metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­di­imidazole­nickel(II) naphthalene-1,5-di­sulfonate

aCollege of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: dengdongsheng168@sina.com

(Received 5 December 2007; accepted 19 December 2007; online 4 January 2008)

The triclinic unit cell of the title compound, [Ni(C3H4N2)2(H2O)4](C10H6O6S2), contains one centrosymmetric cation and one centrosymmetric anion. In the cation, the NiII ion is six-coordinated by two imidazole ligands [Ni—N = 2.0568 (14) Å] and four water mol­ecules [both independent Ni—O distances are 2.098 (1) Å] in a distorted octa­hedral geometry. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal packing.

Related literature

For related literature, see: Côté & Shimizu (2003[Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.]); Cai (2004[Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061-1083.]); Cai et al. (2001[Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370-2375.]); Chen et al. (2001[Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271-280.], 2002[Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967-4974.]); Lian et al. (2007[Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.]); Liu et al. (2006[Liu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045-3052.]); Zhou et al. (2004[Zhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493-1497.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H4N2)2(H2O)4](C10H6O6S2)

  • Mr = 553.21

  • Triclinic, [P \overline 1]

  • a = 8.285 (3) Å

  • b = 8.925 (3) Å

  • c = 9.088 (3) Å

  • α = 107.705 (5)°

  • β = 101.628 (5)°

  • γ = 111.967 (5)°

  • V = 554.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 273 (2) K

  • 0.37 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.790

  • 4834 measured reflections

  • 2499 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.08

  • 2499 reflections

  • 167 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.82 (2) 2.022 (15) 2.7507 (18) 148 (2)
O1W—H1WB⋯O1 0.82 (2) 2.018 (14) 2.788 (2) 156 (3)
O2W—H2WA⋯O1ii 0.81 (2) 1.962 (10) 2.7496 (19) 161 (2)
O2W—H2WB⋯O2iii 0.81 (2) 1.96 (2) 2.7979 (18) 173 (2)
N2—H7A⋯O3iv 0.86 2.19 2.981 (2) 154
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1; (iv) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The weak coordination nature of SO3- makes its coordination mode very flexible and sensitive to the chemical environment (Côté et al., 2003). It is known that the coordination behavior of arenesulfonates with transition metals can be tailored in the presence of amino ligands (Lian et al., 2007; Liu et al., 2006; Zhou et al., 2004; Chen et al., 2001; Cai et al., 2001; Chen et al., 2002). Herewith we present the crystal structure of the title compound, [C6H16N4NiO4]2+.[C10H6O6S2]2- (I) (Fig. 1).

The asymmetric unit of (I) contains a half of complex cation and a half of organic anion. Four water molecules coordinate to the nickel ion in trans position, respectively, and two imine nitrogen atoms from two imidazole ligands coordinate to nickel atom in trans position too. Thus, the nickel ion has a slightly distorted octahedral coordination geometry.

The title compound adopts the same hybrid organic-inorganic packing pattern as that reported earlier (Cai, 2004; Chen et al., 2001; Cai et al., 2001; Chen et al., 2002). The intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) form an extensive three-dimensional network, which consolidates the crystal packing.

Related literature top

For related literature, see: Côté & Shimizu (2003); Cai (2004); Cai et al. (2001); Chen et al. (2001, 2002); Lian et al. (2007); Liu et al. (2006); Zhou et al. (2004).

Experimental top

Disodium naphthalene-1,5-disulfonate (0.33 g, 1 mmol) and imidazole (0.27 g, 4 mmol) were added to an aqueous solution of NiCl26H2O (0.24 g, 1 mmol). The result solution was stirred at 60°C for four hours in a water bath. After filtration, a clear solution was set aside to crystallize. Platelike blue crystals were collected in 70% yield (base on Ni) after three days. Anal. Calcd for C16H22N4O10S2Ni: C, 34.74; H, 4.01; N, 10.13; Found: C, 34.71; H, 4.06; N, 10.18.

Refinement top

C– and N-bound H atoms were placed geometrically [C—H = 0.93 and N—H = 0.86 Å] and refined using a riding model, with Uiso(H)=1.2Ueq(N,C). Water H atoms were located on a difference map, and were refined isotropically with bond restraints O—H = 0.82 (2) Å and H···H = 1.35 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 1, -y, -z + 2].
Tetraaquadiimidazolenickel(II) naphthalene-1,5-disulfonate top
Crystal data top
[Ni(C3H4N2)2(H2O)4](C10H6O6S2)Z = 1
Mr = 553.21F(000) = 286
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.285 (3) ÅCell parameters from 2499 reflections
b = 8.925 (3) Åθ = 2.5–27.5°
c = 9.088 (3) ŵ = 1.12 mm1
α = 107.705 (5)°T = 273 K
β = 101.628 (5)°Plate, blue
γ = 111.967 (5)°0.37 × 0.28 × 0.22 mm
V = 554.6 (3) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
2499 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.681, Tmax = 0.790k = 1111
4834 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.1772P]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.35 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C3H4N2)2(H2O)4](C10H6O6S2)γ = 111.967 (5)°
Mr = 553.21V = 554.6 (3) Å3
Triclinic, P1Z = 1
a = 8.285 (3) ÅMo Kα radiation
b = 8.925 (3) ŵ = 1.12 mm1
c = 9.088 (3) ÅT = 273 K
α = 107.705 (5)°0.37 × 0.28 × 0.22 mm
β = 101.628 (5)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2262 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.790Rint = 0.011
4834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
2499 reflectionsΔρmin = 0.25 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02611 (9)
N10.28615 (18)0.55991 (17)0.43827 (16)0.0318 (3)
O1W0.31627 (16)0.23254 (16)0.43179 (17)0.0400 (3)
O2W0.50259 (17)0.42911 (17)0.25854 (14)0.0370 (3)
S10.21612 (5)0.14229 (5)0.81936 (4)0.02708 (10)
C10.41626 (19)0.11368 (19)0.88348 (17)0.0259 (3)
C50.41915 (19)0.01134 (18)0.97747 (17)0.0248 (3)
O30.06491 (16)0.03557 (16)0.71539 (15)0.0406 (3)
O20.18864 (17)0.22940 (17)0.96754 (15)0.0407 (3)
O10.25746 (18)0.25029 (18)0.72669 (17)0.0436 (3)
N20.1179 (2)0.6991 (2)0.4648 (2)0.0478 (4)
H7A0.08260.77570.50810.057*
C20.5648 (2)0.1890 (2)0.8392 (2)0.0353 (3)
H2A0.56100.25600.77890.042*
C30.7231 (2)0.1653 (2)0.8846 (2)0.0390 (4)
H3A0.82350.21690.85410.047*
C70.0278 (3)0.5634 (3)0.3116 (3)0.0449 (4)
H2B0.08310.53500.23350.054*
C80.1323 (2)0.4782 (2)0.2957 (2)0.0384 (4)
H8A0.10450.37920.20250.046*
C60.2709 (3)0.6926 (3)0.5365 (2)0.0459 (4)
H6A0.35600.77190.64250.055*
C40.7313 (2)0.0678 (2)0.9726 (2)0.0317 (3)
H4A0.83660.05261.00060.038*
H2WA0.570 (3)0.510 (2)0.241 (3)0.057 (7)*
H2WB0.402 (3)0.368 (3)0.176 (3)0.054 (6)*
H1WA0.215 (2)0.179 (3)0.357 (2)0.062 (7)*
H1WB0.302 (3)0.211 (4)0.511 (2)0.075 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02173 (14)0.02598 (14)0.02342 (14)0.00944 (11)0.00564 (10)0.00513 (10)
N10.0287 (6)0.0320 (7)0.0311 (6)0.0147 (5)0.0101 (5)0.0084 (5)
O1W0.0273 (6)0.0327 (6)0.0433 (7)0.0060 (5)0.0060 (5)0.0096 (5)
O2W0.0350 (6)0.0404 (7)0.0274 (6)0.0143 (5)0.0094 (5)0.0094 (5)
S10.02158 (17)0.02921 (19)0.02718 (19)0.01217 (14)0.00530 (14)0.00956 (14)
C10.0207 (6)0.0278 (7)0.0256 (7)0.0112 (5)0.0059 (5)0.0086 (5)
C50.0207 (6)0.0249 (7)0.0235 (6)0.0089 (5)0.0068 (5)0.0063 (5)
O30.0256 (5)0.0360 (6)0.0415 (7)0.0106 (5)0.0003 (5)0.0055 (5)
O20.0353 (6)0.0498 (7)0.0359 (6)0.0267 (6)0.0115 (5)0.0088 (5)
O10.0405 (7)0.0530 (7)0.0522 (7)0.0265 (6)0.0175 (6)0.0337 (6)
N20.0513 (9)0.0465 (9)0.0621 (10)0.0348 (8)0.0301 (8)0.0216 (8)
C20.0299 (8)0.0428 (9)0.0413 (9)0.0175 (7)0.0154 (7)0.0251 (7)
C30.0267 (8)0.0513 (10)0.0506 (10)0.0182 (7)0.0214 (7)0.0308 (8)
C70.0343 (9)0.0536 (11)0.0540 (11)0.0253 (8)0.0156 (8)0.0254 (9)
C80.0304 (8)0.0403 (9)0.0368 (9)0.0181 (7)0.0064 (7)0.0083 (7)
C60.0470 (10)0.0432 (10)0.0400 (9)0.0251 (8)0.0129 (8)0.0049 (8)
C40.0215 (7)0.0382 (8)0.0372 (8)0.0145 (6)0.0116 (6)0.0168 (7)
Geometric parameters (Å, º) top
Ni1—N1i2.0568 (14)C1—C51.431 (2)
Ni1—N12.0568 (14)C5—C4ii1.422 (2)
Ni1—O2Wi2.0979 (13)C5—C5ii1.427 (3)
Ni1—O2W2.0979 (13)N2—C61.334 (2)
Ni1—O1W2.0978 (13)N2—C71.357 (3)
Ni1—O1Wi2.0978 (13)N2—H7A0.8600
N1—C61.315 (2)C2—C31.407 (2)
N1—C81.378 (2)C2—H2A0.9300
O1W—H1WA0.82 (2)C3—C41.359 (2)
O1W—H1WB0.82 (2)C3—H3A0.9300
O2W—H2WA0.81 (2)C7—C81.351 (2)
O2W—H2WB0.81 (2)C7—H2B0.9300
S1—O21.4453 (12)C8—H8A0.9300
S1—O31.4508 (13)C6—H6A0.9300
S1—O11.4556 (13)C4—C5ii1.422 (2)
S1—C11.7811 (15)C4—H4A0.9300
C1—C21.369 (2)
N1i—Ni1—N1180.0O1—S1—C1106.33 (7)
N1i—Ni1—O2Wi91.34 (5)C2—C1—C5121.07 (13)
N1—Ni1—O2Wi88.66 (5)C2—C1—S1118.79 (12)
N1i—Ni1—O2W88.66 (5)C5—C1—S1120.14 (10)
N1—Ni1—O2W91.34 (5)C4ii—C5—C5ii119.05 (17)
O2Wi—Ni1—O2W180.0C4ii—C5—C1122.89 (13)
N1i—Ni1—O1W87.22 (6)C5ii—C5—C1118.05 (16)
N1—Ni1—O1W92.78 (6)C6—N2—C7107.87 (15)
O2Wi—Ni1—O1W91.48 (5)C6—N2—H7A126.1
O2W—Ni1—O1W88.52 (5)C7—N2—H7A126.1
N1i—Ni1—O1Wi92.78 (6)C1—C2—C3120.14 (15)
N1—Ni1—O1Wi87.22 (6)C1—C2—H2A119.9
O2Wi—Ni1—O1Wi88.52 (5)C3—C2—H2A119.9
O2W—Ni1—O1Wi91.48 (5)C4—C3—C2120.80 (14)
O1W—Ni1—O1Wi180.0C4—C3—H3A119.6
C6—N1—C8104.96 (14)C2—C3—H3A119.6
C6—N1—Ni1124.39 (12)C8—C7—N2105.88 (16)
C8—N1—Ni1130.65 (11)C8—C7—H2B127.1
Ni1—O1W—H1WA122.5 (16)N2—C7—H2B127.1
Ni1—O1W—H1WB113.1 (19)C7—C8—N1109.81 (16)
H1WA—O1W—H1WB107.7 (19)C7—C8—H8A125.1
Ni1—O2W—H2WA115.4 (16)N1—C8—H8A125.1
Ni1—O2W—H2WB121.1 (15)N1—C6—N2111.48 (16)
H2WA—O2W—H2WB106.8 (18)N1—C6—H6A124.3
O2—S1—O3113.08 (8)N2—C6—H6A124.3
O2—S1—O1112.57 (8)C3—C4—C5ii120.88 (14)
O3—S1—O1111.83 (8)C3—C4—H4A119.6
O2—S1—C1106.98 (7)C5ii—C4—H4A119.6
O3—S1—C1105.41 (7)
O2Wi—Ni1—N1—C637.27 (15)S1—C1—C5—C4ii1.5 (2)
O2W—Ni1—N1—C6142.73 (15)C2—C1—C5—C5ii0.5 (2)
O1W—Ni1—N1—C6128.69 (15)S1—C1—C5—C5ii178.52 (13)
O1Wi—Ni1—N1—C651.31 (15)C5—C1—C2—C30.6 (2)
O2Wi—Ni1—N1—C8142.13 (15)S1—C1—C2—C3178.51 (14)
O2W—Ni1—N1—C837.87 (15)C1—C2—C3—C40.0 (3)
O1W—Ni1—N1—C850.71 (15)C6—N2—C7—C80.1 (2)
O1Wi—Ni1—N1—C8129.29 (15)N2—C7—C8—N10.2 (2)
O2—S1—C1—C2121.03 (14)C6—N1—C8—C70.1 (2)
O3—S1—C1—C2118.35 (14)Ni1—N1—C8—C7179.38 (12)
O1—S1—C1—C20.52 (15)C8—N1—C6—N20.0 (2)
O2—S1—C1—C559.89 (13)Ni1—N1—C6—N2179.51 (12)
O3—S1—C1—C560.73 (13)C7—N2—C6—N10.1 (2)
O1—S1—C1—C5179.60 (12)C2—C3—C4—C5ii0.6 (3)
C2—C1—C5—C4ii179.40 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.82 (2)2.02 (2)2.7507 (18)148 (2)
O1W—H1WB···O10.82 (2)2.02 (1)2.788 (2)156 (3)
O2W—H2WA···O1i0.81 (2)1.96 (1)2.7496 (19)161 (2)
O2W—H2WB···O2iv0.81 (2)1.96 (2)2.7979 (18)173 (2)
N2—H7A···O3v0.862.192.981 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)2(H2O)4](C10H6O6S2)
Mr553.21
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.285 (3), 8.925 (3), 9.088 (3)
α, β, γ (°)107.705 (5), 101.628 (5), 111.967 (5)
V3)554.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.37 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.681, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
4834, 2499, 2262
Rint0.011
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.08
No. of reflections2499
No. of parameters167
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.82 (2)2.022 (15)2.7507 (18)148 (2)
O1W—H1WB···O10.82 (2)2.018 (14)2.788 (2)156 (3)
O2W—H2WA···O1ii0.81 (2)1.962 (10)2.7496 (19)161 (2)
O2W—H2WB···O2iii0.81 (2)1.96 (2)2.7979 (18)173 (2)
N2—H7A···O3iv0.862.192.981 (2)153.8
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z.
 

Acknowledgements

We acknowledge financial support from Henan Institute of Science and Technology, and we thank Professor Ji-Wen Cai for his kind assistance.

References

First citationBruker (1997). SMART (Version 5.6) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.  Web of Science CSD CrossRef Google Scholar
First citationChen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–64.  Web of Science CrossRef CAS Google Scholar
First citationLian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045–3052.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493–1497.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds