2)0.0387 (5)
C120.5395 (3)0.3200 (3)0.6177 (2)0.0453 (6)
H120.60110.25000.60280.054*
C130.4019 (3)0.3317 (3)0.5290 (2)0.0460 (6)
H130.36880.26900.45370.055*
C140.3111 (3)0.4378 (2)0.5512 (2)0.0390 (5)
H140.21680.44390.49010.047*
C150.4909 (2)0.5181 (2)0.74641 (19)0.0319 (4)
C160.5289 (2)0.6148 (2)0.86151 (19)0.0317 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03296 (16)0.03095 (16)0.03298 (16)0.00803 (11)0.00661 (11)0.00203 (10)
Cl10.0439 (4)0.0748 (5)0.0858 (5)0.0241 (3)0.0227 (3)0.0012 (4)
Cl20.0413 (3)0.0447 (3)0.0484 (3)0.0015 (2)0.0122 (3)0.0006 (3)
O10.0360 (8)0.0378 (8)0.0516 (9)0.0094 (7)0.0135 (7)0.0010 (7)
O20.0409 (10)0.0442 (10)0.0972 (16)0.0042 (8)0.0163 (10)0.0071 (10)
O30.0474 (9)0.0287 (8)0.0373 (8)0.0040 (7)0.0002 (7)0.0058 (6)
O40.0747 (13)0.0462 (10)0.0453 (10)0.0019 (9)0.0113 (9)0.0129 (8)
O50.0435 (9)0.0342 (8)0.0493 (9)0.0040 (7)0.0130 (7)0.0051 (7)
N10.0344 (9)0.0302 (9)0.0328 (9)0.0031 (7)0.0105 (7)0.0032 (7)
N20.0359 (9)0.0312 (9)0.0328 (9)0.0052 (7)0.0109 (8)0.0037 (7)
C10.0357 (12)0.0380 (12)0.0352 (11)0.0099 (10)0.0078 (9)0.0069 (9)
C20.0376 (12)0.0416 (12)0.0415 (12)0.0122 (10)0.0117 (10)0.0041 (10)
C30.0399 (12)0.0330 (11)0.0340 (11)0.0085 (9)0.0069 (9)0.0025 (9)
C40.0540 (15)0.0334 (12)0.0501 (14)0.0061 (11)0.0024 (12)0.0077 (10)
C50.0457 (13)0.0362 (12)0.0372 (12)0.0049 (10)0.0129 (10)0.0011 (9)
C60.0548 (15)0.0482 (14)0.0327 (12)0.0027 (12)0.0063 (11)0.0022 (10)
C70.0418 (13)0.0490 (14)0.0390 (12)0.0038 (11)0.0005 (10)0.0114 (11)
C80.0344 (11)0.0398 (12)0.0409 (12)0.0010 (9)0.0090 (9)0.0142 (10)
C90.0337 (12)0.0546 (15)0.0570 (15)0.0110 (11)0.0099 (11)0.0230 (12)
C100.0400 (13)0.0467 (14)0.0657 (16)0.0188 (11)0.0217 (12)0.0192 (12)
C110.0396 (12)0.0326 (11)0.0516 (13)0.0075 (9)0.0231 (10)0.0129 (10)
C120.0530 (15)0.0319 (12)0.0609 (15)0.0109 (10)0.0316 (13)0.0060 (10)
C130.0582 (15)0.0329 (12)0.0474 (14)0.0002 (11)0.0247 (12)0.0048 (10)
C140.0436 (12)0.0339 (11)0.0363 (11)0.0008 (9)0.0121 (10)0.0005 (9)
C150.0326 (11)0.0288 (10)0.0370 (11)0.0040 (8)0.0145 (9)0.0080 (8)
C160.0302 (10)0.0313 (10)0.0341 (11)0.0024 (8)0.0107 (9)0.0091 (8)
Geometric parameters (Å, º) top
Cu1—O11.9427 (15)C4—H4A0.9700
Cu1—O31.9657 (15)C4—H4B0.9700
Cu1—N22.0052 (18)C5—C61.399 (3)
Cu1—N12.0294 (18)C5—H5A0.9300
Cu1—O52.2531 (16)C6—C71.361 (4)
Cl1—C21.778 (2)C6—H60.9300
Cl1—Cl2i3.3340 (10)C7—C81.406 (3)
Cl2—C41.779 (3)C7—H70.9300
O1—C11.279 (3)C8—C161.398 (3)
O2—C11.226 (3)C8—C91.435 (3)
O3—C31.251 (3)C9—C101.346 (4)
O4—C31.231 (3)C9—H90.9300
O5—H150.8498C10—C111.434 (3)
O5—H160.8498C10—H100.9300
N1—C51.324 (3)C11—C151.398 (3)
N1—C161.357 (3)C11—C121.408 (3)
N2—C141.336 (3)C12—C131.363 (4)
N2—C151.357 (3)C12—H120.9300
C1—C21.514 (3)C13—C141.392 (3)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—H140.9300
C3—C41.524 (3)C15—C161.434 (3)
Cl1···Cl2i3.334 (1)Cg1···Cg2ii3.621 (11)
O1—Cu1—O394.93 (7)H4A—C4—H4B107.7
O1—Cu1—N2173.08 (7)N1—C5—C6122.4 (2)
O3—Cu1—N291.04 (7)N1—C5—H5A118.8
O1—Cu1—N191.67 (7)C6—C5—H5A118.8
O3—Cu1—N1160.92 (7)C7—C6—C5119.7 (2)
N2—Cu1—N181.58 (7)C7—C6—H6120.2
O1—Cu1—O593.30 (6)C5—C6—H6120.2
O3—Cu1—O598.18 (6)C6—C7—C8119.7 (2)
N2—Cu1—O589.32 (7)C6—C7—H7120.1
N1—Cu1—O599.28 (7)C8—C7—H7120.1
C1—O1—Cu1125.47 (14)C16—C8—C7116.6 (2)
C3—O3—Cu1130.63 (14)C16—C8—C9118.6 (2)
Cu1—O5—H15127.2C7—C8—C9124.8 (2)
Cu1—O5—H1695.7C10—C9—C8121.3 (2)
H15—O5—H16108.2C10—C9—H9119.3
C5—N1—C16117.97 (19)C8—C9—H9119.3
C5—N1—Cu1129.49 (16)C9—C10—C11121.2 (2)
C16—N1—Cu1112.52 (13)C9—C10—H10119.4
C14—N2—C15118.05 (19)C11—C10—H10119.4
C14—N2—Cu1128.50 (16)C15—C11—C12116.5 (2)
C15—N2—Cu1113.32 (13)C15—C11—C10118.7 (2)
O2—C1—O1127.3 (2)C12—C11—C10124.8 (2)
O2—C1—C2121.8 (2)C13—C12—C11119.9 (2)
O1—C1—C2110.88 (19)C13—C12—H12120.0
C1—C2—Cl1113.88 (16)C11—C12—H12120.0
C1—C2—H2A108.8C12—C13—C14119.9 (2)
Cl1—C2—H2A108.8C12—C13—H13120.0
C1—C2—H2B108.8C14—C13—H13120.0
Cl1—C2—H2B108.8N2—C14—C13122.0 (2)
H2A—C2—H2B107.7N2—C14—H14119.0
O4—C3—O3123.8 (2)C13—C14—H14119.0
O4—C3—C4115.3 (2)N2—C15—C11123.6 (2)
O3—C3—C4120.9 (2)N2—C15—C16116.28 (18)
C3—C4—Cl2113.92 (17)C11—C15—C16120.1 (2)
C3—C4—H4A108.8N1—C16—C8123.6 (2)
Cl2—C4—H4A108.8N1—C16—C15116.28 (18)
C3—C4—H4B108.8C8—C16—C15120.1 (2)
Cl2—C4—H4B108.8
O3—Cu1—O1—C165.71 (18)C5—C6—C7—C80.8 (4)
N2—Cu1—O1—C1144.9 (5)C6—C7—C8—C160.0 (3)
N1—Cu1—O1—C1132.21 (18)C6—C7—C8—C9179.0 (2)
O5—Cu1—O1—C132.81 (18)C16—C8—C9—C100.2 (3)
O1—Cu1—O3—C352.0 (2)C7—C8—C9—C10179.2 (2)
N2—Cu1—O3—C3124.4 (2)C8—C9—C10—C110.7 (4)
N1—Cu1—O3—C357.7 (3)C9—C10—C11—C151.0 (3)
O5—Cu1—O3—C3146.1 (2)C9—C10—C11—C12177.6 (2)
O1—Cu1—N1—C52.6 (2)C15—C11—C12—C131.2 (3)
O3—Cu1—N1—C5112.9 (2)C10—C11—C12—C13177.4 (2)
N2—Cu1—N1—C5178.9 (2)C11—C12—C13—C140.7 (4)
O5—Cu1—N1—C591.01 (19)C15—N2—C14—C131.5 (3)
O1—Cu1—N1—C16179.12 (14)Cu1—N2—C14—C13177.15 (17)
O3—Cu1—N1—C1668.8 (3)C12—C13—C14—N20.7 (4)
N2—Cu1—N1—C160.65 (14)C14—N2—C15—C110.9 (3)
O5—Cu1—N1—C1687.26 (14)Cu1—N2—C15—C11177.24 (16)
O1—Cu1—N2—C14170.8 (5)C14—N2—C15—C16176.64 (18)
O3—Cu1—N2—C1421.29 (19)Cu1—N2—C15—C160.3 (2)
N1—Cu1—N2—C14176.37 (19)C12—C11—C15—N20.4 (3)
O5—Cu1—N2—C1476.88 (19)C10—C11—C15—N2178.3 (2)
O1—Cu1—N2—C1513.4 (6)C12—C11—C15—C16177.90 (19)
O3—Cu1—N2—C15162.87 (14)C10—C11—C15—C160.8 (3)
N1—Cu1—N2—C150.53 (14)C5—N1—C16—C81.0 (3)
O5—Cu1—N2—C1598.96 (14)Cu1—N1—C16—C8177.50 (16)
Cu1—O1—C1—O25.6 (3)C5—N1—C16—C15179.16 (18)
Cu1—O1—C1—C2172.99 (14)Cu1—N1—C16—C150.7 (2)
O2—C1—C2—Cl16.1 (3)C7—C8—C16—N11.0 (3)
O1—C1—C2—Cl1175.31 (16)C9—C8—C16—N1178.1 (2)
Cu1—O3—C3—O4170.39 (19)C7—C8—C16—C15179.08 (19)
Cu1—O3—C3—C49.1 (3)C9—C8—C16—C150.0 (3)
O4—C3—C4—Cl2147.4 (2)N2—C15—C16—N10.2 (3)
O3—C3—C4—Cl233.1 (3)C11—C15—C16—N1177.89 (18)
C16—N1—C5—C60.1 (3)N2—C15—C16—C8178.01 (18)
Cu1—N1—C5—C6178.14 (17)C11—C15—C16—C80.3 (3)
N1—C5—C6—C70.8 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H15···O4iii0.851.962.796 (2)169
Symmetry code: (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H2ClO2)2(C12H8N2)(H2O)]
Mr448.73
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.7730 (6), 9.2382 (7), 11.4492 (8)
α, β, γ (°)96.218 (1), 106.676 (1), 97.919 (1)
V3)869.66 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.38 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.583, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
4610, 3057, 2837
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.00
No. of reflections3057
No. of parameters235
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 1997), SHELXTL(Sheldrick, 1997.

Selected interatomic distances (Å) top
Cl1···Cl2i3.334 (1)Cg1···Cg2ii3.621 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H15···O4iii0.851.962.796 (2)168.8
Symmetry code: (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support.

References

First citationChen, X. M., Tong, M. L., Wu, Y. L. & Luo, Y. J. (1996). J. Chem. Soc. Dalton Trans. pp. 2181–2182.  CSD CrossRef Web of Science Google Scholar
First citationCzylkowska, A., Kruszynski, R., Czakis-Sulikowska, D. & Bartczak, T. J. (2004). J. Coord. Chem. 57, 239–249.  CrossRef CAS Google Scholar
First citationOvergaard, J., Larsen, F. K., Schiott, B. & Lversen, B. B. (2003). J. Am. Chem. Soc. 125, 11088–11098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m1659–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds