organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-2,2,6,6-tetra­methyl­piperidinium hydrogensulfate monohydrate

aCollege of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology, Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: tju_chemistry@yahoo.com.cn

(Received 12 December 2007; accepted 19 December 2007; online 4 January 2008)

In the title compound, C9H20NO+·HO4S·H2O, the piperi­dinium ring adopts a chair conformation. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal structure.

Related literature

For useful applications of tetra­methyl­piperidinol, see: Gray (1991[Gray, R. L. (1991). Plast. Eng. 47, 21-23.]); Liu et al. (2006[Liu, X., Ju, C. X., Hu, R. S. & Gu, D. P. (2006). J. Heibei Normal Univ. (Nat. Sci. Ed.), 30, 326-328.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20NO+·HO4S·H2O

  • Mr = 273.34

  • Triclinic, [P \overline 1]

  • a = 8.334 (3) Å

  • b = 8.518 (3) Å

  • c = 10.245 (3) Å

  • α = 78.465 (5)°

  • β = 82.546 (5)°

  • γ = 71.586 (4)°

  • V = 674.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.951

  • 3506 measured reflections

  • 2374 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.06

  • 2374 reflections

  • 176 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.83 (2) 1.76 (2) 2.576 (3) 168 (4)
N1—H1A⋯O5i 0.86 (2) 1.933 (17) 2.795 (3) 178 (2)
N1—H1B⋯O3ii 0.86 (2) 2.154 (19) 3.002 (3) 168 (2)
O6—H6D⋯O3iii 0.82 (2) 2.06 (2) 2.874 (3) 169 (4)
O6—H6E⋯O4iv 0.81 (2) 2.00 (2) 2.790 (3) 165 (4)
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+2, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetramethylpiperidinol is an important intermediate used in the synthesis of hindered amine light stabilizer (HALS) (Gray, 1991; Liu et al., 2006). The title compound, (I), is a new derivative of tetramethylpiperidinol. Herein we report its crystal structure.

In (I) (Fig. 1), the piperidinium ring adopts a chair conformation. The hydroxy group attached at C1 is in equatorial position. In the crystal, the intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) form an extensive three-dimensional network, which consolidates the packing.

Related literature top

For useful applications of tetramethylpiperidinol, see: Gray (1991); Liu et al. (2006).

Experimental top

2,2,6,6-Tetramethylpiperidin-4-ol (40.0 g, 254 mmol) was dissolved in 98% H2SO4 (24.5 g) and then cooled to 278 K. With stirring, water (100 ml) was then added dropwise to the mixture over a period of 0.5 h. The mixture was stirred at 273–278 K for a further 3 h. The title compound (54.50 g) was obtained in powder form in a yield of 75.6%. Crystals of (I) were obtained by slow evaporation of a solution of water.

Refinement top

H atoms attached to atoms N and O were located in a difference map and refined with bond restraints O—H = 0.82 (2) Å, N—H = 0.86 (2) Å. C-bound H atoms were positioned geometrically (C—H 0.96–0.98 Å). All H atoms wrere refined as riding, with Uiso(H)=1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I) with the atomic numbering and 35% probability displacement ellipsoids.
4-Hydroxy-2,2,6,6-tetramethylpiperidinium hydrogensulfate monohydrat top
Crystal data top
C9H20NO+·HO4S·H2OZ = 2
Mr = 273.34F(000) = 296
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.334 (3) ÅCell parameters from 1816 reflections
b = 8.518 (3) Åθ = 2.6–26.2°
c = 10.245 (3) ŵ = 0.26 mm1
α = 78.465 (5)°T = 294 K
β = 82.546 (5)°Plate, colourless
γ = 71.586 (4)°0.26 × 0.24 × 0.20 mm
V = 674.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2374 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 96
Tmin = 0.936, Tmax = 0.951k = 109
3506 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4673P]
where P = (Fo2 + 2Fc2)/3
2374 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.41 e Å3
5 restraintsΔρmin = 0.33 e Å3
Crystal data top
C9H20NO+·HO4S·H2Oγ = 71.586 (4)°
Mr = 273.34V = 674.3 (3) Å3
Triclinic, P1Z = 2
a = 8.334 (3) ÅMo Kα radiation
b = 8.518 (3) ŵ = 0.26 mm1
c = 10.245 (3) ÅT = 294 K
α = 78.465 (5)°0.26 × 0.24 × 0.20 mm
β = 82.546 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1929 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.951Rint = 0.016
3506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
2374 reflectionsΔρmin = 0.33 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14016 (7)0.73866 (7)0.24152 (5)0.03302 (19)
O10.4452 (2)0.7411 (3)0.46414 (17)0.0535 (5)
H10.547 (2)0.720 (4)0.457 (4)0.080*
O20.3063 (3)0.7840 (3)0.24406 (19)0.0642 (6)
H20.344 (5)0.760 (5)0.319 (2)0.096*
O30.0141 (2)0.8333 (2)0.33050 (17)0.0468 (5)
O40.1771 (3)0.5626 (3)0.2834 (2)0.0752 (7)
O50.0982 (3)0.7967 (3)0.10455 (17)0.0676 (6)
N10.1898 (2)0.8477 (2)0.83066 (18)0.0273 (4)
H1A0.164 (3)0.832 (3)0.9156 (11)0.033*
H1B0.124 (2)0.9428 (18)0.795 (2)0.033*
C10.3968 (3)0.7257 (3)0.6054 (2)0.0361 (5)
H1C0.46680.61870.65190.043*
C20.4211 (3)0.8696 (3)0.6595 (2)0.0349 (5)
H2A0.35530.97490.61010.042*
H2B0.53960.86560.64440.042*
C30.3682 (3)0.8660 (3)0.8082 (2)0.0302 (5)
C40.1464 (3)0.7153 (3)0.7725 (2)0.0325 (5)
C50.2122 (3)0.7299 (3)0.6255 (2)0.0368 (5)
H5A0.19890.63830.58910.044*
H5B0.14420.83430.57630.044*
C60.4904 (3)0.7243 (3)0.8968 (2)0.0427 (6)
H6A0.44100.71370.98700.064*
H6B0.59520.74950.89460.064*
H6C0.51160.62080.86450.064*
C70.3528 (3)1.0332 (3)0.8499 (3)0.0435 (6)
H7A0.27291.12230.79720.065*
H7B0.46141.05300.83590.065*
H7C0.31451.02910.94270.065*
C80.0472 (3)0.7621 (3)0.7869 (3)0.0463 (6)
H8A0.08310.68080.75520.069*
H8B0.09420.87110.73540.069*
H8C0.08590.76390.87920.069*
C90.2196 (4)0.5397 (3)0.8522 (3)0.0497 (7)
H9A0.16950.46350.82780.075*
H9B0.19500.54310.94590.075*
H9C0.34010.50230.83280.075*
O60.7835 (3)0.6591 (3)0.4742 (2)0.0653 (6)
H6D0.858 (4)0.702 (5)0.442 (4)0.098*
H6E0.814 (5)0.591 (4)0.540 (3)0.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (3)0.0395 (3)0.0236 (3)0.0090 (2)0.0009 (2)0.0016 (2)
O10.0404 (10)0.0952 (15)0.0292 (9)0.0222 (11)0.0056 (8)0.0224 (9)
O20.0442 (11)0.1171 (19)0.0365 (11)0.0394 (12)0.0015 (8)0.0028 (11)
O30.0428 (10)0.0516 (11)0.0402 (10)0.0059 (8)0.0048 (8)0.0131 (8)
O40.0928 (17)0.0381 (11)0.0867 (17)0.0123 (11)0.0044 (13)0.0057 (11)
O50.0535 (12)0.1205 (19)0.0234 (9)0.0260 (12)0.0040 (8)0.0006 (10)
N10.0263 (10)0.0300 (10)0.0244 (9)0.0080 (8)0.0000 (7)0.0038 (8)
C10.0352 (13)0.0462 (14)0.0251 (12)0.0095 (11)0.0008 (9)0.0083 (10)
C20.0320 (12)0.0450 (14)0.0287 (12)0.0159 (10)0.0019 (9)0.0040 (10)
C30.0272 (11)0.0382 (12)0.0264 (11)0.0122 (9)0.0018 (9)0.0043 (9)
C40.0349 (12)0.0315 (12)0.0345 (13)0.0155 (10)0.0001 (10)0.0055 (9)
C50.0376 (13)0.0440 (14)0.0328 (12)0.0144 (11)0.0019 (10)0.0123 (10)
C60.0321 (13)0.0579 (16)0.0334 (13)0.0081 (11)0.0067 (10)0.0030 (11)
C70.0448 (15)0.0486 (15)0.0456 (15)0.0221 (12)0.0031 (11)0.0139 (12)
C80.0398 (14)0.0552 (16)0.0521 (16)0.0243 (12)0.0039 (12)0.0158 (13)
C90.0630 (18)0.0324 (13)0.0528 (16)0.0184 (12)0.0020 (13)0.0003 (11)
O60.0456 (12)0.0785 (16)0.0653 (15)0.0238 (11)0.0011 (10)0.0083 (11)
Geometric parameters (Å, º) top
S1—O41.419 (2)C4—C81.529 (3)
S1—O51.4411 (18)C4—C91.530 (3)
S1—O31.4476 (18)C4—C51.530 (3)
S1—O21.555 (2)C5—H5A0.9700
O1—C11.443 (3)C5—H5B0.9700
O1—H10.81 (2)C6—H6A0.9600
O2—H20.83 (2)C6—H6B0.9600
N1—C31.528 (3)C6—H6C0.9600
N1—C41.529 (3)C7—H7A0.9600
N1—H1A0.86 (2)C7—H7B0.9600
N1—H1B0.86 (2)C7—H7C0.9600
C1—C51.515 (3)C8—H8A0.9600
C1—C21.519 (3)C8—H8B0.9600
C1—H1C0.9800C8—H8C0.9600
C2—C31.528 (3)C9—H9A0.9600
C2—H2A0.9700C9—H9B0.9600
C2—H2B0.9700C9—H9C0.9600
C3—C71.529 (3)O6—H6D0.82 (2)
C3—C61.531 (3)O6—H6E0.81 (2)
O4—S1—O5114.56 (15)N1—C4—C5107.47 (17)
O4—S1—O3112.68 (13)C8—C4—C5111.10 (19)
O5—S1—O3111.13 (12)C9—C4—C5112.8 (2)
O4—S1—O2107.34 (14)C1—C5—C4112.66 (18)
O5—S1—O2103.30 (11)C1—C5—H5A109.1
O3—S1—O2107.04 (12)C4—C5—H5A109.1
C1—O1—H1106 (3)C1—C5—H5B109.1
S1—O2—H2114 (3)C4—C5—H5B109.1
C3—N1—C4120.80 (17)H5A—C5—H5B107.8
C3—N1—H1A107.9 (16)C3—C6—H6A109.5
C4—N1—H1A107.7 (16)C3—C6—H6B109.5
C3—N1—H1B105.5 (16)H6A—C6—H6B109.5
C4—N1—H1B105.6 (16)C3—C6—H6C109.5
H1A—N1—H1B109 (2)H6A—C6—H6C109.5
O1—C1—C5108.04 (18)H6B—C6—H6C109.5
O1—C1—C2109.83 (19)C3—C7—H7A109.5
C5—C1—C2110.27 (19)C3—C7—H7B109.5
O1—C1—H1C109.6H7A—C7—H7B109.5
C5—C1—H1C109.6C3—C7—H7C109.5
C2—C1—H1C109.6H7A—C7—H7C109.5
C1—C2—C3113.44 (18)H7B—C7—H7C109.5
C1—C2—H2A108.9C4—C8—H8A109.5
C3—C2—H2A108.9C4—C8—H8B109.5
C1—C2—H2B108.9H8A—C8—H8B109.5
C3—C2—H2B108.9C4—C8—H8C109.5
H2A—C2—H2B107.7H8A—C8—H8C109.5
N1—C3—C2107.19 (16)H8B—C8—H8C109.5
N1—C3—C7105.65 (18)C4—C9—H9A109.5
C2—C3—C7111.28 (19)C4—C9—H9B109.5
N1—C3—C6110.75 (18)H9A—C9—H9B109.5
C2—C3—C6112.80 (19)C4—C9—H9C109.5
C7—C3—C6108.92 (19)H9A—C9—H9C109.5
N1—C4—C8105.19 (18)H9B—C9—H9C109.5
N1—C4—C9111.11 (19)H6D—O6—H6E111 (4)
C8—C4—C9108.9 (2)
O1—C1—C2—C3178.44 (18)C3—N1—C4—C8167.05 (19)
C5—C1—C2—C359.5 (2)C3—N1—C4—C975.2 (2)
C4—N1—C3—C247.9 (2)C3—N1—C4—C548.6 (2)
C4—N1—C3—C7166.70 (19)O1—C1—C5—C4179.71 (19)
C4—N1—C3—C675.5 (2)C2—C1—C5—C459.7 (3)
C1—C2—C3—N150.8 (2)N1—C4—C5—C151.7 (3)
C1—C2—C3—C7165.8 (2)C8—C4—C5—C1166.3 (2)
C1—C2—C3—C671.4 (2)C9—C4—C5—C171.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.83 (2)1.76 (2)2.576 (3)168 (4)
N1—H1A···O5i0.86 (2)1.93 (2)2.795 (3)178 (2)
N1—H1B···O3ii0.86 (2)2.15 (2)3.002 (3)168 (2)
O6—H6D···O3iii0.82 (2)2.06 (2)2.874 (3)169 (4)
O6—H6E···O4iv0.81 (2)2.00 (2)2.790 (3)165 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H20NO+·HO4S·H2O
Mr273.34
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.334 (3), 8.518 (3), 10.245 (3)
α, β, γ (°)78.465 (5), 82.546 (5), 71.586 (4)
V3)674.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.936, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
3506, 2374, 1929
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.06
No. of reflections2374
No. of parameters176
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.83 (2)1.76 (2)2.576 (3)168 (4)
N1—H1A···O5i0.86 (2)1.933 (17)2.795 (3)178 (2)
N1—H1B···O3ii0.86 (2)2.154 (19)3.002 (3)168 (2)
O6—H6D···O3iii0.82 (2)2.06 (2)2.874 (3)169 (4)
O6—H6E···O4iv0.81 (2)2.00 (2)2.790 (3)165 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

References

First citationBruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGray, R. L. (1991). Plast. Eng. 47, 21–23.  CAS Google Scholar
First citationLiu, X., Ju, C. X., Hu, R. S. & Gu, D. P. (2006). J. Heibei Normal Univ. (Nat. Sci. Ed.), 30, 326–328.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds