organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Meth­­oxy-6-[(5-methyl­isoxazol-3-yl)imino­meth­yl]phenol

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Applied Science and Technology, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com

(Received 9 December 2007; accepted 18 January 2008; online 23 January 2008)

In the title mol­ecule, C12H12N2O3, the benzene and isoxazole rings form a dihedral angle of 5.9 (6)°. The hydr­oxy group is involved in an intra­molecular O—H⋯N hydrogen bond [O⋯N = 2.616 (5) Å], resulting in approximate planarity of the mol­ecular skeleton. In the crystal structure, mol­ecules related by translation along the c axis are stacked into columns, the shortest inter­molecular C⋯C distance being 3.298 (6) Å.

Related literature

For related crystal structures, see Li et al. (2007[Li, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.]). For general background, see Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O3

  • Mr = 232.24

  • Orthorhombic, P n a 21

  • a = 22.254 (5) Å

  • b = 10.178 (5) Å

  • c = 4.836 (2) Å

  • V = 1095.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.992

  • 3720 measured reflections

  • 1079 independent reflections

  • 651 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.02

  • 1079 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.616 (5) 147

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of Schiff-bases have been investigated in terms of their crystallography and coordination chemistry (Garnovskii et al., 1993). In continuation of our studies of Schiff-bases, we report here the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), the geometric parameters are in good agreement with those found in 2,4-di-tert-butyl-6-(4-chlorophenyliminomethyl)phenol (Li et al., 2007). The benzene and the isoxazole rings make a dihedral angle of 5.9 (6)°. The hydroxy group is involved in intramolecular O—H···N hydrogen bond (Table 2). In the crystal, the molecules related by translation along c axis are stacked into columns with the shortest intermolecular C···C distance of 3.298 (6) Å (Table 1), suggesting an existence of π···π interactions.

Related literature top

For related crystal structures, see Li et al. (2007). For general background, see Garnovskii et al. (1993).

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) and 5-methylisoxazol-3-amine (0.098 g, 1 mmol) in ethanol solution and stirred under reflux conditions (353 K) for 6 h. When cooled to room temperature the solution was filtered and after a week orange crystals suitable for X-ray diffraction study were obtained. Yield, 0.186 g, 80%. m.p. 365–367 K.

Analysis found: C 61.98, H 5.25, N 12.04%; C12H12N2O3 requires: C 62.02, H 5.21, N 12.06%.

Refinement top

The H atoms were geometrically positioned (C—H 0.93–0.96 Å, O—H = 0.82 Å) and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl and O). Due to the absence of any significant anomalous scatterers in the molecule, the 758 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(E)-2-Methoxy-6-[(5-methylisoxazol-3-yl)iminomethyl]phenol top
Crystal data top
C12H12N2O3F(000) = 488
Mr = 232.24Dx = 1.408 Mg m3
Dm = 1.408 Mg m3
Dm measured by not measured
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 401 reflections
a = 22.254 (5) Åθ = 2.7–18.4°
b = 10.178 (5) ŵ = 0.10 mm1
c = 4.836 (2) ÅT = 273 K
V = 1095.4 (8) Å3Block, orange
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1079 independent reflections
Radiation source: sealed tube651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2612
Tmin = 0.988, Tmax = 0.992k = 1110
3720 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1079 reflectionsΔρmax = 0.24 e Å3
156 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C12H12N2O3V = 1095.4 (8) Å3
Mr = 232.24Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.254 (5) ŵ = 0.10 mm1
b = 10.178 (5) ÅT = 273 K
c = 4.836 (2) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1079 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
651 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.069
3720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
1079 reflectionsΔρmin = 0.19 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38927 (16)0.1624 (3)0.1475 (8)0.0589 (12)
H10.36050.17110.04330.088*
O20.47481 (17)0.1609 (3)0.5178 (8)0.0642 (12)
O30.19927 (17)0.2331 (3)0.6386 (9)0.0630 (12)
N10.30586 (18)0.2894 (4)0.1253 (10)0.0435 (11)
N20.2451 (2)0.1937 (4)0.4528 (11)0.0600 (14)
C10.3990 (2)0.2760 (5)0.2836 (10)0.0439 (14)
C20.4440 (2)0.2775 (5)0.4844 (12)0.0493 (15)
C30.4554 (2)0.3904 (5)0.6332 (11)0.0507 (14)
H30.48560.39130.76600.061*
C40.4214 (2)0.5035 (5)0.5842 (12)0.0521 (15)
H40.42860.57920.68670.062*
C50.3773 (2)0.5031 (5)0.3843 (12)0.0488 (13)
H50.35510.57900.35200.059*
C60.3655 (2)0.3901 (5)0.2295 (10)0.0408 (13)
C70.5192 (3)0.1552 (6)0.7308 (13)0.0709 (19)
H7A0.55050.21740.69200.106*
H7B0.53590.06830.73840.106*
H7C0.50090.17600.90540.106*
C80.3197 (2)0.3922 (5)0.0215 (11)0.0448 (13)
H80.29900.47020.00980.054*
C90.2608 (2)0.3021 (5)0.3245 (11)0.0457 (14)
C100.2266 (2)0.4109 (5)0.4155 (12)0.0512 (15)
H100.22950.49710.35360.061*
C110.1892 (2)0.3643 (5)0.6087 (11)0.0464 (14)
C120.1426 (2)0.4195 (6)0.7923 (12)0.0658 (18)
H12A0.13720.36280.94890.099*
H12B0.15480.50500.85440.099*
H12C0.10540.42660.69280.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.069 (3)0.040 (2)0.068 (3)0.0036 (19)0.016 (2)0.009 (2)
O20.068 (3)0.056 (2)0.069 (3)0.016 (2)0.019 (2)0.004 (2)
O30.070 (3)0.049 (2)0.070 (3)0.006 (2)0.013 (2)0.007 (2)
N10.045 (3)0.036 (2)0.049 (2)0.002 (2)0.002 (2)0.003 (2)
N20.068 (3)0.041 (3)0.071 (3)0.009 (2)0.027 (3)0.002 (3)
C10.046 (3)0.041 (3)0.045 (3)0.009 (3)0.004 (3)0.000 (3)
C20.049 (4)0.044 (3)0.056 (4)0.003 (3)0.007 (3)0.001 (3)
C30.048 (3)0.055 (3)0.049 (3)0.003 (3)0.002 (3)0.005 (3)
C40.060 (4)0.044 (3)0.052 (3)0.009 (3)0.006 (3)0.002 (3)
C50.056 (3)0.036 (3)0.055 (3)0.001 (3)0.000 (4)0.004 (3)
C60.041 (3)0.034 (3)0.047 (3)0.002 (3)0.003 (3)0.001 (2)
C70.069 (4)0.078 (4)0.065 (4)0.027 (3)0.011 (4)0.002 (4)
C80.042 (3)0.038 (3)0.055 (3)0.004 (3)0.004 (3)0.000 (3)
C90.050 (4)0.038 (3)0.049 (3)0.007 (3)0.008 (3)0.003 (3)
C100.056 (4)0.039 (3)0.059 (4)0.007 (3)0.003 (3)0.007 (3)
C110.047 (4)0.045 (3)0.048 (3)0.001 (3)0.007 (3)0.006 (3)
C120.064 (4)0.073 (4)0.061 (4)0.008 (3)0.011 (4)0.005 (4)
Geometric parameters (Å, º) top
O1—C11.348 (5)C4—H40.9300
O1—H10.8200C5—C61.397 (7)
O2—C21.379 (6)C5—H50.9300
O2—C71.428 (6)C6—C81.433 (7)
O3—C111.362 (6)C7—H7A0.9600
O3—N21.417 (6)C7—H7B0.9600
N1—C81.301 (6)C7—H7C0.9600
N1—C91.397 (7)C8—H80.9300
N2—C91.313 (5)C9—C101.413 (6)
C1—C21.395 (7)C10—C111.338 (7)
C1—C61.405 (7)C10—H100.9300
C2—C31.379 (7)C11—C121.477 (7)
C3—C41.397 (7)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.377 (7)C12—H12C0.9600
C4···C8i3.298 (6)C6···C9i3.299 (6)
C1—O1—H1109.5O2—C7—H7B109.5
C2—O2—C7117.5 (4)H7A—C7—H7B109.5
C11—O3—N2109.2 (4)O2—C7—H7C109.5
C8—N1—C9118.2 (4)H7A—C7—H7C109.5
C9—N2—O3104.7 (4)H7B—C7—H7C109.5
O1—C1—C2117.7 (5)N1—C8—C6122.6 (5)
O1—C1—C6122.2 (5)N1—C8—H8118.7
C2—C1—C6120.1 (5)C6—C8—H8118.7
O2—C2—C3124.4 (5)N2—C9—N1116.0 (5)
O2—C2—C1115.4 (5)N2—C9—C10111.6 (5)
C3—C2—C1120.2 (5)N1—C9—C10132.3 (5)
C2—C3—C4119.9 (5)C11—C10—C9106.0 (5)
C2—C3—H3120.0C11—C10—H10127.0
C4—C3—H3120.0C9—C10—H10127.0
C5—C4—C3120.1 (5)C10—C11—O3108.6 (5)
C5—C4—H4119.9C10—C11—C12136.3 (5)
C3—C4—H4119.9O3—C11—C12115.1 (5)
C4—C5—C6120.8 (5)C11—C12—H12A109.5
C4—C5—H5119.6C11—C12—H12B109.5
C6—C5—H5119.6H12A—C12—H12B109.5
C5—C6—C1118.8 (5)C11—C12—H12C109.5
C5—C6—C8119.8 (5)H12A—C12—H12C109.5
C1—C6—C8121.4 (5)H12B—C12—H12C109.5
O2—C7—H7A109.5
C11—O3—N2—C90.8 (5)O1—C1—C6—C81.2 (7)
C7—O2—C2—C33.5 (8)C2—C1—C6—C8179.0 (4)
C7—O2—C2—C1176.8 (4)C9—N1—C8—C6179.5 (4)
O1—C1—C2—O21.2 (7)C5—C6—C8—N1178.6 (5)
C6—C1—C2—O2179.0 (5)C1—C6—C8—N11.0 (7)
O1—C1—C2—C3179.0 (5)O3—N2—C9—N1179.6 (4)
C6—C1—C2—C30.8 (7)O3—N2—C9—C100.8 (6)
O2—C2—C3—C4179.8 (5)C8—N1—C9—N2175.0 (5)
C1—C2—C3—C40.5 (8)C8—N1—C9—C103.5 (8)
C2—C3—C4—C51.1 (8)N2—C9—C10—C110.5 (6)
C3—C4—C5—C60.5 (8)N1—C9—C10—C11179.0 (5)
C4—C5—C6—C10.8 (7)C9—C10—C11—O30.1 (5)
C4—C5—C6—C8179.6 (4)C9—C10—C11—C12178.7 (6)
O1—C1—C6—C5178.4 (5)N2—O3—C11—C100.6 (5)
C2—C1—C6—C51.4 (7)N2—O3—C11—C12179.5 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.616 (5)147

Experimental details

Crystal data
Chemical formulaC12H12N2O3
Mr232.24
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)273
a, b, c (Å)22.254 (5), 10.178 (5), 4.836 (2)
V3)1095.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3720, 1079, 651
Rint0.069
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.02
No. of reflections1079
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
C4···C8i3.298 (6)C6···C9i3.299 (6)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.616 (5)147.0
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06-2-12).

References

First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationLi, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds